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ABSTRACT

Traditionally, neuralnetworkssuchasmulti-layerperceptronfian-
dle acousticcontet by increasinghe dimensionalityof the obser
vationvector, in orderto includeinformationof the neighbouring
acoustiovectorson eithersideof thecurrentframe. As aresultthe
monolithic networkis trainedon a high multi-dimensionakpace.
Thetrendis to usethe samefixed-sizeobsenation vectoracross
the one network that estimateghe posteriorprobabilitiesfor all
phonessimultaneously We proposea decompositiorof the net-
work into modularcomponentswhereeachcomponengstimates
a phoneposterior The size of the obsenation vectorwe use,is
notfixed acrosghe modularisechetworks but ratheraccountgor
the phonethat eachnetworkis trainedto classify For eachob-
senation vector we estimatevery large acousticcontext through
broad-clasposteriors Theuseof the broad-clasposterioralong
with the phoneposteriorgreatlyenhanceacousticmodelling. We
reportsignificantimprovementsin phoneclassificationandword
recognitionon the TIMIT corpus.Our resultsarealsobetterthan
the bestcontext-dependensystemin theliterature.

1. INTRODUCTION

1.1. Problem Statement

Neuralnetworkssuchasmulti-layerperceptrongMLPs) offer great
potentialfor acousticmodellingwhencoupledwith one stateper
phoneHMM. Traditionally, neuralnetworkshandleacousticcon-
text by increasinghe dimensionalityof the obsenationvector in
orderto includeinformationof the neighbouringacousticvectors,
on eitherside of the currentframe; thus makingthe minimum of
assumptionsiboutthe speechyeneratiorprocess.As aresultthe
monolithic networkis trainedon a high multi-dimensionakpace.
When longer sequence®f input featuresare employed,the di-
mension®f theinputspacancreaseandthe datasparsityproblem
worsens.

Typically, a singlemonolithic MLP with thousand®f hidden
nodesis usedto simultaneouslymodel all phones. Minimising
outputerrorby severalcriteriawill leadto the MLP outputsyield-
ing phone probabilities, posterioron the input space,underthe
assumptionghat the MLP containssufficient hiddennodes,un-
limited training datais available andtraining doesnot get stuck
in a local minimum. In practice,unlimited speechtraining data
is not available,sotrainingis stoppedearly usinga minimumer
ror criterion on a separatelataset. The reasonings thattraining
mustbe preventedfrom fitting too closelyto afinite training data

set. Applying this procedureto a networkwith multiple outputs
is a necessanawkward compromise.The beststoppingpoint for
all outputscombinedcan be computed,but it is not necessarily
idealfor ary particularphone. Recentwork we publishedin [1]
supportshis view.

Theabove obsenationshave motivatedwork on decomposing
the acousticmodelling taskinto several sub-tasks. Hierarchical
Mixturesof Experts[7] andthe ACID/HNN architecture[6] have
beenusedto decompos@coustionodellingin a data-drven fash-
ion. However, the decompositioralgorithmsfor boththesearchi-
tecturesdependon a uniform obsenation featurevectorsize for
all acousticunits. We decompos¢he networkinto modularcom-
ponentswhereeachcomponenestimatesa phoneposterior We
usea variableobsenation vector size that dependsn the phone
thateachmodularisedhetworkis trainedto classify Moreover, for
eachobsenation vector we estimatevery large acousticcontext
throughbroad-clasgosteriors.

2. AMODULAR DECOMPOSITION METHOD

2.1. Acoustic Decomposition by Phone

A monolithic MLP with multiple outputssuggestshe possibil-
ity of decomposinghe mappingsit representsto mappingsrep-

resenteddy individual modulesand learnthesepartial mappings
separatelyThe simplestprinciple of suchdecompositioris to as-
signa‘“part” of thenetworkto a sub-task We choseto relatethese
“parts”to eachof the39 phoneclassedn theclassificatiortaskand
further assigna detector ML P with a single outputnodeto each
phone. The term "detector” is adoptedas eachMLP is trained
with atamget of 1 for its phoneandwith atamget of 0 for the re-

maining phones.For ary given phonedetectoy training attempts
to maximisethe responsdor the target phonewhile minimising

theresponséor theremainingcompetingphones.

Using this decompositionmethod,we can explicitly match
network resourcesand training to the needsof eachphone,de-
pendingon their compleity, i.e. hiddennodes,learningregime,
input featuredimensionjnput featurespaceandearly stoppingof
training. This is demonstrateéh previous work we publishedin
[1][2] [3]. As aresultof thisdecompositionpetworkoptimisation
is performedbothin trainingtimes(e.g. explore paralleltraining
naturallyaswell asreductionin parameteremployed)andin per
formanceon bothacousticandword recognitionlevel.

A possibleagumentagainsmodulardecompositioby phone,
isthatit repeatshemodellingof boundariebetweerphonesThis



is true sincemodularnetworkscontainin total, a relatively large
numberof parameters.However, theseparametersre not extra
degreesof freedonthatmightbeunderdeterminedy thetraining
data.They representerelytherepetitionof the samemodelling.
The extra time takento train redundanfparameterss morethan
offsetby thefactthattrainingmodulametworkscanbedistributed
acrossa large numberof machines. We literally usewhole labs
full of PC’sto do our training,andthis provesan effective experi-
mentalapproach.

2.2. Broad-class Posteriors

It is well known thatthe expressiorof a phoneis modifiedby the
context in whichit is expressedCo-articulationmay be responsi-
ble for mostof this variability. It follows thatit shouldbe possible
to estimatea phoneposteriorconditionednot justontheactualex-
pressiorof thephone put onits obsenedacousticcontect aswell.
Unfortunately extendingthefield of view presentedo aphonede-
tectoraswe demonstratén section3.2 by simply shaving it more
andmoreinput-featureframescreatespracticalproblems.

We proposean alternatve approactthat providesthe classifi-
cationtaskwith a more conciseindication of left andright con-
text, suchasbroad-class posterior probabilities.The 39 standard
phonesweredivided into 7 broad-classesf plosives (PL), frica-
tives (FR), nasals(NA), semi-wowels (SV), vowels (VO), diph-
thongs(DP) andclosureqCL).

In particular therearetwo waysof calculatingthesebroad-
classposteriorshy creatingaseparatenodelfor eachbroad-class,
or by simply summingthe posteriorphone probabilitiesof the
existing phonedetectorsbelongingto eachbroad-class.Using a
featurewindow of 9 framesand125 hiddennodeswe calculated
posteriorprobabilitiesfor thesemethodson the cross-alidation
setto selectthatwith the highestclassification.Simply summing
the posteriorsof the phonedetectorgleliversthe highestclassifi-
cation. Table 1 shaws the phoneclassificationconfusionmatrix
for this method which resultsfor the 7204 phonesggmentsin the
evaluationset. Verticallinesrepresenthe responsef eachbroad-

| PL FR _NA SV _V DP CL |
PL 82 1 o0 o0 3 1 1
FR 4 1030 4 0 2 0 5
NA 1 3 65 4 4 1 2
sV 0 5 2 91 13 11 3
vV 5 5 7 2 1116 7 0
bpP 0 0 1 2 5 33 1
CL 0 3 2 3 2 1 150

Table 1. Broad-clasphoneclassificatiorconfusionmatrix.

classandthe diagonalline the responseof the broad-classesn

their own phones. Despitesomeexpectedconfusions(e.g. plo-

sives with fricatives, vowels with semi-vowels and diphthongs),
thebroad-clasposteriorgprovide avery goodestimationof confi-

dencefor classdiscriminationsincethey deliver 98.1%segments
labelledcorrectly

2.3. TheModular/Posterior Broad-class Architecture

Fig. 1 presentshemodular/posteriobroad-classrchitectureThe
first layer usesthe phonedetectors- eachestimatingprobabil-
ities for their own class-, and the broad-classnformation de-

scribedin section2.2. The secondlayer, namelythe posterior
MLP layer, senesfor a co-operatie ensemblecombinationof
posteriors.EachposteriorMLP is trainedin the samefashionas
thatof phonedetectorslts job is to combinetheoutputsof thefirst
layeranddeliver anestimateof posteriomprobabilityfor its phone.
In principleit will be posterioron the original obsenation of the
raw speechln reality, it will beposterionin somecomplex way on
the union of all featurevectorsemployedby the phonedetectors
andbroad-classeslrainingof the posteriorMLP is donewith the
primary detectorsheld fixed. As mostof the work is doneby the
primarydetectorsposteriofMLP’s aresimpleandquick to train.
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Fig. 1. Modularnetworkarchitecturausingbroad-clasposteriors.

For the classificationof a given frame, two sourcesof infor-
mationare provided to the combiningphoneposteriorMLP: (1)
theoutputprobability of thephonedetectoyposteriorona9 frame
window centredon the currentframe, and (2) the output proba-
bilities of the broad-classletectorsposteriorboth on the current
frame and on the adjacentcontets on either side of the current
frame (computedon a 9 framewindow). This way, we cande-
terminethe broad-classontext in which the currentphoneis ex-
pressedthusliterally taking the role of context-dependentnod-
elling in amuchsimplifiedfashion.

3. EXPERIMENTAL EVALUATION

We selectedhe continuousspeaketindepenlert TIMIT corpusto
evaluateour architecture.lt allows usto comparephoneclassifi-
cationandrecognitionresultswith mary otherresultsin theliter-

ature.Unfortunately thereis no directway comparingword error
rateswith others.We performedwo setsof experiments:

1. Employanumberof uniform andsteadilyincreasingnput-
featureframesto the phonedetectors. Furthermore,in-
vestigatehow thesedifferentinput dimensionscanbe cus-
tomisedto benefitdifferentphonesbelongingto particular
groupsounds.

2. Employ the broad-clasgosteriorto the systemand shav



the effectivenesof suchinformationtowardstheimprove-
mentsobtainedn acousticandword recognitionlevel.

3.1. System Setup

We employtherecommendettainingset(3696sentencesp train
our modelswhile thetest(1152sentencesandthecore(192sen-
tences)etsare usedfor cross-alidationandevaluationpurposes
respectiely. Ourfront-endextractslog-enegy alongwith 15Mel-
Frequeng CepstralCoeficientsfrom a 20mswindow at a 10ms
framerate. Additionally, we adddeltainformationcomputedover
awindow of 5 frames,to give a featurevector containing32 co-
efficients. For comparisonpurposeswith other researchersye
collapsedhe TIMIT 61 phonelabelsinto theremaining39 labels,
accordingto a CMU/MIT mappingtakenfrom [8]. Training of
the completemodulararchitecture(seeFig. 1) took placeon 39
Pentiumll-450MHz machinesandwascompletedn 7 hours.

We evaluatetheperformancef ourmethodsusingphoneclas-
sificationandword recognitionrates. Although not reportedvery
often,phoneclassificatiorcanprovide agoodmeasuref thequal-
ity of acousticmodelling, sinceit doesnot requirea grammaror
ary othersyntacticalrules. Phoneclassificationis performedby
allowing phonemodelsto competeto label eachphonesegment.
To obtainword error rates the bestword stringfor eachsentence
is obtainedrom atime-synchronou¥iterbi beamsearchdecoder
A bi-grammodelwasestimatedy scanninghrougha very large
amountof sentencegroughly 90 million words)from a text cor-
pus,namelytheBritish NationalCorpus(BNC), with afloor value
to protectinfrequentransitiondrom becomingzero.A pronuncia-
tion modelfor the TIMIT lexicon containingatotal of 6224words
wasconstructedy the simpleexpedientof allowing all plausible
alternatve pronunciationso occut

3.2. Exploring Detectors Input Layer Size

It is commonpracticefor traditionalmonolithic MLP’s to include
a fixed-sizeinput representationTypically, a constanihumberof

9 adjacenframescentredonthecurrentmomentin timeis usedto

allow modellingof thetime developmenbf the phones However,

asthenumberof inputframesgetlarger (i.e. thespacewe attempt
to model grows), the task for training a monolithic network be-
comesextremelyhard. On the otherhand,it canbe possiblethat
acousticmodelling improves as more adjacentinput framesare
employedsincewe begin to modelthe taget phonein its wider
acousticcontext. We identify two sourcegowardsthis improve-

ment:

1. A wider view of the tamget phonecan be obtained,even
whenthe input framesto the networkare mis-alignedwith
theboundarie®f theobsenedphone;

2. the networkis ableto “see” additionalinformation about
the adjacentphoneson eitherside of the tamet phone,by
taking their expressioninto accountwhen estimatingthe
probabilityfor the currentphone.

For eachphone wetrainedasetof 7 detectorsusing9, 11,13,
15,17,19 and21 inputframes.All phonedetectorsarry afixed
numberof 125hiddennodes Earlierwork we published[1] shavs
how increasinghehiddennodego adetectoMLP addsverylittle
to therecognitiontask. Table2 summarisegheresults alongwith
the networkparametersonsumedby eachconfiguration.

The bestresultis obtainedby all phonedetectorsusing the
maximumz21 inputframes.It is alsoevidentthatthereis aninitial

input-layer phoneclassif. wordrecog. # parameters|

9 frames 75.9% 71.1% 1,408,875
11frames 76.3% 71.5% 1,720,875
13frames 76.8% 71.8% 2,032,875
15frames 77.4% 72.2% 2,344,875
17 frames 77.6% 72.3% 2,656,875
19frames 77.7% 72.3% 2,968,875
21frames 77.8% 72.4% 3,280,875

Table 2. Phonedetectorswith variableinput-layersize.

dramaticimprovementin performanceas moreinput framesare
employedwhile performancaraduallycorvergesat about15in-

putframes.Thisis mainly dueto thelarge compleity of theinput
spaceand the excessve amountof network parametergpresent.
Sincewe useonly roughly 1.5M framesto do our training, the
detectorgdo not have enoughfreedomto benefitfrom a 21 input
framewindow (i.e. 672 dimensions)while suchtaskis compu-
tationally very demanding.lt is also possiblethat not all phone
detectorgequirethe sameinputdimension.

[phn  fr [ phn fr [ phn fr [ phn fr | phn fr |
b 9 z 9 r 9 uh 9 sh 9
d 9 f 11 er 13| uw 11 | 13
g 9 th 11 w 17 ey 21 ah 11
p 9 \Y 13| vy 15| aw 19| s 9
t 9| dh 11| iy 13| ay 17| ng 15
k 11| h 15| ih 17| oy 21| aa 9
jh 13| m 13| eh 13| ow 21| dx 11
ch 11 n 15| ae 11| h# 9

Table 3. Input-frameselectiorfor phonedetectorsisingMSE.

To investigatethis hypothesiswe selectedor eachphoneits
detectowhosegiveninput-layersizedeliversthe lowestMSE on
the cross-alidation set (Table 3). In fact, for caseswheretwo
or more detectorsof the samephonehave very similar MSE'’s,
we selectthat of lesscomputationakffort, i.e. lessparameters.
The performanceof the resultingsystemis evaluatedin Table 4.
Interestinglytheresultis very closeto thatusing21 framesacross
all phonedetectorswhile trainingtimesaredramaticallyreduced,
i.e. 40.5%o0f lessparametersThis alsoverifiesthefactthatsome

phoneclassif.
77.6%

[ input-layer
[ asin Table3

wordrecog. # parameters|
72.3% 1,952,875 |

Table 4. Customisednput-layersizefor phonedetectors.

groupsof phonescanstill achieve high classdiscriminationwith
amuchreducednput dimensionwithout of courseary decrease
in performance.For example,plosivesonly require9 frames,in
contrastio diphthongghatrequire21 frames.A lot of this canbe
explainedin theframedurationof thesesounds.

3.3. Incorporating Broad-class Posteriors

In section3.2we have shavn, how extendingthefield of view pre-
sentedto a phonedetectoy by simply shaving it moreandmore
input-featurrames creategracticalproblems.To overcomethis
limitation, we introducethe broad-clasposteriors.To determine



theappropriatébroad-clasgontext, we experimentedvith anum-
berof window sizesasshavnin Table5. Theleft columnspecifies
the broad-clasgontext visible to the combiningposteriorMLP’s.
As more broad-classontext is provided, performancamproves
for both the acousticmodelandword recognitionwhile network
parametersreslightly increasedThe bestresultis obtainedwith
thebroad-clasposteriorscanninghroughacontext of 35frames,
althoughsimply providing 5 framesgivesanequallyattractve per
formance A comparisorperformancdor thebestsystenthatuses
the broad-classnformationandthe systemwithout thatinforma-
tion, shavs animprovementof 10.4%in phoneclassificatiorand
8.3%in word recognition. Furthermore petwork parametersare
only increasedy 13.3%.

| broadcontext phoneclassif. wordrecog. #parameterq

None 75.9% 71.1% 1,408,875
5frames 82.8% 74.6% 1,444,950
9 frames 83.1% 75.0% 1,497,600
15frames 83.5% 75.7% 1,596,660
19frames 83.5% 76.2% 1,803,750
23frames 83.7% 76.5% 1,949,220
27 frames 83.9% 76.7% 2,153,775
31frames 84.0% 76.9% 2,348,385
35frames 84.1% 77.0% 2,564,835

Table 5. Broad-clasgosteriorgproviding contextual information.

4. COMPARISON WITH PUBLISHED RESULTS

We compareour bestresultwith the bestresultsin the literature.
Mostmethodsausedifferenttechniqueso capturerelevantacoustic
contextualinformation.Robinson[11] usesafully connectedN
with recurrentioopsto keepinformationaboutpastinputsfor an
amountof time thatis notfixeda priori, but ratherdepend®n its
weightsand on the input data. They achieve this at the expense
of beingcomputationallyery expensveto train. Chengaharayan

| Author Method Acc.  Classif. |
This Paper ModularNN 75.8% 84.1%
Chengall5] CD MCE HMM — 83.5%
Chengall5] Cl MCE HMM — 72.4%
Robinson11] RecurrenfNN 73.8% —
Ming [9] BayesianTriphone 74.4% —

Table 6. Comparisorresultswith othersin theliterature.

explainsin [5] how an HMM/Gaussianmixturessystemcan be
trained using minimum classificationerror (MCE) criterion for
both context-independen{Cl) and context-dependen{CD) mod-
elling. Our resultcomparedavourably with the CD modelling.
Thisis a goodresultbecauséiMM/NN hybrid methodshave his-
torically comparedwell with standardCl systems put struggled
for parity with CD systems.

5. CONCLUSION

We have provided someillustration of the effectivenessof amod-
ulardecompositiorio acoustianodelling,by phone.In particular
we have shavn how differentinput obsenationvectordimensions

for differentphonesesultin a dramaticreductionof networkpa-
rameterswithout arny decreasén performance.Furthermorewe
have showvn how co-articulatoryeffectscanbe effective modelled
usingbroad-clasposteriorslt seemghatournotionof thebroad-
classposteriords alsoa usefulonefor capturingcontectual infor-
mationfor the phones.We achieved animprovementof 8.3%in
word recognition,without the needfor excessve training of pa-
rameters. In fact, our result (84.1%) comparesavourably with
the bestpublishedmethod(83.5%)that usesa context-dependent
Gaussiamixture systemwith thousandf modelsto represent
eachphonein adifferentleft-right context [5].
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