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ABSTRACT

Many reduceddimensionSTAP algorithmshavebeendeveloped
for airborneradarapplicationswhich relyonastationaryDoppler
componentof theinterferencein order to maintainacceptableper-
formance. Two caseswhere this assumptionis violatedare when
thegroundcluttercontainsintrinsiccluttermotion(ICM) andwhen
hot clutter is present. In addition to the non-stationaryDoppler
component,hot cluttercontainsnon-zero correlationsin fast-time
(acrossrange bins)aswell. Thispaperwill presentan algorithm
designedto mitigate both ground clutter and hot clutter in the
samestepusing a two dimensionalvector autoregressivemodel
to whitenthe data in space, fast-time, and slow-time. This is an
extensionof theSpace-Time AutoRegressive(STAR)filter that we
havepreviouslyproposed.Usinga simulateddatasetfor circular
array STAP augmentedwith synthetichot clutter, wedemonstrate
that the extensionswe presentdo result in a significantperfor-
manceincreaseover thestandard STARfilter. In additionwealso
showthat theSTARfilters havea narrowerclutter notch thanthe
optimizedpre-Dopplerfilter whena finite samplesupportis used
to train thefilters.

1. INTRODUCTION

The value of space-timeadaptive processing(STAP) algorithms
for airborneradarinterferencesuppressionis limited by thecom-
putationalcostof implementationaswell astheamountof station-
ary training dataavailableto train the filter weights. Due to the
inherentlow-rank natureof the interference,it is possibleto de-
sign reduceddimensionalgorithmswhich canhave nearoptimal
performance.These“partially adaptive” STAP filters[1, 2] helpto
alleviate the problemof computationalcomplexity aswell asthe
samplesupportrequiredto train thefilter.

In [3] an alternative methodfor clutter andinterferencesup-
pressionwasproposedthatusesa vectorautoregressive (AR) fil-
ter. An algorithmthat usesthis model to constructa structured
subspacethat is as orthogonalas possibleto the clutter and in-
terferencehasbeenproposedin [4]. This algorithm,referredto
asSpace-TimeAutoRegressive (STAR) filtering,usesaprojection
ontotheestimatedsubspaceto whitentheprimarydatavector.

Most of the partially adaptive methodsaswell as the vector
AR methodsmake anassumptionthatthecovariancematrix from
theclutterstatisticsis Toeplitz(i.e.,stationaryfrom pulseto pulse).
Thisassumptionis violatedin thepresenceof intrinsiccluttermo-
tion (ICM) or terrainscatteredinterference(alsoknown as TSI,
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hot clutter, or jammermultipath). It is the latter effect that will
beaddressedin this paper. We presentanextensionto theSTAR
filter thatwill, in thesamestep,cancelbothgroundclutterandhot
clutter that is generatedfrom themodelof [5]. Theextensionsto
theSTAR filter will beasfollows:

1. ThevectorAR filter coefficientswill beupdatedaftereach
new pulseis received.Althoughthiswill requireadditional
samplesupport,trackingthenon-stationaryinterferenceis
necessaryfor goodperformance.

2. In orderto bestutilize thefast-timecorrelations,a two-di-
mensionalvectorAR filter will beusedwith matrix tapsin
both the slow-time (pulse)dimension,aswell asthe fast-
time (rangebin) dimension.

A performanceevaluationwill be madeusinggroundclutter
from a syntheticdataset generatedby MIT Lincoln Laboratory
thatsimulatestheoutputof a 20 elementantennaarraywhoseel-
ementslie alonga circulararcof ������� [6]. Circulararraygeome-
triesarecurrentlybeingconsideredfor usein airbornesurveillance
radarssincethey canelectronicallyscanthefull 	�
�� � surroundings
in muchlesstime thana mechanicallysteeredarray. An experi-
mentalcirculararrayis currentlybeingdevelopedby Raytheonas
part of the UHF ElectronicallyScannedArray (UESA) program
sponsoredby the Office of Naval Research.The array is com-
posedof 60directionalelementsevenlyspacedaroundtheedgeof
thecircularaperture,but nominallyonly 20 areusedat any given
time for transmitandreceive. Hot cluttergeneratedaccordingto
the “sandpaper”earthmodelwill be addedto the groundclutter
data.

In the next section,we presentthe standarddatamodel as-
sumedfor a three-dimensionalSTAP problemanddeveloptheno-
tationwe will usethroughoutthepaper. TheSTAR filtering tech-
niqueis outlinedin Section3 asbackgroundfor the extensionof
this filter. Section4 will derive a three-dimensionalSTAR filter
that canbe usedin the mitigationof hot clutter. The resultsof a
seriesof numericalexperimentscomparingtheSTAR approachto
standardSTAP algorithmsarepresentedin Section5.

2. MATHEMATICAL MODEL

A targetpresentin aparticularrangebinduringsomecoherentpro-
cessinginterval (CPI)maybemodeledasproducingthefollowing
basebandvector signal (after pulsecompressionand demodula-
tion) [1]:�
���������������������! !"$#&%('������)�+*-,/.10 �2� � 0�34343�0�560 (1)



where 7 is the rangebin in which the target is located, � is the
complex amplitudeof thesignal, 8 is theDopplershift dueto the
relative motionbetweenthearrayplatformandthetarget, �/����� is
the responseof the array to a unit amplitudeplanewave arriv-
ing from direction � (azimuthand elevation angles),and '������)�
containscontributionsfrom clutter, jamming,andthermalnoise.
In (1), we areassuminganarrayof 9 elementsanda total of 5
transmittedpulsescovering : rangebins.

If we stackthe 5 arrayoutputsandthe : rangebin vectors
into asingle 9 5 :<;=� snapshot,wemayre-write(1) as
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and Z representsthe Kronecker product. The vector O � contains
thestackedvectorsamplesof theclutterandinterferencefor range
bin 7 , andhasanunknown covariancematrixdenotedbynHo O � O

p�rq �tsvu
The clutter is neithertemporallynor spatiallywhite; in fact, the
rankof s is typically muchlessthan 9 5 . The rank( w ) of s is
importantbecauseit determineshow many secondarydatasam-
plesarerequiredto accuratelyestimates . Accordingto [7], the
numberof requiredsamplesis on theorderof ��w to x�w . Thefully
adaptive approachto whiteningthis typeof datais to multiply the
databy the inverseof an estimateof the matrix s . Becausethe
sizeof this matrix canbecomequite large, its low rank natureis
exploitedto derive reduceddimensionwhiteningalgorithms.The
next sectionwill summarizethe work in [4] to presenttheSTAR
filter.

3. SPACE-TIME AUTOREGRESSIVE FILTERING

Following thederivationin [4], theSTAR appraochassumesthata
setof y matricesz F 0 z J 0�3434340 zS{ I�J of dimension96|/;19 exist
thatsatisfy{ I/J} ~m� F z

~ '_���Q%[���2� � 0��2� � 0�3434340�5�� y % � 0 (3)

for theinterferenceandclutter in theprimaryrangebin. We may
alsowrite (3) in thefollowing two differentways:
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where

� p �
CDDDE
z F 343�3 zS{ I/Jz F 34343 z { I/J

. ..
...z F 3�343 z { I/J

K LLLM u (6)

We assumethatequations(4) and(5) alsohold for thesecondary
dataaswell: z p4�S� � � (7)� p

O
� � � 0 (8)

for � � � 04343�340)5 Y , where 5 Y is the numberof secondarydata
snapshotsusedto train thefilter.

The matrix
�

is 9 5 ;=9 | ��5�� y % � � . If (3) holdsand96| and y arechosensothat 96| ��5v� y % � � is largeenough,the
columnsof

�
form a basisfor thespaceorthogonalto theclutter

andinterferencesubspace.Althoughthisrelationshipwill nothold
in practicedue to the presenceof thermalnoise,a leastsquares
solutionis appliedto approximatethesubspace.Thissuggeststhe
following space-timefilter beusedfor interferencerejection:��� G ���$0 8 �H�t����N����T0 8 ��0 (9)

where� � is theprojectionontothecolumnsof
�

:� � � � � � p � � I�J � p u (10)

We refer to the implementationof STAP with the weight vector
of (9) asSpace-TimeAutoRegressive(STAR) filtering. TheSTAR
filter weightsare“adaptive” in thesensethat

�
mustbeestimated

from thesecondarydataprior to computationof � � G .

4. 3D-STAR FILTER

In this section,a 3D-STAR filter is derivedthatcanmitigateboth
groundclutter and hot clutter in the samestep. This filter has
two main differencesfrom the STAR filter of the previous sec-
tion. First, the 3D-STAR filter will updateits coefficients after
eachpulseis received. Second,it will have fast-timedegreesof
freedom(DOFs)availablefor hot cluttermitigation. Theseextra
DOFsareusedto take advantageof the fact that hot clutter has
non-zerocorrelationsfrom onerangebin to thenext. TheseDOFs
arethenusedto helpmitigatemainbeamjammingsignals.In the
first part of this section,we derive a (slow) time varying STAR
(TVSTAR) filter, andin thesecondpartwe derive a threedimen-
sional(two dimensionalvectorAR) STAR filter.

Whenhotclutteror ICM is present,themodelfor theclutterin
(3) is no longervalid, asthespatialcovariancechangesfrom pulse
to pulse. If the model in (3) is appliedin sucha non-stationary
environment,a largefilter order( y ) will benecessaryto account
for theslow-time variationsin thedata.A betterapproachin this
caseis to let thespace-slow-time vectorAR filter be� pd&� �
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where�S�t5g� y % � . Eachblockrow is asetof new coefficients
basedon droppingthe datafrom the oldestpulseandaddingthe
datafrom the most recentpulse(i.e.,computingnew coefficients
for eachsub-CPI).ThistimevaryingSTAR filter mayalsobeused



whentrying to accountfor ICM.

In orderto utilize thefast-timecorrelationof thedata,anextra
dimensionneedsto beaddedto theSTAR filter. We will assume
for a momentthat the interferenceis stationaryacrossthepulses.
Thisfilter will modelthefast-timeandslow-timecorrelationswith
a two-dimensionalvectorAR filter. For a setof y_� matricesof
size 9 | ;69 , assumethattheclutterobeys themodel� I�J} � F
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where � � � is the rangebin of interestand ¦ is thenumberof
fast-timesamplesused.Thismayalsobeexpressedas� I/J} � F

� p ' ��¡  �t£ � � � 0�34343�0�¦¤� � % � 0 (13)

where
�  is thematrixdefinedin (6) with asubscript§ to indicate

which fast-timesampleit is associatedwith. From this point we
may againtake into accountthe slow-time variationscausedby
the hot clutter by replacing

�  with the slow-time varying filter� d&�    .
Rewriting thissumwith thetimevaryingfilter weget¨ p O ?�© � � ��� � 0 (14)
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Assumingthat thereis targetenergy in the � � � rangebin then
therewill alsobe target energy in the vectors O ?�© � � � , O ?�© ��� � � ,343�3 , O ?�© ���c¦(% � � whichmaynotbeusedfor trainingthefilter. In
orderto definethealgorithmto find thefilter coefficientslet­z ����� p � ` z F   F �����®34343 zS{ I/J   � I/J ���)�-b (15)
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The filter coefficients can then be found by the following least
squarescriterion:µ­z ���)���¤¶�·�¸�¹�ºj»¼� h½# k
¾¾¾ ­z ����� p ± ���)� ¾¾¾
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subjectto the constraintthat z ���)� p z �����Á�ÃÂ . From this point
the 9 | left singularvectorscorrespondingto thesmallestsingular
valuesof each

± ����� matrixwill beusedto computethe 5Ä� y % �
setsof filter coefficientswhich define

¨
. The threedimensional

weightvectorwill be� � G ?�A �t��Å¬N ?�A ���T0 8 ��0 (20)
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5. NUMERICAL RESULTS

SincetheprototypeUESAcirculararrayhasyet to befield tested,
a datapackagehasbeencreatedby MIT Lincoln Laboratoryto
simulatetheoutputof thearraydueto groundclutterin astandard
operatingscenario.Insteadof 60 elements,thesimulateddataas-
sumesan arrayof 54 elementsuniformly spacedarounda circle
of 5.93mdiameter. Only 9 � ��� of theelementsareassumedto
beusedfor transmitandreceive duringoneCPI. Theantennael-
ementsareassumedto have a cosine-shapedresponsewith a � 	��
dB backlobefor boththeazimuthandelevationdimensions.The
airborneplatformis moving with avelocityof 100m/sabovea4/3
earthmodelat analtitudeof 9000m. Theoperatingfrequency of
theradaris takento be435Mhz, theradarbandwidthandsampling
frequency are3.75Mhz, thepulse-repetitionfrequency is 300Hz,
and 5Æ� �4Ç pulsesareassumedto betransmittedduringoneCPI.
Dataaregeneratedfor 9325rangegatesbetween20-400km with
aclutter-to-white-noisepower ratioof 45dB atarangeof 100km.

Hot clutter is includedinto the databy addinga term of the
form
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where�  is theamplitudeof thejammer,

É
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~
is thecontribution of thehot clutter for a singlepulseat range� ,7 is thelongestmultipathdelay, �  is thedirectionof arrival of the
jammersignal,Ì � is thejammerwaveform(whitein bothslow and
fast-time),and Í # is arandomvectorthatapproximatesthesumof
thespatialsteeringvectorsfor eachof themultipathsignals.When
present,thejammer-to-clutterpower ratio is assumedto be10dB.
Whensecondarydataareusedto estimatethe clutter covariance
or STAR filter parameters,equalamountsof datafrom rangegates
on eithersideof thetargetrangegateareused.

The true clutter covariancematrix usedto generatethe data
is known for 20 of the 9325rangebins, and thus the maximum
achievable SINR can be calculatedat theseranges. The results
herearefor a targetat 350km. All of thefiguresshow theSINR
lossin dB asa functionof normalizedDopplerfor a look direc-
tion of � � azimuth. Eachfigure shows the bestpossibleSINR
(solid line) asa referencefor the othercurves. Comparisonsare
madebetweenthe STAR algorithmspresentedhereinaswell as
the optimized3D pre-Doppleralgorithm[5]. The optimized3D
pre-Doppleralgorithmis implementedusingthreepulsesin each
sub-CPIaswell asdiagonalloadingto improveperformance.The
STAR algorithmsareimplementedwith 9 | � �Î� . All of thealgo-
rithmsusea trainingdatalengthof 5 Y � 
�� snapshots.



Figures1 and2 have thejammerlocatedat � ��� � azimuth.As
notedearlier, the STAR algorithmcanonly achieve goodperfor-
manceif y is large,thusincreasingthecomputationalcost.Figure
1 illustratesthis fact. Figure2 shows the performanceimprove-
ment of the time varying STAR filter (11) for y � � over the
STAR filter (9) for y � x . Also shown is the optimizedpre-
Doppleralgorithmwhich hasa muchwider clutternotchthanthe
otherfilters.

Figures(3) and(4) havethejammerlocatedat � ��� azimuthto
illustrateperformancewhenthereis a jammerin themain beam.
Figure(3) shows that poor performanceresultswhenusingonly
onefast-timetap as in standardtwo dimensionalSTAP. The pa-
rametersof the filters are the sameas in Figure (2). Figure (4)
shows theperformanceof thethreedimensionalalgorithmsusing¦Ï� � fast-timetaps. The 3D-STAR filter is implementedwithy � � and � � � . A dramaticimprovementin performanceis
seenover usinga single fast-timetap for both of the algorithms
but the pre-Dopplerfilter still hasa wider clutter notchthan3D-
STAR.

6. CONCLUSIONS

We have presentedan extensionto the space-timeautoregressive
(STAR) filter for thehotclutterscenario.Theextensionsincluded
makingthefilter time varying acrosspulsesandaddingfast-time
degreesof freedomto mitigatemainbeamjammingsignals.These
two extensions,the time varying STAR (TVSTAR) filter andthe
3D-STAR filter, areableto providegoodperformancein thepres-
enceof hotclutter. In additionwehaveshown thattheSTAR based
algorithmsprovide an improvementin performanceover the re-
duceddimensionpre-Doppleralgorithm. This improvementoc-
cursprimarily aroundthe clutter notchwhich resultsin a better
minimumdetectablevelocity.
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Fig. 1. SINRlossfor theSTAR algorithmasafunctionof thefilter
order y
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Fig. 2. SINR loss for the STAR, TVSTAR, andoptimizedpre-
Doppler
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Fig. 3. SINR losswith amainbeamjammerandonefast-timetap

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−40

−35

−30

−25

−20

−15

−10

−5

0

S
IN

R
 L

O
S

S
 (

dB
)

Normalized Doppler

Optimum             
3D−STAR             
Optimized 3D Pre−Dop

Fig. 4. SINRlosswith amainbeamjammerandtwo fast-timetaps


