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ABSTRACT
We describeefficient interior-point methodsfor the design
of filterswith constraintsonthemagnitudespectrum,for ex-
ample,piecewise-constantupperandlower bounds,andar-
bitrary phase.Severalresearchershave observedthatprob-
lemsof this typecanbesolvedvia convex optimizationand
spectralfactorization. The associatedoptimization prob-
lems are usually solved via linear programmingor, more
recently, semidefiniteprogramming.Thesemidefinitepro-
grammingapproachis moreaccuratebut alsomoreexpen-
sive, becauseit requiresthe introductionof a largenumber
of auxiliary variables.In this paperwe proposea moreef-
ficient method,basedon convex optimizationduality, and
on interior-pointmethodsfor problemswith generalizedin-
equalities.

1. INTRODUCTION

Finite impulseresponse(FIR) filter designproblemsoften
includemagnitudeconstraintsof theform����� ���	��

����������������� ���
���
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where � ���! "�#�"$ ,
�&%���' � , and

�
is the filter

transferfunctiondefinedas���	()�+*-,/.�01,324(/5 2 0�676�6809,;:�(/5 :3<
Magnitudeconstraintsare not convex in the filter coeffi-
cients
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,
<7<�<

,
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. However, it hasbeenpointedout in [1,
2, 3, 4, 5, 6] that the constraintsareconvex if we usethe
autocorrelationcoefficients=?> , definedas= > * : 5 >@ A B . , A , >DC A �FEG* � � <7<�< �
HI� (2)

asvariables. The Fourier transformof the autocorrelation
coefficients(assuming=3> * � for

� EJ�?%-H
and = 5 > * =3> )

is givenby K9�	� 

� �+* = . 09L :@> B 2 = >NM4OQP EQ� <
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Wehave
K9�	� 

� �+*R� ���S� 

� �7� T

, andthereforetheconstraints(1)
reduceto� T � = . 01L :@> B 2 = >NM�OUP EQ����� T �V���W� �X�Y�Z�

(3)

whenwritten in termsof theautocorrelationcoefficients =3> .
This is aninfinite setof linearinequalitiesin thecoefficients= > (two linearinequalitiesfor each

�
), henceaconvex con-

straint. Moreover it is well known thata vector = � R
: C 2

canbeexpressedas(2) if andonly ifK9�S� 

� �[' � �V�\�F� � �Y$?�]� (4)

whichagainis aconvex constraintin theautocorrelationco-
efficients = . In summary, in a FIR filter designproblem
whereall theconstraintsareof theform (1), wecanreplace
thenonconvex constraints(1) by convex constraints(3) and
(4), solve for the optimal valuesof the autocorrelationco-
efficients,andthenfind the filter coefficients

,
by spectral

factorization.
As an example, considerthe problem of designinga

multibandFIRfilter with ^ bands
� � > �Y� > � , EG*`_]�aL�� <7<�< � ^ .

(We assumethat � �b� >  R� > �!$ , andthatnoneof the
intervals overlap.) In eachband,we have a lower bound� > ' � andanupperbound

� > %`� > on thefilter magni-
tude.Weareinterestingin minimizingthestopbandsquared
errorsubjectto peakconstraintson themagnituderesponse
[7]. Thisdesignproblemcanbeexpressedas

minimize c@> B 2/d >+eFfhgi g jj ���S��

�?� jj
T�k �

subjectto
� > � jj ���S� 

� � jj ��� > ����F� � > �
� > �U�XEG*#_U� <7<�< � ^ � (5)

whered > * � if band
E

is apassband,and d > *#_ if band
E

is a stopband.(Takingdifferentpositive weights d > allows
us to balancethe minimization over different stopbands.)
In termsof the autocorrelationcoefficients = the problem



reducesto

minimize c@> B 2 d >+e f8gi g K9�S� 

� �
k �

subjectto
��T> �\K9�S� 

� �[�l�mT> ��1��� � > �
� > �]�;EG*#_U� <7<�< � ^K1�	� 

� �[' � �n���W� � �Y$?�o�

(6)

which is a convex problemin the variables= : the objec-
tive functionis linearin = ; theconstraintsareaninfinite set
of linear inequalities.From the optimal solution = we can
obtainfilter coefficients

,
via spectralfactorization.

Two methodsexist for dealingwith thesemi-infinitena-
ture of the constraint(3). The mostpopularmethodis to
samplethe frequency response,i.e., we replacethe con-
straint (3) with a large finite set of inequality constraints
Using this approach,we canapproximateproblem(6) asa
linearprogramwith a large,but finite, setof inequalities.

A secondandmorerecentmethodis basedonsemidefi-
niteprogramming.When

�p* � and
�q*l$

it is well known
that the constraint(3) canbe castas two linear matrix in-
equality(LMIs), via thepositive real lemma[2]. Davidson
etal. in [5] haverecentlyextendedthis formulation,andde-
rivedanLMI formulationof theconstraints(3) for arbitrary�

and
�

. Usingtheir method,a problemsuchas(6) canbe
castasa semidefiniteprogrammingproblem(SDP),with-
outany approximationor sampling,andsolvedvia general-
purposesemidefiniteprogrammingsoftware.Thedrawback
of this methodis thatit requiresa numberof auxiliaryvari-
ablesthatoftenfarexceedsthenumberof variables= .

Our approachin this paperis similar but moreefficient
than the LMI approach.It is basedon a new formulation
of themagnitudeconstraintsasgeneralizedlinearinequali-
ties,anddoesnot requireany auxiliary variables.A related
methodrecentlyappearedin [8].

2. CONE PROGRAM FORMULATION

We say = � R
: C 2

a finite autocorrelation sequenceif it
canbe expressedas (2) for some

,`�
R
: C 2

. Autocorre-
lation sequencescanbe characterizedin the frequency do-
mainvia (4). This is an infinite setof linear inequalitiesin= (oneateachfrequency), andthereforetheautocorrelation
sequencesin R

: C 2
form aclosedconvex cone.Thisjustifies

thefollowing notation.We write =qr\� to denotethat = is a
finite autocorrelationsequence,andmoregenerally, =�rts
meansthat =vuWs is a finite autocorrelationsequence.With
this notation,we canexpresstheconstraint(4) asa ‘gener-
alized’ linear inequality =�r`� . As we will now show, the
upperandlower bounds(3) canalsobe expressedasgen-
eralizedlinear inequalities. This observation allows us to
expressa wide varietyof magnitudefilter designproblems

aslinearprogrammingproblemswith generalizedinequal-
ities (alsoknown asconeprograms), i.e., problemsof the
form

minimize w4x�=
subjectto yn>z= 0F{ >}|\� �~E�*`_]� <�<7< �Y��� (7)

where w � R
: C 2

, yN> � R
: g]�3� : C 2
� , and

{ > � R
: g .We first considertheconstraintK9�S� 

� �X* = .[01L :@> B 2 =3> M4OUP EQ�1' � ���\�F� ���
��� < (8)

To simplify notation,we make a changeof variable � *M4OQP � . This mapsthe interval � �t�`�#$ to u _�� � ��_ ,
and the function M4OQP EQ� to the

E
th Chebyshev polynomial� > � � �F* M4OUP �SE M�OUP 5 2 � � [9, p.684]. Therefore

K1�	� 

� �
is

mappedto thepolynomial�G� � �X* = . � . � � �J09L :@> B 2 = > � > � � �D�
so it is clear that

�G� � �v' � for � �"� u _U��_�� if andonly if=qr�� . Now considertheconstraint(8). It is satisfiedif and
only if

�G� � �F' � for � ��� M4OQP �+� M�OUP ��� . Let � �	���
�����
R � : C 2�� �?� : C 2
� be definedas follows: the componentsof� �S�X�Y��� = arethe coordinatesof

�
in the basis� .U�S� �Xu1� � ,L � 28�S� �Uu�� � , <7<�< , L � :?�	� �]u�� � , where
��*�LQ��� M�OUP � u M�OUP �N� ,

and � *�� M4OQP �W0 M4OQP �N�Y��� M4OQP � u M4OUP �n� , i.e., if we takes * � �S�X�Y��� = , we canexpress
�G� � � as�G� � �X* s . � .U�	� �Nu�� ��09L :@> B 2 sQ> � > �	� �Nu�� � < (9)

(See[10] for thedetailsof constructingthematrix � �S�X�Y���
for given

�
,
�

.) From(9) andthedefinitionof
�

and � , it is
clearthat

�G� � �[' � for � �F� M�OUP �X� M4OQP �J� if andonly ifs . � .U�	���J09L :@> B 2 sQ> � > ������' � ������� u _]��_�� <
In otherwords, = satisfiesthe constraint(8) if andonly if� �S�X�Y��� =1r-� . More generally, we canexpressthemagni-
tudeconstraints(3) asa pair of generalizedlinear inequali-
ties � T � |�� �S�X�Y��� =p| � T �
where

��*`��_]� � � <�<�< � � � is thefirst unit vectorin R
: C 2

.
Returningto the exampleof � 1, we can usethe gen-

eralizedinequality notationto expressproblem(6) as the
following coneprogram:

minimize w4xJ=
subjectto

�XT> � |1��>8=q| �mT> �Q��E�*#_]� <�<�< � ^=qr\� (10)



where ��> * � �	� > �
� > � andw .�* c@> B 2 d > �	� >�u � > �4� w7> *-L c@> B 2 d >+eFfhgi g M4OUP EQ�
k ���

for
E�*`_]� <7<�< �YH

.

3. THE DUAL PROBLEM

We canalsoassociatea dual inequalitywith finite autocor-
relationsequences.For

(G�
R
: C 2

, wewrite
( r���� if= x (G' ���?=�r1� <

Fromthedefinition(2), it is clearthat
( r � � if andonly if  xI¡ �	()�   ' � for all   � R

: C 2
, where

¡ �	()�+*£¢¤¤¤¥
Lh(¦. (h2 676�6 (¦:(h2 L](7. 676�6�(z: 5 2
...

...
. . .

...(z: (z: 5 2§676�6 L](7.
¨ª©©©« <

In otherwords,
( r���� if andonly if the Toeplitz matrix¡ �S(Q� is positivesemidefinite.

TheLagrangedualof theconeprogram(7) is definedas

maximize ¬@> B 2 { x> ( >
subjectto ¬@> B 2 y x> ( > 0 w * �( >}r���� ��EG*`_]� <�<�< �­� < (11)

The dual variablesarethe
�

vectors
( > � R

: g . It canbe
shown thatif theprimalproblem(7) is strictly feasible,then
theoptimalvaluesof (7) and(11)areequal.

As anexample,thedualof problem(10) is

maximize c@> B 2 �	� T >   >¦® . u � T> d >¦® .8�
subjectto c@> B 2 � x > �   >�u d > �J0�(}* w( r � � �   > r � � � d > r � � �WEG*`_]� <7<�< �­� <

(12)

Thevariablesare
(G�

R
: C 2

and   > � d > � R
: C 2

.

4. DUAL BARRIER FUNCTION

Several widely usedinterior-point methodsfor convex op-
timization rely on barrier functionsassociatedwith the in-
equality constraints. A suitablebarrier for the constraint( r���� is thestandardlog-detbarrier¯ � �	()�+*�° u²± O]³+´�µ�¶ ¡ �	()� ¡ �S(Q��% �· otherwise.

It hasbeenshown in [11] that this barrier, its gradientand
Hessianmay be computedin ¸ ��H�¹z� floating point opera-
tions (flops),by takingadvantageof theToeplitzstructure.
We will find thefollowing two propertiesusefulin thenext
section.For all s�º � � ,» ¯ � � s ��¼ � � s x » ¯ � � s �+* u ��H�0�_z� < (13)

We canusethis barrierfunction to solve the dual problem
efficiently usinga barriermethod[12].

5. SOLVING THE PRIMAL VIA THE DUAL

If weminimizeaweightedsumof thedualobjectivein (11)
andthedualbarrierfunctions,i.e., we solve

minimize u��9¬@> B 2 { x> ( > 0 ¬@> B 2 ¯ � �S( > �
subjectto ¬@> B 2 y x> ( > 0 w * � (14)

where� % � is aparameter, thentheminimizer
�S(828� <7<�< �Y( ¬ �satisifiesthefollowing optimality conditions:u�� { > 09» ¯ � �	( > � uFy > s * � �WEG*`_]� <7<�< �­�

for somes � R
: C 2

. Therefore,from (13)wehavey > � s � � ��0F{ > *�» ¯ � �	( > �­� � ¼ � �FEG*t_U� <7<�< �Y� <
In otherwords, = * s � � is strictly feasiblefor the primal
problem(7). We can usethe secondequationof (13) to
evaluatethe duality gapbetweenthis primal feasiblepoint= * s � � andthe minimizer

�	(h2z� <�<�< �Y( ¬ � of (14), i.e., the
differencebetweentheprimal objective evaluatedat = and
thedualobjectiveevaluatedat

�	(h2z� <�<7< �Y( ¬ � :w x � s � � � u~¬@> B 2 { x> ( > * u½¬@> B 2 ( x> � yN> � s � � ��0F{ > �* u½¬@> B 2 ( x> » ¯ � �	( > �Y� �* ��H¾0�_z���¿� � <
This meansthat

��H�0�_¦�
�[� � is a boundon how suboptimal= * s � � is for theprimal problem(7). In summary, we can
find primal feasiblepointsso that the primal costis withinÀ of optimality by minimizing (14) with � 'Á��H�0#_z���¿� À .
Problem(14)isasmooth,convex optimizationproblemwith
equalityconstraints,andcanbeefficientlysolvedusingNew-
ton’s method.A widely usedinterior-point methodknown
as SUMT is basedon this idea, but solves (14) for a se-
quenceof increasingvaluesof � until � 't��H�0�_z���[� À , whereÀ is thedesiredaccuracy [13]. This oftenrequiresa smaller
totalnumberof Newtoniterations,thansolving(14)directly
for � *!��H�0�_z���¿� À .
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Fig. 1: Length24 bandpassfilter.

6. NUMERICAL EXAMPLE

Figure 1 shows the magnituderesponseof a length
HÂ*L8Ã

bandpassfilter designedby the methodsintroducedin
this paper. Thefirst stopbandis the interval

� � � � < L8$?� , with
an upper bound constraintof u _¦Ä < L dB. The passbandis
the interval

� � < LUÅ8$I� � < ÃQÅ8$?� , with passbandgainconstrained
to Æ�� < Å dB. Thesecondstopbandis the interval

� � < Å]L8$I�Y$?� ,
with an upperboundconstraintof u LhÄ dB. We minimize
theweightedsumof thetwo stopbandsquarederrors,with
weightsinverselyproportionalto thestopbandwidths.

The dual problem(12) wassolved usinga Matlab im-
plementationof SUMT. A solution to the primal problem
wasobtainedfrom thedual,asexplainedin � 5. A cepstral
methodfor spectralfactorizationwas usedto recover the
filter coefficientsfrom theautocorrelationcoefficients.

Duringthisexperiment,weobservedthat,dependingon�
and

�
, the conditionof the matrix � �	���
��� deteriorates

with increasing
H

. We planto investigatethis phenomenon
furtherin futurework.

7. CONCLUSIONS

WehaveformulatedFIRfilter magnitudeconstraintsasgen-
eralizedinequalitieswith respectthe coneof finite auto-
correlationsequences,andoutlinedefficient interior-point
methodsfor solvingtheresultingconvex optimizationprob-
lems. The advantageof this approachis that samplingis
avoidedandsotheconstraintsaremetexactly. Themethod
is computationalyless expensive than methodsbasedon
general-purposeSDPsolvers.Themethodcanbeextended
to relatedproblems,suchasmagnitudedesignof IIR filters.
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