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ABSTRACT

Both in the case of cellular communication and in the case of
spoken dialogue based information retrieval systems on mobile
platforms there exist a number of interference signals. Therefore,
it is essential to separate these interference signals from the
intended signal(s) in order to have clear communication in the
case of cellular phone and to improve the speech recognition
accuracy in the case of spoken dialogue based information
retrieval system. Since the number and nature of source signals
(intended + interference signals) change, it is not practical to
know them a priori. Therefore, it is not always practical to apply
signa separation techniques that work well when the number of
source signals is equa to the number of sensors. In addition,
since how the signals get mixed is unknown, we need to apply
blind techniques for the separation. This paper is concerned with
a blind source separation (BSS) technique for the over-complete
case (#signals > #sensors) that is based on the sparse
decomposition and, the joint estimation of mixing matrix and the
separated source signals by applying information theoretic based
probabilistic approach. Experimental results of signal separation
using various real speech and noise signals indicate that the
quality of separated source signals are 4 dB better than the
current techniques.

1. INTRODUCTION

Both in the case of cellular communication and in the case of
spoken dialogue based information retrieval systems on mobile
platforms there exist a number of interference signals. The signa
that is received at a sensor (e.g., antenna in the case of cellular
communication or microphone in the case of spoken dialogue
system) is amixed signal that consists of interference signals and
the intended signal(s). Note that here afterwards the interference
signals and the intended signal(s) together is referred as source
signals. It is essentia to separate these interference signas from
the intended signal(s) in order to have clear communication in
the case of cellular phone and to improve the speech recognition
accuracy in the case of spoken dialogue based information
retrieval system. Since the number and nature of source signals
change, it is not practical to know them a priori. Therefore, it is
not always practical to apply signa separation techniques that
work well when the number of source signals is equa to the
number of sensors. In addition, since how the signals get mixed
which isreferred here, as the mixing matrix is unknown, we need
to apply blind techniques for the separation. This paper is
focused on a BSS technique for the over-complete case that is
based on the sparse decomposition and, the joint estimation of
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mixing matrix and the separated source signals by applying
information theoretic based probabilistic approach. In references
[1-3] separation of mixed signals in over-complete case is
discussed. In [4] an approach based on the concept of estimating
the spatial directions of mixing matrix is applied for BSS.
However, in [4] the authors separate source signals from the
mixed signals only when number of sensorsis equal to number of
sources. This paper differs from the previously published papers
as follows: (a) The direction estimation of the mixing matrix in
the Fourier sparse domain by applying the proposed “dual
update” algorithm. (b) The application of information theoretic
approach for theinitial direction estimation of the mixing matrix.
(c) The restoration of source signalsin the wavelet sparse domain
by applying the probabilistic approach. (d) The derivation of the
theoretical Cramer-Rao bound (CRB) for the estimation of
source signals and the mixing matrix. The details of the proposed
approach are provided in the following section. The simulation
details and the experimental results are provided in section 3. In
section 4, we summarize and indicate future direction of our
research in this area

2. A BRIEF DESCRIPTION OF THE PROPOSED
APPROACH

2.1 Problem for mulation:

Let the mixed signal X that isreceived by an array of sensors be:
X = AS+V . Where X isan M x T matrix corresponding to the
output of M sensors at timest = 1,2,....... , T,Sisthe Nx T
matrix of underlying source signals, A is the unknown M x N
mixing matrix that correspond to the environment effect in
mixing the signals and V is an M x T noise matrix. The problem
of BSS is then to recover S from X without the prior knowledge
of source signals and the mixing matrix A. This paper is focused
on a BSS technique that can handle N > M - over-complete BSS.
Due to additive noise and rectangular mixing matrix A, the
problem of separating source signals from the mixed signals can
be solved more efficiently, by applying techniques based on
probabilistic approach. Hence, here, we are focusing on such an
approach. Probabilistic approaches mainly correspond to
minimizing the log of a posterior likelihood function

Iog(P%‘X,A@ 0 Iog(P%(‘A, SED(A,S)) = L(X|A,S) + L(A) + L(S)

with respect to S. Here L corresponds to log(P()), and L(A) and
L(S) correspond to log prior probabilities of A and S,
respectively. The minimization of log likelihood function then

corresponds to minimizing L(x|A,s)+ L(S) with respect to S



since there is no prior information on A. Since the separation of
S depends on A, we propose that by jointly optimizing the above
log likelihood function with respect to A and S we can separate
the source signals from X more efficiently. We aso have noticed
this dependency when we derived the theoretical Cramer-Rao
bound for the estimation of A and S [6]. For this joint
optimization, we have developed a novel agorithm that is
described in the next section.

22 Description of joint optimization algorithm

In the joint optimization problem, for mathematical simplicity,
we assume that the (a) the source signals are datisticaly
independent of each other and follow Laplacian probability
distribution in the sparse Fourier and wavelet domains and, (b)
noise V is Gaussian. To reduce the complexity of the problem of
separation of mixed signals, we first transform it to the sparse
domain by applying the wavelet/short-time Fourier transform.
This has another advantage of reducing the noise effect — by
thresholding the wavelet/Fourier coefficients we can achieve de-
noising. We then apply the proposed probabilistic approach of
BSS in the sparse domain. The observed mixed signals in the
transformed domain has the same form as that of the time domain

- W(X) = AW(S)+W(V) where W is either Fourier or wavelet

transform. Therefore, the genera probabilistic approach
mentioned in the previous section is applicable here. To get the
separated source signals back from the transformed domain to the
time domain, the inverse wavelet or Fourier transform is applied.

For the joint optimization, we start with L(W(S)|W(X), A). In the
next subsection, this joint optimization is described briefly.

221 Proposed “ dual update algorithm”

With the assumption of Laplacianity of source signals in the
sparse domain the prior

A =T w(s)|
e

probability P(W(S)) =— wherec' = [L1,---1] a unit
2

vector. By applying the “Laplacianity” of signas, “Gaussianity”
of noise and no prior information on A, it can be shown
that

L(W(S)|A,W(X)) = (W(X) - AW(S))T R\;\}(V) (W(X) - AW(S))

T . , , .
+Ac W(S) whereR,yy isthenoise covariancematrix.
The above eguation can shown to be;

L(W(S)|W(X), A) = él(W(xt) - AW(s; ))2 + )lcTW(st)

wherex; & s; arethecolumn vedorsof X & S.
This is obtained with the unit covariance assumption and using
individual components of X & S. By differentiating the above
equation with respect to A and setting it to zero, using the
individual components of W(S), A, and replacing the summation
with the expectation operation this equation can be written as:

. M . .
E{W(xt)TW(s{} . E@%J iwsh)T @ws{)ﬁ

E{W(S{)TW(StJ)} = 0Ofori # j since the source signas are

statistically independent in the sparse domain. Using this we can
write the above equation as:

Sys = [ag. ap, - ay |5 Where X isthecov(W(S)) =
E{W(S)TW(S} and zxs:% W(X)TW(%)

= [UXsl 1IXs, " IXsy ]
Then the estimated A matrix is:

A= [él, ay ""éM] = zxszgl. Equation (1)

Thereis no closed form solution to solve this set of equations but
can be solved iteratively by applying the Linear Equality
Constraints (LEC) optimization technique [5]. The LEC
optimization in turn corresponds to application of line search
together with the projection gradient method. For the line search
we apply the Armijo rules. By applying the LEC, we can solve
Equation (1) iteratively by using the following two steps:

1. Find w(S) that min /\cT |W(é)|
2.Usew($) from 1and estimateA = 5, s5 o

From the above, it can be seen that a good initial estimate of A is

needed to get good initia estimate of Sthat is used in step 1
above. Note that the above problem is not convex in A thus even
though splitting of the optimization into two parts is not
theoretically justified, we found that given agood initial estimate
of the directions of A the proposed dual update algorithm can
improve the accuracy of estimation of A and S. Also since we are
interested in finding directions of lines (angles of lines) we
consider A matrix as a function of 6. In the next section we
describe a method that we have developed which is based on
[3,4] but augmented with the newly introduced adaptive

thresholding technique to get agood initial estimate A.

222 Information theoretic based initial estimate of A

For the initial estimate of A, the Fourier sparse domain is
considered as opposed to wavelet domain since finer frequency
resolution can be obtained and hence, more accurate initial
estimate of A. The observed signals are transformed to the sparse
Fourier domain by applying the spectrogram. The spectrogram
was computed using the Hamming window of length 16 samples.
The window was shifted by 8 samples. We then choose a
frequency sub-band for theinitial estimation of A by applying the
maximum mutual information criterion. In essence, by applying
this criterion we are finding a frequency sub-band in which the
directions of spread of observed mixtures are as well resolved as
possible. To further improve the resolution of directions of
spread of observed mixtures in the chosen frequency sub-band,
we apply a nove thresholding technique. To explain this

approach let us define a random  variable
xq (band)

ang = arctan . Spatialy white additive noise
X5 (band)

appearing in the mixtures transforms into uniformly distributed
random variable (RV) in ang-domain. On the contrary, spatially
localized sources transform into RV with well defined means and
relatively small variances. The resulting distribution of variable
ang can be described as multi-modal distribution corresponding
to spatially local sources “masked” by a uniform distribution.



This masking effect prohibits from resolving all local maxima of
the histogram in order to obtain the first estimate of the
directions of mixing matrix. It should be clear from a scatter plot
(see Figure 1d) that thresholding operation applied to the
observed mixtures should reduce the masking of the maxima of a
histogram of ang. The proposed approach to determine the
threshold value is based on measuring the entropy of ang
obtained from the thresholded mixture. The masking of uniform
distribution tends to increase the entropy. Let us define a
function E(ang, ANG) equal to the entropy of ang obtained from
the observed thresholded mixture with threshold value set to
ANG. We keep increasing the value of ANG within a chosen
range until the rate of descent of function E(ang, ANG) is
minimum. We then choose the value ANG that minimized this
function as the threshold value to threshold the mixtures in the
Fourier domain. In this study the range of ANG is set to

[0.1* Axb 2* Axb] where Axb = cov(spectral values in the

chosen frequency sub-band). The probability values needed for
the entropy computation are obtained by estimating the
distribution of spectral values in the chosen sub-band by using
the histogram approach.

To make the concepts described in this section more clear an
example is provided below. For this example five sources (three
speech sources and two noise sources) and two sensors were
considered in the Fourier sparse domain. In the following figure,
first the scatter plot (Figure 18) of these two observed mixturesis
provided. From this plot it can be seen that it is very hard to
resolve the direction of spread of source signals. Next, the bar
plot (Figure 1b) of mutua information of different frequency
sub-bands is provided. The red colored bar in this plot
corresponds to the band that has the maximum mutual
information. This band - Nband is chosen for the initial estimate
of A. The first step in this estimation is to obtain the probability
distribution function of A — mixing matrix of angles. This is

x, (Nband)

X, (Nband)

this angle matrix is plotted next (Figure 1c) and also the scatter
plot (Figure 1d) corresponding to this chosen sub-band. From
this scatter plot it can be seen that it is possible to resolve the
directions of spread of source signals as marked by the black
lines. However, this resolution can be improved further if we
could threshold the spectral values that are in the center (the
“masking” area marked by a blue circle in this figure). For the
threshold selection the entropy based technique described above
was applied. In Figure 1e, the entropy versus threshold valuesis
plotted. The threshold value corresponding to the minimum rate
of descent of the entropy function E(ang, ANG) was chosen
automatically. This is marked in this plot by a red line. After
thresholding the spectra values, the angles were recomputed.
The histogram of these angles are plotted next (Figure 1f). From
this, it can be seen that the three local maxima that correspond to
angle of spread of three source signals are well pronounced.
These local maxima were automatically detected and were used
intheinitial estimate of A.

obtained by computing arctan . The histogram of
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Figure 1. (a) Scatter plot of original mixed data, (b) Bar graph of
Mutual information vs. frequency sub-bands, (c) Angle
histogram of chosen sub-band, (d) Scatter plot of spectral values
of the chosen sub-band, (e) Entropy plot with threshold selection
(red line indicates the minimum entropy) and (f) the angle
histogram of the chosen band after threshol ding.

Using this initial estimate of A, initial estimate of Sis obtained.
Then the “dua update” algorithm described above was applied.
When the stopping criterion was reached the fina estimate of A
matrix was obtained.

10

223 Time-cour sesrestoration of sourcesignals

The next step in the proposed over-complete BSS is the
restoration of separated source signals. For this, we use the fina
estimate of A obtained from the technique described in the last
section and we transform the observed signals in to wavelet
sparse domain. This domain is used for the reconstruction of
source signals because in the case of the spectrogram the phase
information is lost and the restored separated source signals will
not be accurate. One could argue then why not apply the
proposed “dual update” agorithm in the wavelet sparse domain
and estimate both A and restore the separated source signals. We
could have; however, note that the proposed dua update
algorithm will estimate A up to permutations which requires
finding the proper order for the source signa separation in each
wavelet sub-band. In order to overcome this problem we apply
the “dua update’ algorithm twice — once in the sparse Fourier
domain and once in the sparse wavelet domain. We use the A
matrix estimated in the Fourier domain while restoring the source
signals in the wavelet domain and minimize the log likelihood

function r'n(in)(L(W(S)|A,W(X))) . For this minimization also we
W(S

apply the “dua update” algorithm. Note that even though we
apply the same “dual update” algorithm here, we only update the
S matrix and stop the iterative procedure when the stopping
criterion is reached.

To verify the performance of our agorithm we conducted
experiments using speech signals and noise signals as source
signals, and two sensors (microphones). Experimental details and
the simulation results are provided in the next section.

3 SIMULATIONS

First three speech signals from three female speakers are
considered. These correspond to three sentences from the TIMIT



@

(b)

database. A babble noise that was selected from the NOISEXO
database is considered as the noise source. This was randomly
split into two parts and thus we have two noise source signals.
Three speech signals and two noise signals were mixed by
generating a 2x3 A matrix randomly. For the generation of this
mixing matrix, first random numbers were generated using a
uniform random number generator, these random numbers were
then used in calculating the angles as mentioned above and these
angles were next used in forming a A matrix. This mixing matrix
was then used to mix three speech signals and two noise signals.
As a result of this mixing we would get two mixtures that
corresponds to received signals at two sensors (microphones).
From the two mixed signals, three speech signals were separated
using our algorithm. As mentioned above, our algorithm first
estimates the A matrix in the Fourier domain by applying the
proposed dua update algorithm. This estimated A matrix is then
used to estimate the source signals in the wavelet domain as
mentioned above. For the application of the wavelet transform,
wavelet packet approach was used. The wavelet packet approach
generates a library of bases for a given orthogonal wavelet
function. Each of these bases offers a particular way of
decomposing or representing (expanding) a signal. The most
suitable decomposition of a given signa is then selected by
applying the minimum entropy constraint. For the wavelet packet
decomposition biorthogonal wavelet of order 6 was used. The
dua update algorithm was applied in the wavelet sparse domain
to estimate the source signals as described in section 2.2.3. The
estimated source signals in the wavelet domain were transformed
to the time domain by applying the inverse wavelet transform. In
Figure 2, two mixed signals, three original and separated speech
signals are plotted. For full details of this study refer to [6]. From
this figure it can be seen that al the speech signals are well
separated from the mixed signal. In order to quantify how well
the signals were separated, we computed the (a) SNR of mixed
signalsas:

var(s;)
SNRSi =10logyq =123&k =12
mixk ar mixk -5

and (b) the SNR of estimated source signa as:

var(s;)

SNR,% =10logq ar(A

E =1,2,3. By comparing these
Si 7S )

two SNRs, it was observed that an average enhancement of 11
dB was obtained. Whereas the state of the art technique [3]
provide an average enhancement of 7 dB. _

Fii

Figure 2: (a) & (b) Two mixed signals received at two sensors,
(c) original signal 1 and (d) separated signal 1, (€) original signa
2 and (f) separated signa 2, and (g) origina signal 3 and (h)
separated signal 3, respectively, from top to bottom.

For other speech signals of different languages and different
speakers aso an average of 11dB SNR enhancement was
obtained [6]. Our results indicate this algorithm works well both
for different types of noises and different speech signals
(languages and speakers). Note that even though for
mathematical simplicity we assumed noise as Gaussian noise,
this algorithm works well for non-Gaussian noise as indicated by
the previous example.

4  CONCLUSIONS

Our results show that our proposed approach can separate the
source signals very well when the number of signal sources are
more than the number of sensors. We are extending this
algorithm to handle complex signals. We are also exploring
applications of this algorithm in robust speech recognition and in
urban cellular communication.
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