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ABSTRACT

We describeefficient interior-point methodsfor the design
of filterswith constraint®nthemagnitudespectrumfor ex-

ample,piecavise-constantipperandlower boundsandar

bitrary phase Severalresearcherbave obsenedthat prob-
lemsof thistype canbe solvedvia corvex optimizationand
spectralfactorization. The associatedptimization prob-
lems are usually solved via linear programmingor, more
recently semidefiniteprogramming.The semidefinitepro-

grammingapproachis moreaccuratebut alsomore expen-
sive, becauseét requiresthe introductionof a large number
of auxiliary variables.In this paperwe proposea moreef-

ficient method,basedon corvex optimizationduality, and
oninterior-point methodgor problemswith generalizedn-

equalities.

1. INTRODUCTION

Finite impulserespons€FIR) filter designproblemsoften
includemagnitudeconstraintof the form

L<|H(E)| <U, we[a,f] 1)
where0 < a < 8 <7, U > L > 0, andH is thefilter
transferfunctiondefinedas

H(z)=ho+hz 4+ h27 ™

Magnitude constraintsare not corvex in the filter coefi-
cientshy, ... , h,. However, it hasbeenpointedoutin [1,
2, 3,4, 5, 6] that the constraintsare corvex if we usethe
autocorelationcoeficientszy, definedas

n—k
wkzzhihk—l-i: k=0,...,n, (2)
i=0

asvariables. The Fourier transformof the autocorrelation
coeficients(assuminge, = 0 for |k| > n andz_;, = zy,)
is givenby

n
X (€M) = zg+2 Zxk cos kw.
k=1
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Wehave X (e“) = |H(e/*)|?, andthereforeheconstraint{1)
reduceto

L2§x0+22xkcoskw§U2, wela,Bf] ()
k=1

whenwrittenin termsof theautocorrelatiortoeficientszy,.
Thisis aninfinite setof linearinequalitiedn thecoeficients
x, (two linearinequalitiesfor eachw), hencea corvex con-
straint. Moreover it is well known thata vectorz € R™**
canbeexpresseas(2) if andonly if

X() >0, welo,q], @)
whichagainis a corvex constrainin theautocorrelatiorto-
efficientsz. In summary in a FIR filter designproblem
whereall the constraintsareof theform (1), we canreplace
thenoncorwex constraintg1) by cornvex constraint{3) and
(4), solve for the optimal valuesof the autocorrelatiorco-
efficients,andthenfind thefilter coeficientsh by spectral
factorization.

As an example, considerthe problem of designinga
multibandFIR filter with N bandgay, 8k], k= 1,2,...,N.
(We assumeéhat0 < ap < B < m, andthatnoneof the
intervals overlap.) In eachband,we have a lower bound
L > 0 andanupperboundU; > Ly, on thefilter magni-
tude.We areinterestingn minimizingthestopbandquared
errorsubjectto peakconstrainton the magnituderesponse
[7]. Thisdesignproblemcanbeexpresseds

N B -
minimize Zwk/ |H(e7)|" dw

e (5)
subjectto Ly < |H(e/*)| < Uy,

we[akaﬂk]) kzla"')N7

wherew;, = 0 if bandk is apassbandandw;, = 1 if bandk
is a stopband(Taking differentpositive weightsw;, allows
us to balancethe minimization over different stopbands.)
In termsof the autocorrelationcoeficientsz the problem



reducego

N Br )
minimize Zwk/ X (e?)dw
k=1 Ak
subjecto L? < X (e/*) < UZ, (6)
we€ [ag, ], k=1,... ,N

X(e*) > 0, w € [0, ],

which is a corvex problemin the variablesz: the objec-
tive functionis linearin z; the constraintareaninfinite set
of linear inequalities. From the optimal solutionz we can
obtainfilter coeficientsh via spectrafactorization.

Two methodsxist for dealingwith thesemi-infinitena-
ture of the constraint(3). The mostpopularmethodis to
samplethe frequeng responsej.e., we replacethe con-
straint (3) with a large finite setof inequality constraints
Using this approachwe canapproximateproblem(6) asa
linearprogramwith alarge,but finite, setof inequalities.

A secondandmorerecentmethodis basedn semidefi-
nite programmingWhena = 0 andg = it is well known
that the constraint(3) canbe castastwo linear matrix in-
equality (LMIs), via the positive reallemma]|2]. Davidson
etal. in [5] haverecentlyextendedhis formulation,andde-
rivedanLMI formulationof theconstraint¢3) for arbitrary
a andpg. Usingtheir method,a problemsuchas(6) canbe
castasa semidefiniteprogrammingproblem (SDP), with-
outarny approximatioror sampling,andsolvedvia general-
purposesemidefinitgorogrammingsoftware. Thedravback
of this methodis thatit requiresa numberof auxiliary vari-
ablesthatoftenfar exceedghe numberof variablest.

Our approachin this paperis similar but moreefficient
thanthe LMI approach.lt is basedon a new formulation
of the magnitudeconstraintsasgeneralizedinearinequali-
ties,anddoesnot requireary auxiliary variables.A related
methodrecentlyappearedn [8].

2. CONE PROGRAM FORMULATION

We sayz € R™"! a finite autocorelation sequencef it
canbe expressedas (2) for someh € R™*!. Autocorre-
lation sequencesanbe characterizedh the frequeny do-
mainvia (4). Thisis aninfinite setof linearinequalitiesin
z (oneateachfrequeng), andthereforetheautocorrelation
sequenceim R™ ™! form aclosedconvex cone. Thisjustifies
thefollowing notation.We write z > 0 to denotethatz is a
finite autocorrelatiorsequenceandmoregenerallyz > y
meanghatz — y is afinite autocorrelatiorsequenceWith
this notation,we canexpressthe constraint(4) asa ‘gener
alized'’ linearinequalityz > 0. As we will now shaw, the
upperand lower bounds(3) canalsobe expressedasgen-
eralizedlinear inequalities. This obsenation allows us to
expressa wide variety of magnitud€filter designproblems

aslinear programmingproblemswith generalizednequal-
ities (alsoknown asconeprogramg, i.e., problemsof the
form

minimize Tz

subjectto  Fpz + gr <0, , L, (7)

k=1,...
wherec € Rt F,, € R™*(™+t1) andg, € R™.
We first considerthe constraint

X (%) = mo + Zka coskw >0, we€[a,B]. (8)
k=1

To simplify notation,we make a changeof variablet =
cosw. Thismapstheintenal0 < w < wto-1<t <1,
andthe function cos kw to the kth Chebyshe polynomial
pr(t) = cos(kcos™1t) [9, p.684]. ThereforeX (e/*) is
mappedo the polynomial

P(t) = zopo(t) +2 vakpk ),
k=1

soit is clearthat P(t) > 0 for ¢t € [-1,1] if andonly if
z > 0. Now considertheconstraini(8). It is satisfiedf and
only if P(t) > 0fort¢ € [cosfB,cosa]. Let A(a,p) €
R(m+Dx(n+1) he definedas follows: the componentsof
A(a, 8)x arethe coordinateof P in the basispg(at — b),
2p1(at—"), ... ,2pp(at—>b), wherea = 2/(cos B —cos @),
andb = (cosf + cosa)/(cos B — cosa), i.e, if we take
y = A(a, B)z, we canexpressP(t) as

P(t) = yopo(at — b) —}—ZZykpk(at—b). 9)
k=1

(See[10] for the detailsof constructinghe matrix A(a, )
for givena, 3.) From(9) andthedefinition of a andb, it is
clearthat P(t) > 0 for t € [cos 8, cos ] if andonly if

n
vopo(r) +2) wykp(r) >0, 7€[-1,1].
k=1

In otherwords, z satisfiesthe constraint(8) if andonly if
A(a, 8)x > 0. More generally we canexpressthe magni-
tudeconstraintg3) asa pair of generalizedinearinequali-
ties

L?e < A(a, B)x = U?e

wheree = (1,0, ... ,0) is thefirst unit vectorin R™**,

Returningto the example of §1, we can usethe gen-
eralizedinequality notationto expressproblem (6) asthe
following coneprogram:

minimize ¢’z
subjectto  LZe < Ayz < Ufe,
x>0

k=1,...,N (10)



whereAy, = A(ay, i) and
N N B
co = Zwk(ﬂk —ag), ¢k = 2Zwk/ cos kw dw,
k=1 k=1 Ak

fork=1,...,n.

3. THE DUAL PROBLEM

We canalsoassociate dualinequalitywith finite autocor
relationsequenceszor € R™ ™!, wewrite z >, 0 if

2Tz >0 Vz = 0.

Fromthedefinition (2), it is clearthatz >, 0 if andonly if
v Z(z)v > 0 for allv € R™"!, where

2z0 =1 Zn

21 220 Zn—1
Z(z2) = .

Zn  Zn-1 2zp

In otherwords, z >, 0 if andonly if the Toeplitz matrix
Z(z) is positive semidefinite.
ThelLagrangedualof theconeprogram(7) is definedas

L
maximize Y gz
k=1
L (11)
subjectto Z Flap4+¢=0
k=1

zk =0, k=1,...,L.

The dual variablesarethe L vectorsz;, € R™. It canbe
shavn thatif theprimal problem(7) is strictly feasible then
theoptimalvaluesof (7) and(11) areequal.

As anexample thedualof problem(10)is

N
maximize » (Ljvko — Upwio)
k=1
N
subjectto Y Af (vp —wp) +2=c
k=1
270, vp =, 0, wp =, 0, k=1,...,L.

(12)

Thevariablesarez € R"*! anduvy,, w, € R,

4. DUAL BARRIER FUNCTION

Several widely usedinterior-point methodsfor corvex op-

timizationrely on barrier functionsassociatedvith thein-

equality constraints. A suitablebarrier for the constraint
z =, 0isthestandardog-detbarrier

s/ _ | —logdetZ(z) Z(z)>0
¢*(2) = { 00 otherwise.

It hasbeenshawn in [11] thatthis barrier, its gradientand
Hessianmay be computedin O(n?) floating point opera-
tions (flops), by taking advantageof the Toeplitz structure.
We will find thefollowing two propertiesusefulin the next

section.Forall y >, 0,

Vo (y) <0, y'Ve*(y)=—(n+1).  (13)
We canusethis barrierfunction to solve the dual problem
efficiently usinga barriermethod[12].

5. SOLVING THE PRIMAL VIA THE DUAL

If we minimizeaweightedsumof thedualobjectivein (11)
andthedualbarrierfunctions,i.e., we solve

L L
minimize —t Y gi zi + »_ ¢*(2k)

k=1 k=1

3 (14)
subjectto Z Flzp+c=0
k=1
wheret > 0 isaparametetthentheminimizer(zy,... , zr)

satisifieghefollowing optimality conditions:
—tgr, + Vo (z) — Fry =0, k=1,...,L
for somey € R™. Thereforefrom (13) we have
Fr(y/t) + gr = Vo*(2)/t <0, k=1,...,L.

In otherwords,z = y/t is strictly feasiblefor the primal
problem (7). We can usethe secondequationof (13) to
evaluatethe duality gap betweerthis primal feasiblepoint
xz = y/t andthe minimizer (z,... ,zr) of (14),i.e, the
differencebetweerthe primal objectie evaluatedat = and

thedualobjectve evaluatedat (24, . .. , zL):
L L
/)= gk = = 2 (Fu(y/t) + ar)
k=1 k=1
L
— T *
= =) 2 Ver(a)/t
k=1
= (n+1)L/t.

This meanghat (n + 1)L/t is aboundon how suboptimal
x = y/t is for the primal problem(7). In summarywe can
find primal feasiblepointssothatthe primal costis within

e of optimality by minimizing (14) with ¢ > (n + 1)L/e.

Problem(14)is asmoothcornvex optimizationproblemwith

equalityconstraintsandcanbeefficiently solvedusingNew-
ton’s method. A widely usedinterior-point methodknown

as SUMT is basedon this idea, but solves (14) for a se-
quenceof increasingsaluesof t untilt > (n+1)L/e, where
e isthedesiredaccurag [13]. This oftenrequiresasmaller
totalnumberf Newtoniterationsthansolving(14)directly
fort = (n+1)L/e.
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Fig. 1: Length24 bandpasféiter.

6. NUMERICAL EXAMPLE

Figure 1 shows the magnituderesponseof a lengthn =
24 bandpasdilter designedby the methodsintroducedin
this paper Thefirst stopbands the interval [0, 0.27], with
an upperbound constraintof —13.2dB. The passbhands
theinterval [0.257, 0.457], with passbandjain constrained
to £0.5dB. The secondstopbands theinterval [0.52, 7],
with an upperbound constraintof —23dB. We minimize
the weightedsumof the two stopbandsquarecerrors,with
weightsinverselyproportionatlto the stopbandvidths.

The dual problem(12) was solved using a Matlab im-
plementationof SUMT. A solutionto the primal problem
wasobtainedfrom the dual, asexplainedin §5. A cepstral
methodfor spectralfactorizationwas usedto recover the
filter coeficientsfrom theautocorrelatiorcoeficients.

Duringthis experimentwe obsenedthat,dependingn
« and g, the condition of the matrix A(«, 3) deteriorates
with increasingn. We planto investigatethis phenomenon
furtherin futurework.

7. CONCLUSIONS

We haveformulatedrFIR filter magnitudeconstraint@asgen-
eralizedinequalitieswith respectthe cone of finite auto-
correlationsequencesand outlined efficient interior-point
methoddor solvingtheresultingcornvex optimizationprob-
lems. The advantageof this approachis that samplingis
avoidedandsothe constraintsaaremetexactly. Themethod
is computationalyless expensve than methodsbasedon
general-purpos8DPsolvers. The methodcanbe extended
to relatedproblems suchasmagnitudedesignof IIR filters.
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