
Over-complete Blind source separation by applying sparse decomposition and information theoretic 
based probabilistic approach  

A. Ossadtchi1 and S. Kadambe 
����������	
	���
��������������
�
������
���������
�������
��

��������������������
������� ������
�
!�
����"�� ������
��#�$%&��
E-mail: aos@usc.edu and skadambe@hrl.com  

 

                                                           
1 © 2000 HRL Laboratories, LLC. All rights reserved 

ABSTRACT 

Both in the case of cellular communication and in the case of 
spoken dialogue based information retrieval systems on mobile 
platforms there exist a number of interference signals. Therefore, 
it is essential to separate these interference signals from the 
intended signal(s) in order to have clear communication in the 
case of cellular phone and to improve the speech recognition 
accuracy in the case of spoken dialogue based information 
retrieval system. Since the number and nature of source signals 
(intended + interference signals) change, it is not practical to 
know them a priori. Therefore, it is not always practical to apply 
signal separation techniques that work well when the number of 
source signals is equal to the number of sensors. In addition, 
since how the signals get mixed is unknown, we need to apply 
blind techniques for the separation. This paper is concerned with 
a blind source separation (BSS) technique for the over-complete 
case (#signals > #sensors) that is based on the sparse 
decomposition and, the joint estimation of mixing matrix and the 
separated source signals by applying information theoretic based 
probabilistic approach. Experimental results of signal separation 
using various real speech and noise signals indicate that the 
quality of separated source signals are 4 dB better than the 
current techniques. 

1. INTRODUCTION 

Both in the case of cellular communication and in the case of 
spoken dialogue based information retrieval systems on mobile 
platforms there exist a number of interference signals. The signal 
that is received at a sensor (e.g., antenna in the case of cellular 
communication or microphone in the case of spoken dialogue 
system) is a mixed signal that consists of interference signals and 
the intended signal(s). Note that here afterwards the interference 
signals and the intended signal(s) together is referred as source 
signals. It is essential to separate these interference signals from 
the intended signal(s) in order to have clear communication in 
the case of cellular phone and to improve the speech recognition 
accuracy in the case of spoken dialogue based information 
retrieval system. Since the number and nature of source signals 
change, it is not practical to know them a priori. Therefore, it is 
not always practical to apply signal separation techniques that 
work well when the number of source signals is equal to the 
number of sensors. In addition, since how the signals get mixed 
which is referred here, as the mixing matrix is unknown, we need 
to apply blind techniques for the separation. This paper is 
focused on a BSS technique for the over-complete case that is 
based on the sparse decomposition and, the joint estimation of 

mixing matrix and the separated source signals by applying 
information theoretic based probabilistic approach. In references 
[1-3] separation of mixed signals in over-complete case is 
discussed. In [4] an approach based on the concept of estimating 
the spatial directions of mixing matrix is applied for BSS. 
However, in [4] the authors separate source signals from the 
mixed signals only when number of sensors is equal to number of 
sources. This paper differs from the previously published papers 
as follows: (a) The direction estimation of the mixing matrix in 
the Fourier sparse domain by applying the proposed “dual 
update” algorithm. (b) The application of information theoretic 
approach for the initial direction estimation of the mixing matrix. 
(c) The restoration of source signals in the wavelet sparse domain 
by applying the probabilistic approach. (d) The derivation of the 
theoretical Cramer-Rao bound (CRB) for the estimation of 
source signals and the mixing matrix. The details of the proposed 
approach are provided in the following section. The simulation 
details and the experimental results are provided in section 3. In 
section 4, we summarize and indicate future direction of our 
research in this area. 

2. A BRIEF DESCRIPTION OF THE PROPOSED 
APPROACH  

2.1 Problem formulation: 

Let the mixed signal X  that is received by an array of sensors be: 
VASX += . Where X is an M x T matrix corresponding to the 

output of M sensors at times t = 1,2,……., T, S is the N x T 
matrix of underlying source signals, A is the unknown M x N 
mixing matrix that correspond to the environment effect in 
mixing the signals and V is an M x T noise matrix. The problem 
of BSS is then to recover S from X without the prior knowledge 
of source signals and the mixing matrix A. This paper is focused 
on a BSS technique that can handle N > M - over-complete BSS. 
Due to additive noise and rectangular mixing matrix A, the 
problem of separating source signals from the mixed signals can 
be solved more efficiently, by applying techniques based on 
probabilistic approach. Hence, here, we are focusing on such an 
approach. Probabilistic approaches mainly correspond to 
minimizing the log of a posterior likelihood function 
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with respect to S. Here L corresponds to log(P()), and L(A) and 
L(S) correspond to log prior probabilities of A and S, 
respectively. The minimization of log likelihood function then 

corresponds to minimizing ( ) ( )SSAX LL +,  with respect to S 



since there is no prior information on A. Since the separation of 
S depends on A, we propose that by jointly optimizing the above 
log likelihood function with respect to A and S we can separate 
the source signals from X more efficiently. We also have noticed 
this dependency when we derived the theoretical Cramer-Rao 
bound for the estimation of A and S [6]. For this joint 
optimization, we have developed a novel algorithm that is 
described in the next section. 

2.2 Description of joint optimization algorithm 

In the joint optimization problem, for mathematical simplicity, 
we assume that the (a) the source signals are statistically 
independent of each other and follow Laplacian probability 
distribution in the sparse Fourier and wavelet domains and, (b) 
noise V is Gaussian. To reduce the complexity of the problem of 
separation of mixed signals, we first transform it to the sparse 
domain by applying the wavelet/short-time Fourier transform. 
This has another advantage of reducing the noise effect – by 
thresholding the wavelet/Fourier coefficients we can achieve de-
noising. We then apply the proposed probabilistic approach of 
BSS in the sparse domain. The observed mixed signals in the 
transformed domain has the same form as that of the time domain 

- ( ) ( ) ( ) VSAX WWW += where W is either Fourier or wavelet 

transform. Therefore, the general probabilistic approach 
mentioned in the previous section is applicable here. To get the 
separated source signals back from the transformed domain to the 
time domain, the inverse wavelet or Fourier transform is applied.  

For the joint optimization, we start with ( )( )AXS ),(WWL . In the 

next subsection, this joint optimization is described briefly. 

2.2.1 Proposed “dual update algorithm” 

With the assumption of Laplacianity of source signals in the 
sparse domain the prior 
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vector. By applying the “Laplacianity” of signals, “Gaussianity” 
of noise and no prior information on A, it can be shown 
that
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The above equation can shown to be: 
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This is obtained with the unit covariance assumption and using 
individual components of X & S. By differentiating the above 
equation with respect to A and setting it to zero, using the 
individual components of W(S), A, and replacing the summation 
with the expectation operation this equation can be written as: 
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statistically independent in the sparse domain. Using this we can 
write the above equation as: 
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Then the estimated A matrix is:  

[ ] .1
ˆ,2ˆ,1ˆˆ −

ΣΣ== SXSaaaA ML        Equation (1) 

There is no closed form solution to solve this set of equations but 
can be solved iteratively by applying the Linear Equality 
Constraints (LEC) optimization technique [5]. The LEC 
optimization in turn corresponds to application of line search 
together with the projection gradient method. For the line search 
we apply the Armijo rules. By applying the LEC, we can solve 
Equation (1) iteratively by using the following two steps: 
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From the above, it can be seen that a good initial estimate of A is 

needed to get good initial estimate of Ŝ that is used in step 1 
above. Note that the above problem is not convex in A thus even 
though splitting of the optimization into two parts is not 
theoretically justified, we found that given a good initial estimate 
of the directions of A the proposed dual update algorithm can 
improve the accuracy of estimation of A and S. Also since we are 
interested in finding directions of lines (angles of lines) we 
consider A matrix as a function of θ.  In the next section we 
describe a method that we have developed which is based on 
[3,4] but augmented with the newly introduced adaptive 

thresholding technique to get a good initial estimate Â .  

2.2.2 Information theoretic based initial estimate of A 

For the initial estimate of A, the Fourier sparse domain is 
considered as opposed to wavelet domain since finer frequency 
resolution can be obtained and hence, more accurate initial 
estimate of A. The observed signals are transformed to the sparse 
Fourier domain by applying the spectrogram. The spectrogram 
was computed using the Hamming window of length 16 samples. 
The window was shifted by 8 samples. We then choose a 
frequency sub-band for the initial estimation of A by applying the 
maximum mutual information criterion. In essence, by applying 
this criterion we are finding a frequency sub-band in which the 
directions of spread of observed mixtures are as well resolved as 
possible. To further improve the resolution of directions of 
spread of observed mixtures in the chosen frequency sub-band, 
we apply a novel thresholding technique. To explain this 
approach let us define a random variable 

)(2

)(1arctan
bandx

bandx
ang = . Spatially white additive noise 

appearing in the mixtures transforms into uniformly distributed 
random variable (RV) in ang-domain. On the contrary, spatially 
localized sources transform into RV with well defined means and 
relatively small variances. The resulting distribution of variable 
ang can be described as multi-modal distribution corresponding 
to spatially local sources “masked” by a uniform distribution. 



This masking effect prohibits from resolving all local maxima of 
the histogram in order to obtain the first estimate of the 
directions of mixing matrix.  It should be clear from a scatter plot 
(see Figure 1d) that thresholding operation applied to the 
observed mixtures should reduce the masking of the maxima of a 
histogram of ang. The proposed approach to determine the 
threshold value is based on measuring the entropy of ang 
obtained from the thresholded mixture. The masking of uniform 
distribution tends to increase the entropy. Let us define a 
function E(ang, ANG) equal to the entropy of ang obtained from 
the observed thresholded mixture with threshold value set to 
ANG. We keep increasing the value of ANG within a chosen 
range until the rate of descent of function E(ang, ANG) is 
minimum. We then choose the value ANG that minimized this 
function as the threshold value to threshold the mixtures in the 
Fourier domain. In this study the range of ANG is set to 

[ ] *2  *1.0 AxbAxb where Axb = cov(spectral values in the 

chosen frequency sub-band). The probability values needed for 
the entropy computation are obtained by estimating the 
distribution of spectral values in the chosen sub-band by using 
the histogram approach. 
To make the concepts described in this section more clear an 
example is provided below. For this example five sources (three 
speech sources and two noise sources) and two sensors were 
considered in the Fourier sparse domain. In the following figure, 
first the scatter plot (Figure 1a) of these two observed mixtures is 
provided. From this plot it can be seen that it is very hard to 
resolve the direction of spread of source signals. Next, the bar 
plot (Figure 1b) of mutual information of different frequency 
sub-bands is provided. The red colored bar in this  plot 
corresponds to the band that has the maximum mutual 
information. This band - Nband is chosen for the initial estimate 
of A. The first step in this estimation is to obtain the probability 
distribution function of A – mixing matrix of angles. This is 

obtained by computing 
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x1 . The histogram of 

this angle matrix is plotted next (Figure 1c) and also the scatter 
plot (Figure 1d) corresponding to this chosen sub-band. From 
this scatter plot it can be seen that it is possible to resolve the 
directions of spread of source signals as marked by the black 
lines. However, this resolution can be improved further if we 
could threshold the spectral values that are in the center (the 
“masking” area marked by a blue circle in this figure). For the 
threshold selection the entropy based technique described above 
was applied. In Figure 1e, the entropy versus threshold values is 
plotted. The threshold value corresponding to the minimum rate 
of descent of the entropy function E(ang, ANG) was chosen 
automatically. This is marked in this plot by a red line. After 
thresholding the spectral values, the angles were recomputed. 
The histogram of these angles are plotted next (Figure 1f). From 
this, it can be seen that the three local maxima that correspond to 
angle of spread of three source signals are well pronounced. 
These local maxima were automatically detected and were used 
in the initial estimate of A. 
                                                   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. (a) Scatter plot of original mixed data, (b) Bar graph of 
Mutual information vs. frequency sub-bands, (c) Angle 
histogram of chosen sub-band, (d) Scatter plot of spectral values 
of the chosen sub-band, (e) Entropy plot with threshold selection 
(red line indicates the minimum entropy) and (f) the angle 
histogram of the chosen band after thresholding.  

Using this initial estimate of A, initial estimate of Ŝ is obtained. 
Then the “dual update” algorithm described above was applied. 
When the stopping criterion was reached the final estimate of A 
matrix was obtained. 

2.2.3 Time-courses restoration of source signals 

The next step in the proposed over-complete BSS is the 
restoration of separated source signals. For this, we use the final 
estimate of A obtained from the technique described in the last 
section and we transform the observed signals in to wavelet 
sparse domain. This domain is used for the reconstruction of 
source signals because in the case of the spectrogram the phase 
information is lost and the restored separated source signals will 
not be accurate. One could argue then why not apply the 
proposed “dual update” algorithm in the wavelet sparse domain 
and estimate both A and restore the separated source signals. We 
could have; however, note that the proposed dual update 
algorithm will estimate A up to permutations which requires 
finding the proper order for the source signal separation in each 
wavelet sub-band. In order to overcome this problem we apply 
the “dual update” algorithm twice – once in the sparse Fourier 
domain and once in the sparse wavelet domain. We use the A 
matrix estimated in the Fourier domain while restoring the source 
signals in the wavelet domain and minimize the log likelihood 

function ( )( ) min )(,)(
)(

XAS
S
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W

. For this minimization also we 

apply the “dual update” algorithm. Note that even though we 
apply the same “dual update” algorithm here, we only update the 
S matrix and stop the iterative procedure when the stopping 
criterion is reached.  
 
To verify the performance of our algorithm we conducted 
experiments using speech signals and noise signals as source 
signals, and two sensors (microphones). Experimental details and 
the simulation results are provided in the next section. 

3 SIMULATIONS 

First three speech signals from three female speakers are 
considered. These correspond to three sentences from the TIMIT 
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database. A babble noise that was selected from the NOISEX0 
database is considered as the noise source. This was randomly 
split into two parts and thus we have two noise source signals. 
Three speech signals and two noise signals were mixed by 
generating a 2x3 A matrix randomly. For the generation of this 
mixing matrix, first random numbers were generated using a 
uniform random number generator, these random numbers were 
then used in calculating the angles as mentioned above and these 
angles were next used in forming a A matrix. This mixing matrix 
was then used to mix three speech signals and two noise signals. 
As a result of this mixing we would get two mixtures that 
corresponds to received signals at two sensors (microphones). 
From the two mixed signals, three speech signals were separated 
using our algorithm. As mentioned above, our algorithm first 
estimates the A matrix in the Fourier domain by applying the 
proposed dual update algorithm. This estimated A matrix is then 
used to estimate the source signals in the wavelet domain as 
mentioned above. For the application of the wavelet transform, 
wavelet packet approach was used. The wavelet packet approach 
generates a library of bases for a given orthogonal wavelet 
function. Each of these bases offers a particular way of 
decomposing or representing (expanding) a signal. The most 
suitable decomposition of a given signal is then selected by 
applying the minimum entropy constraint. For the wavelet packet 
decomposition biorthogonal wavelet of order 6 was used. The 
dual update algorithm was applied in the wavelet sparse domain 
to estimate the source signals as described in section 2.2.3. The 
estimated source signals in the wavelet domain were transformed 
to the time domain by applying the inverse wavelet transform. In 
Figure 2, two mixed signals, three original and separated speech 
signals are plotted. For full details of this study refer to [6]. From 
this figure it can be seen that all the speech signals are well 
separated from the mixed signal. In order to quantify how well 
the signals were separated, we computed the (a) SNR of mixed 
signals as: 
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and (b) the SNR of estimated source signal as: 
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two SNRs, it was observed that an average enhancement of 11 
dB was obtained. Whereas the state of the art technique [3] 
provide an average enhancement of  7 dB.  

 

 

 

 

 

 
Figure 2: (a) & (b) Two mixed signals received at two sensors, 
(c) original signal 1 and (d) separated signal 1, (e) original signal 
2 and (f) separated signal 2, and (g) original signal 3 and (h) 
separated signal 3, respectively, from top to bottom. 

For other speech signals of different languages and different 
speakers also an average of 11dB SNR enhancement was 
obtained [6]. Our results indicate this algorithm works well both 
for different types of noises and different speech signals 
(languages and speakers). Note that even though for 
mathematical simplicity we assumed noise as Gaussian noise, 
this algorithm works well for non-Gaussian noise as indicated by 
the previous example.    

4 CONCLUSIONS 

Our results show that our proposed approach can separate the 
source signals very well when the number of signal sources are 
more than the number of sensors. We are extending this 
algorithm to handle complex signals. We are also exploring 
applications of this algorithm in robust speech recognition and in 
urban cellular communication. 
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