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ABSTRACT

Many reduceddimensionSTAP algorithmshavebeendeveloped
for airborneradarapplicationswhich rely ona stationaryDoppler
componenbftheinterferencein orderto maintainacceptableer
formance Two caseswhele this assumptioris violatedare when
thegroundcluttercontaingntrinsic cluttermotion(ICM) andwhen
hot clutter is present. In addition to the non-stationaryDoppler
componenthot clutter containsnon-zeo correlationsin fast-time
(acrossrange bins)aswell. Thispaperwill presentan algorithm
designedto mitigate both ground clutter and hot clutter in the
samestepusing a two dimensionalvector autoregressivemodel
to whitenthe datain space fast-time and slow-time Thisis an
extensionof the Space-ie AutoRgressive(STAR) filter that we
havepreviouslyproposed Usinga simulateddatasetfor circular
array STAP augmenteavith synthetichot clutter, we demonstte
that the extensionswe presentdo resultin a significantperfor-
manceincreaseover the standad STARfilter. In additionwealso
showthat the STAR filters havea narrower clutter notch thanthe
optimizedpre-Dopplerfilter whena finite samplesupportis used
to train thefilters.

1. INTRODUCTION

The value of space-timeadaptve processing STAP) algorithms
for airborneradarinterferencesuppressiotis limited by the com-
putationalcostof implementatioraswell astheamountof station-
ary training dataavailable to train the filter weights. Due to the
inherentlow-rank natureof the interferencejt is possibleto de-
sign reduceddimensionalgorithmswhich canhave nearoptimal
performanceThese'partially adaptve” STAP filters[1, 2] helpto
alleviate the problemof computationatompleity aswell asthe
samplesupportrequiredto trainthefilter.

In [3] analternatve methodfor clutter andinterferencesup-
pressionwas proposedhat usesa vectorautorgressie (AR) fil-
ter. An algorithmthat usesthis modelto constructa structured
subspacehat is as orthogonalas possibleto the clutter and in-
terferencehasbeenproposedn [4]. This algorithm, referredto
asSpace-ime AutoRaressie (STAR) filtering, usesaprojection
ontothe estimatedsubspacéo whitenthe primarydatavector

Most of the partially adaptve methodsaswell asthe vector
AR methodamale anassumptiorthatthe covariancematrix from
theclutterstatisticss Toeplitz(i.e.,stationaryfrom pulseto pulse).
Thisassumptioris violatedin thepresencef intrinsic cluttermo-
tion (ICM) or terrain scatterednterference(alsoknovn as TSI,
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hot clutter, or jammermultipath). It is the latter effect that will

be addresseih this paper We presentan extensionto the STAR
filter thatwill, in thesamestep,cancebothgroundclutterandhot
clutterthatis generatedrom the modelof [5]. The extensiongo
the STAR filter will beasfollows:

1. ThevectorAR filter coeficientswill beupdatedaftereach
new pulseis receved. Althoughthis will requireadditional
samplesupport trackingthe non-stationarynterferences
necessarjor goodperformance.

2. In orderto bestutilize the fast-timecorrelationsa two-di-
mensionalectorAR filter will be usedwith matrix tapsin
both the slow-time (pulse)dimension,aswell asthe fast-
time (rangebin) dimension.

A performanceevaluationwill be madeusing groundclutter
from a syntheticdatasetgeneratecdby MIT Lincoln Laboratory
thatsimulateshe outputof a 20 elementantennarraywhoseel-
ementdie alongacirculararcof 120° [6]. Circulararraygeome-
triesarecurrentlybeingconsideredor usein airbornesureillance
radarssincethey canelectronicallyscanthefull 360° surroundings
in muchlesstime thana mechanicallysteeredarray An experi-
mentalcirculararrayis currentlybeingdevelopedby Raytheoras
part of the UHF ElectronicallyScannedArray (UESA) program
sponsoredyy the Office of Naval Research.The arrayis com-
posedbf 60 directionalelement®venly spacedirouncthe edgeof
the circularaperture put nominally only 20 areusedat ary given
time for transmitandreceve. Hot clutter generatecgccordingto
the “sandpaper’earthmodelwill be addedto the groundclutter
data.

In the next section,we presentthe standarddatamodel as-
sumedor athree-dimensionagTAP problemanddeveloptheno-
tationwe will usethroughouthe paper The STAR filtering tech-
nigueis outlinedin Section3 asbhackgroundor the extensionof
this filter. Section4 will derive a three-dimensionabTAR filter
that canbe usedin the mitigation of hot clutter Theresultsof a
seriesof numericalexperimentcomparinghe STAR approacho
standardSTAP algorithmsarepresentedh Section5.

2. MATHEMATICAL MODEL

A tamgetpresentn aparticularrangebin duringsomecoherenpro-
cessingntenal (CPI) maybemodeledasproducingthefollowing
basebandrector signal (after pulse compressiorand demodula-
tion) [1]:

X[(t) :ba(e)ejwt+nl(t) € Cm7 t= ]-:"'aN: (1)



where/ is the rangebin in which the tamget is located,b is the
comple amplitudeof the signal,w is the Dopplershift dueto the
relative motion betweerthe arrayplatformandthetarget,a(d) is
the responseof the array to a unit amplitudeplanewave arriv-
ing from direction § (azimuthand elevation angles),and n,(t)
containscontritutionsfrom clutter, jamming, and thermalnoise.
In (1), we areassumingan arrayof m elementsanda total of vV
transmittecpulsescovering R rangebins.

If we stackthe NV arrayoutputsandthe R rangebin vectors
into asinglem N R x 1 snapshotwe mayre-write(1) as

Xo 1o
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and® representshe Kronecler product. The vectorn, contains
thestacledvectorsample®f theclutterandinterferencdor range
bin ¢, andhasanunknavn covariancematrix denotecby

E{mmi} =R.

The clutteris neithertemporallynor spatially white; in fact, the
rankof R is typically muchlessthanmN. Therank(p) of R is
importantbecauseét determineshonv mary secondarydatasam-
plesarerequiredto accuratelyestimateR. Accordingto [7], the
numberof requiredsampless onthe orderof 2p to 5p. Thefully
adaptve approacho whiteningthis type of datais to multiply the
databy the inverseof an estimateof the matrix R. Becausdhe
size of this matrix canbecomequite large, its low rank natureis
exploitedto derive reduceddimensiorwhiteningalgorithms.The
next sectionwill summarizehe work in [4] to presenthe STAR
filter.

3. SPACE-TIME AUTOREGRESSIVE FILTERING

Following thederiationin [4], the STAR appraoctassumethata
setof L matricesHo, Hy, - - -, Hz_1 of dimensionm’ x m exist
thatsatisfy

L—-1
> Hin(t+i)=0, t=1,---,N-L+1, (3)
i=0

for theinterferenceandclutterin the primary rangebin. We may
alsowrite (3) in thefollowing two differentways:
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or
H'n=0, (5)
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We assumeéhatequationg4) and(5) alsohold for the secondary
dataaswell:

H'N, = 0 )
Hme = 0, (8)
for k = 1,---, N, where N; is the numberof secondarydata

snapshotsisedto train thefilter.

The matrix H# is mN x m/(N — L + 1). If (3) holdsand
m' andL arechosersothatm’(N — L + 1) is largeenoughthe
columnsof ‘H form abasisfor the spaceorthogonalto the clutter
andinterferencesubspaceAlthoughthisrelationshipwill nothold
in practicedueto the presencef thermalnoise,a leastsquares
solutionis appliedto approximatehe subspaceThis suggestshe
following space-timédilter be usedfor interferenceejection:

WAR(G,(U) = P’Hs(eaw) 3 )
whereP4 is the projectionontothe columnsof H:
Pu=HMHH) "H . (10)

We refer to the implementatiorof STAP with the weight vector
of (9) asSpace-ime AutoReagressie (STAR) filtering. The STAR
filter weightsare“adaptie” in thesensehat? mustbeestimated
from the secondarglataprior to computatiorof w4 .

4. 3D-STARFILTER

In this section,a 3D-STAR filter is derived thatcanmitigateboth
ground clutter and hot clutter in the samestep. This filter has
two main differencesfrom the STAR filter of the previous sec-
tion. First, the 3D-STAR filter will updateits coeficients after
eachpulseis receved. Second,t will have fast-timedegreesof
freedom(DOFs)availablefor hot clutter mitigation. Theseextra
DOFsare usedto take advantageof the fact that hot clutter has
non-zerocorrelationfrom onerangebin to thenext. TheseDOFs
arethenusedto helpmitigatemainbeamjammingsignals.In the
first part of this section,we derive a (slow) time varying STAR
(TVSTAR) filter, andin the secondpartwe derive athreedimen-
sional(two dimensionalectorAR) STAR filter.

Whenhotclutteror ICM is presentthemodelfor theclutterin
(3) isnolongervalid, asthespatialcovariancechangedrom pulse
to pulse. If the modelin (3) is appliedin sucha non-stationary
ervironment,a largefilter order (L) will be necessaryo account
for the slow-time variationsin the data. A betterapproactin this
caseis to let the space-slav-time vectorAR filter be

Hy(1) Hi_1(1)
H;’V = T . T . )
Hy (n) HL_1(TL)
(11)
wheren = N — L+ 1. Eachblockrow is asetof new coeficients
basedon droppingthe datafrom the oldestpulseandaddingthe

datafrom the mostrecentpulse(i.e.,computingnewn coeficients
for eachsub-CPI).Thistime varying STAR filter mayalsobeused



whentrying to accountfor ICM.

In orderto utilize thefast-timecorrelationof thedata,anextra
dimensionneedso be addedto the STAR filter. We will assume
for amomentthatthe interferencds stationaryacrossthe pulses.
Thisfilter will modelthefast-timeandslow-time correlationswith
a two-dimensionalector AR filter. For a setof LJ matricesof
sizem' x m, assumehattheclutterobeys themodel

J—1L-1
S>> Hijngy(t+i)=0, t=1,--,N—L+1,
j=0 i=0
k=1,---,P—-J+1, (12)
wherek = 0 is the rangebin of interestand P is the numberof
fast-timesamplesised.This mayalsobeexpresseas
J—-1
> Hingy; =0 k=1, ,P—J+]1, (13)
j=0
whereH; is thematrix definedin (6) with asubscriptj to indicate
which fast-timesampleit is associatedvith. From this point we
may againtake into accountthe slow-time variationscausedby
the hot clutter by replacing?#; with the slow-time varying filter
Hrv,j.
Rewriting this sumwith thetime varyingfilter we get

H" 734 (k) = 0, (14)
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Assumingthatthereis targetenegy in thek = 0 rangebin then
therewill alsobe target enegy in the vectorsznsq (0), nsqa(—1),
-+, n3a(—P + 1) which maynotbeusedfor trainingthefilter. In
orderto definethealgorithmto find thefilter coeficientslet

H(t)" = [ Hoolt) Hp 1,5-1(t) ] (15)
[ ny(t)
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The filter coeficients can then be found by the following least
squaregriterion:
H(t) = arg min Hﬁ(t)*G(t)H
H(t)

=1, N—-L (9

F

subjectto the constraintthat H(¢)*H(¢) = I. Fromthis point
them’ left singularvectorscorrespondingo the smallestsingular
valuesof eachG () matrixwill beusedto computehe N — L +1

setsof filter coeficientswhich defineH. The threedimensional

weightvectorwill be

WAarsp = Pussp(0,w), (20)
where
1
0
ssp(f,w)=| . | ®s(b,w). (21)
0

5. NUMERICAL RESULTS

Sincethe prototypeUESA circulararrayhasyetto befield tested,
a datapackagehasbeencreatedby MIT Lincoln Laboratoryto
simulatethe outputof thearraydueto groundclutterin a standard
operatingscenario.Insteadof 60 elementsthe simulateddataas-
sumesan array of 54 elementsuniformly spacedarounda circle
of 5.93mdiameter Only m = 20 of theelementsaareassumedo
be usedfor transmitandreceve during one CPI. The antennael-
ementsareassumedo have a cosine-shaperksponsevith a —30
dB backlobefor boththe azimuthandelevationdimensionsThe
airborneplatformis moving with avelocity of 100m/sabove a4/3
earthmodelat analtitudeof 9000m. The operatingfrequeng of
theradaris takento be435Mhz, theradarbandwidthandsampling
frequeng are3.75Mhz, the pulse-repetitiorirequeny is 300Hz,
andN = 18 pulsesareassumedo betransmittedduringoneCPI.
Dataaregeneratedor 9325rangegateshetweern?0-400km with
a clutterto-white-noisepowerratio of 45dB atarangeof 100km.

Hot clutter is includedinto the databy addinga term of the
form

cx(1)

ik = b : )

Ck(N)

whereb; is theamplitudeof thejammey

£
a(t%-)zk + Z btzk_i

i=1

is the contritution of the hot clutter for a singlepulseat rangek,
¢ is thelongestmultipathdelay 6, is thedirectionof arrival of the
jammersignal,z is thejammemwaveform(whitein bothslow and
fast-time) andb; is arandomvectorthatapproximateshe sumof
thespatialsteeringvectorsfor eachof themultipathsignals.When
presentthejammerto-clutterpower ratiois assumedo be 10 dB.
When secondarydataare usedto estimatethe clutter covariance
or STAR filter parameterssqualamountsf datafrom rangegates
on eithersideof thetargetrangegateareused.

The true clutter covariancematrix usedto generatethe data
is known for 20 of the 9325 rangebins, and thusthe maximum
achiezable SINR can be calculatedat theseranges. The results
herearefor atargetat 350km. All of thefiguresshav the SINR
lossin dB asa function of normalizedDopplerfor a look direc-
tion of 0° azimuth. Eachfigure shavs the bestpossibleSINR
(solid line) asa referencefor the othercurves. Comparisonsare
madebetweenthe STAR algorithmspresentedhereinaswell as
the optimized3D pre-Doppleralgorithm[5]. The optimized3D
pre-Doppleralgorithmis implementedusingthreepulsesin each
sub-CPlaswell asdiagonalloadingto improve performanceThe
STAR algorithmsareimplementedvith m’ = 20. All of thealgo-
rithmsuseatrainingdatalengthof Ny = 60 snapshots.

Cgk (t) =



Figuresl and2 have thejammerlocatedat —20° azimuth.As
notedearlier the STAR algorithmcanonly achieze good perfor
mancef L is large,thusincreasinghe computationatost.Figure
1 illustratesthis fact. Figure2 shaws the performancemprove-
mentof the time varying STAR filter (11) for L = 2 over the
STAR filter (9) for L = 5. Also shown is the optimizedpre-
Doppleralgorithmwhich hasa muchwider clutter notchthanthe
otherfilters.

Figureq(3) and(4) have thejammerlocatedat —1° azimuthto
illustrate performancavhenthereis a jammerin the main beam.
Figure (3) shavs that poor performanceesultswhenusing only
onefast-timetap asin standardwo dimensionalSTAP. The pa-
rametersof the filters are the sameasin Figure(2). Figure (4)
shaws the performancef the threedimensionaklgorithmsusing
P = 2 fast-timetaps. The 3D-STAR filter is implementedwith
L = 2 andJ = 2. A dramaticimprovementin performances
seenover usinga single fast-timetap for both of the algorithms
but the pre-Doppleffilter still hasa wider clutter notchthan3D-
STAR.

6. CONCLUSIONS

We have presentedn extensionto the space-timeautorgressive

(STAR) filter for the hot clutterscenario The extensiongncluded
makingthefilter time varying acrosspulsesandaddingfast-time
degreesof freedomto mitigatemainbeamjammingsignals.These
two extensionsthe time varying STAR (TVSTAR) filter andthe

3D-STAR filter, areableto provide goodperformanceén the pres-
enceof hotclutter In additionwe have shavn thatthe STAR based
algorithmsprovide an improvementin performanceover the re-

duceddimensionpre-Doppleralgorithm. This improvementoc-

curs primarily aroundthe clutter notchwhich resultsin a better
minimumdetectablevelocity.
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