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ABSTRACT

In this paper, a medianfiltering-basedhierarchicalmotion
vectorestimationschememaking useof a pyramidaldata
structureis proposed. Comparedto the conventionalhi-
erarchicalmotion vectorestimationschemes,the proposed
schemeovercomestheproblemof propagationof falsemo-
tion vectorsacrossresolutions.Simulationstudiesshow that
theproposedschemenotonly improvesthepredictionaccu-
racy with respectto the predictionmeansquareerror, but
also resultsin a smoothermotion field, which can be en-
codedwith lessnumberof codingbits. It is shown that an
improvementin the ratedistortionperformanceis achieved
with little increasein the computationalcomplexity. It is
also shown that Burt and Adelson’s pyramidal datastruc-
ture providesthebestperformanceamonga numberof the
generatingkernelsconsideredin ourstudy.

1. INTRODUCTION

Digital video compressionis a driving enginefor today’s
multimedia applications. In order to achieve the goal of
high compressiongain, video compressiontechniquesrely
heavily onefficientmotionestimationtechniquesto remove
the temporalredundancy in a videosignal. Oneof themo-
tion estimationtechniquesis the block matchingalgorithm
(BMA). Full search(FS)BMA, whichestimatesmotionvec-
tors by searchingall thecandidatepositionsin a searchre-
gion,hasbeenwidely usedfor commercialapplicationsbe-
causeof its goodperformanceandthesimplicity of its hard-
ware implementation.It is optimal in termsof the perfor-
mancemeasurespecified.However, thecomputationalcom-
plexity of FSis high.

In order to reducethe computationalcomplexity, hier-
archicalmotion estimationtechniqueshave beenproposed
[1]-[3]. In a hierarchicalmotion estimationtechnique,in
which theprocessingtakesplacestartingfrom a lower res-
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olution to higher resolutions,the computationalcomplex-
ity is reducedbecauseof the smaller imagesize at lower
resolutionsandtheutilization of themotionvectorsfrom a
lower resolutionto predictthemotioninformationat higher
resolutions.Pyramidalmotion vectorestimationtechnique
[2] is oneof thehierarchicalmotionvectorestimationtech-
niques.In thismethod,theoriginalvideoframesarefiltered
and downsampledrepeatedlyto producea successive im-
ageswith reducedhorizontalandverticalsizes,by a factor
of two betweenadjacentresolutions.

However, all of thehierachicalmotionvectorestimation
techniquesthathave alreadybeenproposed[1]-[3], includ-
ing the pyramidalmotion vectorestimationtechnique[2],
useproperlyscaledmotionvectorsfrom the corresponding
positionsat a lower resolutionasmotionvectorpredictions.
Thus,aseriousdrawbackwith theseconventionalhierarchi-
cal motionvectorestimationtechniquesis that,whenever a
falsemotionvectoris generatedatacertainresolutionlevel,
it getspropagatedandcannotbe recoveredalong the pre-
dictionpath,resultingin adegradedpredictionperformance
andanoisymotionfield.

In thispaper, in orderto overcometheproblemof propa-
gationof falsemotionvectors,amedianfiltering-basedhier-
archicalmotionvectorestimationschememakinguseof the
pyramidaldatastructureisproposed.Althoughtheproposed
methodis generalin nature,asit canbeappliedto any of the
conventionalmultiresolutionmotionestimationtechniques,
we show its effectivenesson the pyramidalmotion vector
estimationschemein this study. Besides,a greatdeal of
progresshasbeenmadein thefield of multiratesignalpro-
cessingsincetheintroductionof Burt andAdelson’spyrami-
dal datastucture[4]. Hence,a performancecomparisonof
variouskernelsfor generatingthepyramidaldatastructure,
includingwavelets,is alsoincludedin thisstudy.

2. MEDIAN FILTERING BASED PYRAMIDAL
MOTION VECTOR ESTIMATION SCHEME

A pyramidalmotion vectorestimationschemeusedin this
study, showing clearly themotion informationrelationship,
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Fig. 1. A 3-level pyramidal motion vector estimation
scheme.

is depictedin Fig. 1. Themaindifferencebetweenthepro-
posedmedianfiltering basedschemeandthe conventional
schemeslies in the functionalbox “motion prediction”. In
all theconventionalschemes[1]-[3], themotionvectorpre-
dictionacrossresolutionlevelscanbewrittenas
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where(r,s) denotesthe positionof the searchblock andL
representstheresolutionlevel. Althoughthispredictionequa-
tion is straightforward,it hastheproblemof propagationof
falsemotionvectors.

Sincemostmotion fieldsassociatedwith thevideosig-
nalsof naturalscenesaresmoothandcontinuous,the false
motionvectoralwayspresentsitself asadiscontinuityin the
motionfield. Thus,a falsemotionvectorcanberecovered
by comparingto its neighbouringmotion vectorsthathave
alreadybeenobtainedat a certainresolution. The conven-
tionaltechniquesexploiting thepredictionequationgivenby
(1) fail to makeuseof all themotioninformationthathasal-
readybeenestimatedat lower resolutionssufficiently.

In a hierarchicalmotion vectorestimationscheme,we
refer to the motion vectorwhich is usedto predictanother
motionvectorastheparentmotionvector, themotionblock
correspondingto theparentmotionvectorastheparentblock,
and the motion vector to be predictedas the child motion
vector. Also, we definethe termparentwindow to bea set
of blockscenteredaroundtheparentblockatagivenresolu-
tion. This window neednot berectangular. For example,it
couldbea cross-shapedparentwindow asshown in Fig. 2.

Lower Resolution

Higher Resolution

Fig. 2. A cross-shapedparentwindow.

In theproposedmedianfiltering technique,insteadof re-
lying on predictionequationgivenby (1) to predictmotion
vectorsacrossresolutionlevels, the predictionmotion vec-
tor is generatedthroughmedianfiltering of the candidate
motion vectorarray that consistsof motion vectorscorre-
spondingto theblockswithin theparentwindow. Thex and
y componentsof the motion vectorsin the candidatemo-
tion vectorarrayaremedianfilteredseparately, andthetwo
resultscombinedandappropriatelyscaledto form the pre-
diction motion vector, which is usedas the startingpoint
for further refinement.In this method,the discontinuityin
the motion field from a falsemotion vector, appearseither
at the beginning or at the endof the sortedx/y array. By
choosingthemotionvectorcomponentsat themiddleof the
sortedx andy arrays,thepropagationof a falsemotionvec-
tor is blocked automatically. Note that if thereis no false
motionvectorin thecandidatemotionvectorarray, thepre-
dictionmotionvectorgeneratedthroughthemedianfiltering
schemedescribedabove is still a goodprediction. In other
words,theproposedmedianfiltering methodovercomesthe
problemof thepropagationof a falsemotionvectorwithout
sacrificingthemotionpredictionperformanceevenwhenno
falsemotion vector is present.Specialcaremustbe taken
whenthe candidatemotion vectorarrayhasan even num-
berof entries.In sucha case,thearithmeticaverageof the
two entriesin the middle of the sortedarrayis usedasthe
prediction.

3. CHOICE OF GENERATING KERNELS

Therearevariousmethodstogenerateapyramidaldatastruc-
ture, the simplestone being the one involving the spatial
downsamplingof theoriginalvideoframes.However, it has
beenpointedout in [2] thatdownsamplingleadsto incorrect
motion estimationbecauseof the presenceof noise. The
authorsin [2] havesuggestedtheuseof themeanpyramid.

In Burt andAdelson’s original work of imagepyramid
[4], a family of generatingkernels,which are normalized



Filter or Flower Football Tennis Mobile
Wavelets MSE Bits MSE Bits MSE Bits MSE Bits

MeanPyramid 155.80 1559 272.12 2662 84.83 2339 232.72 793
MF-MeanPyramid 146.20 1294 308.75 2270 87.87 1471 230.58 685

7/9 wavelet 158.88 1576 278.86 2655 82.98 2218 232.80 765
MF-7/9wavelet 147.10 1412 272.29 2448 79.72 1712 232.13 738

10/6wavelet 171.16 1681 276.56 2695 84.48 2264 232.97 774
MF-10/6wavelet 147.36 1429 272.51 2448 80.61 1713 232.06 736

B&A a=0.3 147.67 1412 271.00 2585 76.18 1866 230.25 701
MF-B&A a=0.3 145.05 1349 270.46 2445 77.57 1628 230.23 698

B&A a=0.4 147.16 1410 271.68 2601 76.85 1903 230.70 708
MF-B&A a=0.4 145.09 1352 270.69 2442 78.08 1630 230.28 703

B&A a=0.5 149.47 1446 273.20 2615 79.08 1996 231.16 727
MF-B&A a=0.5 145.54 1367 270.78 2446 78.59 1638 230.72 716

B&A a=0.6 154.71 1532 276.97 2649 82.64 2205 232.31 765
MF-B&A a=0.6 146.32 1392 271.54 2446 79.23 1675 231.64 733

Table 1. Performancecomparisonof conventionalandmedianfiltering basedpyramidalmotionvectorestimation

andsymmetric,areusedtogeneratethepyramidaldatastruc-
ture. With a constraintcalledequalcontribution, the one-
dimensionalgeneratingkernel *+ of length5, canbewritten
as
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Besidethe meanpyramid [2] and the Gaussianpyra-
mid [4], wavelet theoryhasrecentlyattracteda greatdeal
of attentionin theimageprocessingliterature.A simulation
studycomparingthe motion estimationperformanceusing
the meanpyramid, Burt andAdelson’s generatingkernels
andanumberof waveletsis carriedout in thenext section.

4. SIMULATION RESULTS

In this section,simulation studiesusing both the predic-
tion equationgiven by (1) as well as medianfiltering for
acrossresolutionmotion vectorpredictionarecarriedout.
Four video sequencesof SIF format, namely, 100 frames
of the Football, Flower Garden, and Mobile & Calendar
sequences,and 60 framesof the Tennis sequenceare in-
cludedin thesimulation.Meanabsolutedifference(MAD)
is usedastheerrormeasurein performingtheblock match-
ing, while themeansquareerror(MSE) computedbetween
theoriginalvideoframeandthemotioncompensatedoneis
usedasthemeasureof performanceevaluation.

Themotionvectorestimationis performedon a 3-level
pyramid,with theblocksizeof

56�<5
at thelowestresolution

level, andthe searchrangeor refinementrangeof 4 for all
theresolutions.A = � = parentwindow isusedfor themedian
filtering.

For theencodingof motionvectors,arithmeticcoder[5]
is used.ThemotionvectorsareDPCM encodedon a row-
by-row basis,asrequiredby mostof today’s video coding
standards.

Thesimulationresultsusingmeanpyramid,a coupleof
well known wavelets[6] pyramids,andthe Burt andAdel-
son’s Gaussianpyramids,areshown in Table1. Fromthese
results,wecanmake thefollowing observations.

> Theproposedmedianfiltering techniqueimprovesthe
overall rate distortion performance. Although in a
few cases,the medianfiltering techniqueresultsin a
higherpredictionmeansquareerror comparedto the
conventionaltechnique.In thesecases,however, there
is asignificantreductionin thenumberof bitsneeded
in codingof themotionvectors.This is dueto thefact
thatin theconventionaltechnique,emphasisis placed
onthematchingof thepixelpattern,andthusit is pos-
sibleto find a bestmatchwhile introducinga discon-
tinuity in themotionfield, whichrendersmorecoding
bits. In otherwords,only thepredictionperformance
is emphasizedin the conventionaltechnique,instead
of theoverall ratedistortionperformance.

> Amongthethreemethodsusedto generatepyramidal
datastructures,Burt andAdelson’sgeneratingkernels
givethebestmotionestimationperformance.It seems
that the equalcontribution propertyof thesegener-
ating kernels,which requiresthat all the nodesat a
given level mustcontribute the sametotal weight to
the nodesat the next higher level, is a betterprop-
erty thanthe half-bandsplitting propertyof wavelets
or themeanpyramidwhenperformingpyramidalmo-
tion vectorestimation.



Sequence Complexity MeanPyramid 7/9 6/10 Burt(0.3) Burt(0.4) Burt(0.5) Burt(0.6)
Flower COMPARISON 13 7 7 6 6 6 7

SWAPPING 10 5 5 5 5 5 5
Football COMPARISON 19 9 9 10 9 9 9

SWAPPING 16 7 7 8 7 7 7
Tennis COMPARISON 16 9 9 8 8 8 9

SWAPPING 13 7 7 6 6 6 7
Mobile & COMPARISON 7 2 2 1 1 1 2
Calendar SWAPPING 5 1 1 1 1 1 2

Table 2. Averagecomputationalcomplexity of medianfiltering permotionvectorcomponent

It shouldbenotedthatdozensof waveletswith goodrep-
utationin theimageprocessingliteraturehave beeninvesti-
gatedin thisstudy, andthetwo shown in Table1 areamong
thefew with excellentperformance.

5. COMPUTATIONAL COMPLEXITY

It may seemthat comparedto the conventionalpyramidal
motion estimationschemes,the proposedmedianfiltering
basedtechniquewouldincreasethecomputationalcomplex-
ity becauseof themedianfiltering operationinvolved.How-
ever, we will show in this sectionthat this additionalcostis
only minimal.

In thecaseof the = � = parentmotionvectorwindow that
we have usedin our simulationstudies,thereareat most9
valuesfor either the x or the y componentof the motion
vector array to be sorted. In view of the small length of
themotionvectorarray, insertionsortingis usedfor median
filtering.

Table2 shows thecomputationalcomplexity usingvar-
ious generatingkernels. A simple calculationshows that
even for the noisy motion field of the Football sequence,
generatedby the meanpyramid, which on the averagere-
quiresthe medianfiltering processto perform19 compar-
isonsand16 swappingsfor eitherthex or they component
of a motion vector, the additionalcomputationcomplexity
for oneimageis lessthanone-halfof onepercentof thatof
computingall themotionvectorsat thefull resolutionlevel.

6. CONCLUSIONS

In thispaper, amedianfiltering-basedpyramidalmotionvec-
tor estimationschemehasbeenproposedto overcomethe
problemof propagationof falsemotionvectorsencountered
in theconventionalschemes.Basedon theassumptionthat
themotionfieldsassociatedwith thevideosignalsof natu-
ral scenesaresmoothandcontinous,thepredictionmotion
vectorfrom a lower resolutionis derived by medianfilter-
ing technique,insteadof directly using the corresponding
motionvectorat thelower resolution.

Simulationstudiesusingthe pyramidalmotion estima-
tion techniquewith andwithoutmedianfiltering haveshown
that the proposedmethodresolves the problemof propa-
gationof falsemotion vectorsand resultsin a betterrate-
distortionperformance.It hasalsobeenshown that thead-
ditionalcomputationalcomplexity introducedby themedian
filtering is negligible, comparedto that requiredby block
matching.Also, theperformanceof variouskernelsfor gen-
eratingthe pyramidaldatastructure,including wavelets,is
compared.Weconcludethattheequalcontributionproperty
[4] of Burt andAdelson’s generatingkernelsis betterthan
thehalf-bandsplittingpropertyof waveletsormeanpyramid
in performingpyramidalmotionvectorestimation.
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