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ABSTRACT

Traditionally, neuralnetworkssuchasmulti-layerperceptronshan-
dleacousticcontext by increasingthedimensionalityof theobser-
vationvector, in orderto includeinformationof theneighbouring
acousticvectors,oneithersideof thecurrentframe.As aresultthe
monolithicnetworkis trainedon a high multi-dimensionalspace.
The trendis to usethe samefixed-sizeobservationvectoracross
the one network that estimatesthe posteriorprobabilitiesfor all
phones,simultaneously. We proposea decompositionof thenet-
work into modularcomponents,whereeachcomponentestimates
a phoneposterior. The sizeof the observationvectorwe use,is
not fixedacrossthemodularisednetworks,but ratheraccountsfor
the phonethat eachnetwork is trainedto classify. For eachob-
servationvector, we estimatevery large acousticcontext through
broad-classposteriors.Theuseof thebroad-classposteriorsalong
with thephoneposteriorsgreatlyenhanceacousticmodelling.We
reportsignificantimprovementsin phoneclassificationandword
recognitionon theTIMIT corpus.Our resultsarealsobetterthan
thebestcontext-dependentsystemin theliterature.

1. INTRODUCTION

1.1. Problem Statement

Neuralnetworkssuchasmulti-layerperceptrons(MLPs)offer great
potentialfor acousticmodellingwhencoupledwith onestateper
phoneHMM. Traditionally, neuralnetworkshandleacousticcon-
text by increasingthedimensionalityof theobservationvector, in
orderto includeinformationof theneighbouringacousticvectors,
on eithersideof thecurrentframe; thusmakingtheminimum of
assumptionsaboutthespeechgenerationprocess.As a result the
monolithicnetworkis trainedon a high multi-dimensionalspace.
When longer sequencesof input featuresare employed,the di-
mensionsof theinputspaceincreaseandthedatasparsityproblem
worsens.

Typically, a singlemonolithicMLP with thousandsof hidden
nodesis usedto simultaneouslymodel all phones. Minimising
outputerrorby severalcriteriawill leadto theMLP outputsyield-
ing phoneprobabilities,posterioron the input space,under the
assumptionsthat the MLP containssufficient hiddennodes,un-
limited training datais availableand training doesnot get stuck
in a local minimum. In practice,unlimited speechtraining data
is not available,so training is stoppedearlyusinga minimumer-
ror criterionon a separatedataset. Thereasoningis that training
mustbepreventedfrom fitting too closelyto a finite trainingdata

set. Applying this procedureto a networkwith multiple outputs
is a necessaryawkwardcompromise.Thebeststoppingpoint for
all outputscombinedcan be computed,but it is not necessarily
ideal for any particularphone.Recentwork we publishedin [1]
supportsthisview.

Theaboveobservationshavemotivatedwork ondecomposing
the acousticmodelling task into several sub-tasks.Hierarchical
Mixturesof Experts [7] andtheACID/HNN architecture[6] have
beenusedto decomposeacousticmodellingin a data-drivenfash-
ion. However, thedecompositionalgorithmsfor both thesearchi-
tecturesdependon a uniform observation featurevectorsize for
all acousticunits. We decomposethenetworkinto modularcom-
ponents,whereeachcomponentestimatesa phoneposterior. We
usea variableobservationvectorsize that dependson the phone
thateachmodularisednetworkis trainedto classify. Moreover, for
eachobservationvector, we estimatevery large acousticcontext
throughbroad-classposteriors.

2. A MODULAR DECOMPOSITION METHOD

2.1. Acoustic Decomposition by Phone

A monolithic MLP with multiple outputssuggeststhe possibil-
ity of decomposingthemappingsit represents,to mappingsrep-
resentedby individual modulesand learnthesepartial mappings
separately. Thesimplestprincipleof suchdecompositionis to as-
signa“part” of thenetworkto asub-task.Wechoseto relatethese
“parts” to eachof the39phoneclassesin theclassificationtaskand
furtherassigna detector MLP with a singleoutputnodeto each
phone. The term ”detector” is adoptedas eachMLP is trained
with a target of 1 for its phoneandwith a target of 0 for the re-
mainingphones.For any given phonedetector, trainingattempts
to maximisethe responsefor the target phonewhile minimising
theresponsefor theremainingcompetingphones.

Using this decompositionmethod,we can explicitly match
network resourcesand training to the needsof eachphone,de-
pendingon their complexity, i.e. hiddennodes,learningregime,
input featuredimension,input featurespaceandearlystoppingof
training. This is demonstratedin previous work we publishedin
[1] [2] [3]. As aresultof thisdecomposition,networkoptimisation
is performedboth in training times(e.g. exploreparallel training
naturallyaswell asreductionin parametersemployed)andin per-
formanceon bothacousticandwordrecognitionlevel.

A possibleargumentagainstmodulardecompositionbyphone,
is thatit repeatsthemodellingof boundariesbetweenphones.This



is true sincemodularnetworkscontainin total, a relatively large
numberof parameters.However, theseparametersarenot extra
degreesof freedomthatmightbeunder-determinedby thetraining
data.They representmerelytherepetitionof thesamemodelling.
The extra time takento train redundantparametersis more than
offsetby thefact thattrainingmodularnetworkscanbedistributed
acrossa large numberof machines.We literally usewhole labs
full of PC’s to do our training,andthis provesaneffective experi-
mentalapproach.

2.2. Broad-class Posteriors

It is well known thattheexpressionof a phoneis modifiedby the
context in which it is expressed.Co-articulationmayberesponsi-
ble for mostof thisvariability. It follows thatit shouldbepossible
to estimateaphoneposteriorconditionednot juston theactualex-
pressionof thephone,but onits observedacousticcontext aswell.
Unfortunately, extendingthefield of view presentedto aphonede-
tectoraswe demonstratein section3.2by simplyshowing it more
andmoreinput-featureframescreatespracticalproblems.

We proposeanalternative approachthatprovidestheclassifi-
cationtaskwith a moreconciseindicationof left andright con-
text, suchasbroad-class posterior probabilities.The39 standard
phonesweredivided into 7 broad-classesof plosives(PL), frica-
tives (FR), nasals(NA), semi-vowels (SV), vowels (VO), diph-
thongs(DP) andclosures(CL).

In particular, thereare two waysof calculatingthesebroad-
classposteriors:by creatingaseparatemodelfor eachbroad-class,
or by simply summingthe posteriorphoneprobabilitiesof the
existing phonedetectorsbelongingto eachbroad-class.Using a
featurewindow of 9 framesand125hiddennodes,we calculated
posteriorprobabilitiesfor thesemethodson the cross-validation
setto selectthatwith thehighestclassification.Simply summing
theposteriorsof thephonedetectorsdeliversthe highestclassifi-
cation. Table1 shows the phoneclassificationconfusionmatrix
for this method,which resultsfor the7204phonesegmentsin the
evaluationset.Vertical linesrepresenttheresponseof eachbroad-

PL FR NA SV V DP CL

PL 872 1 0 0 3 1 1
FR 4 1030 4 0 2 0 5
NA 1 3 625 4 4 1 2
SV 0 5 2 951 13 11 3
V 5 5 7 26 1716 7 0
DP 0 0 1 2 5 331 1
CL 0 3 2 3 2 1 1540

Table 1. Broad-classphoneclassificationconfusionmatrix.

classand the diagonalline the responseof the broad-classeson
their own phones. Despitesomeexpectedconfusions(e.g. plo-
sives with fricatives, vowels with semi-vowels and diphthongs),
thebroad-classposteriorsprovide averygoodestimationof confi-
dencefor classdiscriminationsincethey deliver 98.1%segments
labelledcorrectly.

2.3. The Modular/Posterior Broad-class Architecture

Fig. 1 presentsthemodular/posteriorbroad-classarchitecture.The
first layer usesthe phonedetectors- eachestimatingprobabil-
ities for their own class-, and the broad-classinformation de-

scribedin section2.2. The secondlayer, namely the posterior
MLP layer, serves for a co-operative ensemblecombinationof
posteriors.EachposteriorMLP is trainedin thesamefashionas
thatof phonedetectors.Its job is tocombinetheoutputsof thefirst
layeranddeliveranestimateof posteriorprobabilityfor its phone.
In principle it will be posterioron theoriginal observationof the
raw speech.In reality, it will beposteriorin somecomplex wayon
theunion of all featurevectorsemployedby the phonedetectors
andbroad-classes.Trainingof theposteriorMLP is donewith the
primarydetectorsheldfixed. As mostof thework is doneby the
primarydetectors,posteriorMLP’s aresimpleandquick to train.
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Fig. 1. Modularnetworkarchitectureusingbroad-classposteriors.

For theclassificationof a given frame,two sourcesof infor-
mationareprovided to the combiningphoneposteriorMLP: (1)
theoutputprobabilityof thephonedetector, posteriorona9 frame
window centredon the currentframe,and(2) the outputproba-
bilities of thebroad-classdetectors,posteriorboth on thecurrent
frameand on the adjacentcontexts on either sideof the current
frame(computedon a 9 framewindow). This way, we cande-
terminethebroad-classcontext in which thecurrentphoneis ex-
pressed,thus literally taking the role of context-dependentmod-
elling in amuchsimplifiedfashion.

3. EXPERIMENTAL EVALUATION

We selectedthecontinuousspeaker-independent TIMIT corpusto
evaluateour architecture.It allows us to comparephoneclassifi-
cationandrecognitionresultswith many otherresultsin theliter-
ature.Unfortunately, thereis no directway comparingworderror
rateswith others.We performedtwo setsof experiments:

1. Employanumberof uniformandsteadilyincreasinginput-
featureframesto the phonedetectors. Furthermore,in-
vestigatehow thesedifferentinput dimensionscanbecus-
tomisedto benefitdifferentphonesbelongingto particular
groupsounds.

2. Employ the broad-classposteriorto the systemandshow



theeffectivenessof suchinformationtowardstheimprove-
mentsobtainedin acousticandword recognitionlevel.

3.1. System Setup

Weemploytherecommendedtrainingset(3696sentences)to train
ourmodels,while thetest(1152sentences)andthecore(192sen-
tences)setsareusedfor cross-validationandevaluationpurposes
respectively. Ourfront-endextractslog-energy alongwith 15Mel-
Frequency CepstralCoefficientsfrom a 20mswindow at a 10ms
framerate.Additionally, we adddeltainformationcomputedover
a window of 5 frames,to give a featurevectorcontaining32 co-
efficients. For comparisonpurposeswith other researchers,we
collapsedtheTIMIT 61phonelabelsinto theremaining39 labels,
accordingto a CMU/MIT mappingtakenfrom [8]. Training of
the completemodulararchitecture(seeFig. 1) took placeon 39
PentiumII-450MHz machinesandwascompletedin 7 hours.

Weevaluatetheperformanceof ourmethodsusingphoneclas-
sificationandword recognitionrates.Althoughnot reportedvery
often,phoneclassificationcanprovideagoodmeasureof thequal-
ity of acousticmodelling,sinceit doesnot requirea grammaror
any othersyntacticalrules. Phoneclassificationis performedby
allowing phonemodelsto competeto labeleachphonesegment.
To obtainword error rates,thebestword stringfor eachsentence
is obtainedfrom atime-synchronousViterbi beamsearchdecoder.
A bi-grammodelwasestimatedby scanningthrougha very large
amountof sentences(roughly90 million words) from a text cor-
pus,namelytheBritish NationalCorpus(BNC), with afloor value
toprotectinfrequenttransitionsfrom becomingzero.A pronuncia-
tion modelfor theTIMIT lexiconcontainingatotalof 6224words
wasconstructedby thesimpleexpedientof allowing all plausible
alternative pronunciationsto occur.

3.2. Exploring Detectors’ Input Layer Size

It is commonpracticefor traditionalmonolithicMLP’s to include
a fixed-sizeinput representation.Typically, a constantnumberof
9 adjacentframescentredonthecurrentmomentin time is usedto
allow modellingof thetime developmentof thephones.However,
asthenumberof input framesgetlarger(i.e. thespaceweattempt
to model grows), the task for training a monolithic networkbe-
comesextremelyhard. On theotherhand,it canbe possiblethat
acousticmodelling improves as more adjacentinput framesare
employedsincewe begin to model the target phonein its wider
acousticcontext. We identify two sourcestowardsthis improve-
ment:

1. A wider view of the target phonecan be obtained,even
whentheinput framesto thenetworkaremis-alignedwith
theboundariesof theobservedphone;

2. the network is able to “see” additionalinformationabout
the adjacentphoneson eithersideof the target phone,by
taking their expressioninto accountwhen estimatingthe
probabilityfor thecurrentphone.

For eachphone,wetrainedasetof 7 detectors,using9,11,13,
15, 17, 19 and21 input frames.All phonedetectorscarrya fixed
numberof 125hiddennodes.Earlierworkwepublished[1] shows
how increasingthehiddennodesto adetectorMLP addsvery little
to therecognitiontask.Table2 summarisestheresults,alongwith
thenetworkparametersconsumedby eachconfiguration.

The bestresult is obtainedby all phonedetectorsusing the
maximum21 input frames.It is alsoevidentthatthereis aninitial

input-layer phoneclassif. word recog. # parameters

9 frames 75.9% 71.1% 1,408,875
11 frames 76.3% 71.5% 1,720,875
13 frames 76.8% 71.8% 2,032,875
15 frames 77.4% 72.2% 2,344,875
17 frames 77.6% 72.3% 2,656,875
19 frames 77.7% 72.3% 2,968,875
21 frames 77.8% 72.4% 3,280,875

Table 2. Phonedetectorswith variableinput-layersize.

dramaticimprovementin performanceas more input framesare
employed,while performancegraduallyconvergesat about15 in-
put frames.This is mainlydueto thelargecomplexity of theinput
spaceand the excessive amountof networkparameterspresent.
Sincewe useonly roughly 1.5M framesto do our training, the
detectorsdo not have enoughfreedomto benefitfrom a 21 input
framewindow (i.e. 672 dimensions),while suchtaskis compu-
tationally very demanding.It is also possiblethat not all phone
detectorsrequirethesameinputdimension.

phn fr phn fr phn fr phn fr phn fr

b 9 z 9 r 9 uh 9 sh 9
d 9 f 11 er 13 uw 11 l 13
g 9 th 11 w 17 ey 21 ah 11
p 9 v 13 y 15 aw 19 s 9
t 9 dh 11 iy 13 ay 17 ng 15
k 11 h 15 ih 17 oy 21 aa 9
jh 13 m 13 eh 13 ow 21 dx 11
ch 11 n 15 ae 11 h# 9

Table 3. Input-frameselectionfor phonedetectorsusingMSE.

To investigatethis hypothesis,we selectedfor eachphoneits
detectorwhosegiven input-layersizedeliversthelowestMSE on
the cross-validationset (Table 3). In fact, for caseswheretwo
or more detectorsof the samephonehave very similar MSE’s,
we selectthat of lesscomputationaleffort, i.e. lessparameters.
The performanceof the resultingsystemis evaluatedin Table4.
Interestingly, theresultis verycloseto thatusing21framesacross
all phonedetectors,while trainingtimesaredramaticallyreduced,
i.e. 40.5%of lessparameters.This alsoverifiesthefact thatsome

input-layer phoneclassif. word recog. # parameters

asin Table3 77.6% 72.3% 1,952,875

Table 4. Customisedinput-layersizefor phonedetectors.

groupsof phonescanstill achieve high classdiscriminationwith
a muchreducedinput dimension,without of course,any decrease
in performance.For example,plosivesonly require9 frames,in
contrastto diphthongsthatrequire21 frames.A lot of this canbe
explainedin theframedurationof thesesounds.

3.3. Incorporating Broad-class Posteriors

In section3.2wehaveshown,how extendingthefield of view pre-
sentedto a phonedetector, by simply showing it moreandmore
input-featureframes,createspracticalproblems.To overcomethis
limitation, we introducethebroad-classposteriors.To determine



theappropriatebroad-classcontext, we experimentedwith anum-
berof window sizes,asshownin Table5. Theleft columnspecifies
thebroad-classcontext visible to thecombiningposteriorMLP’s.
As morebroad-classcontext is provided, performanceimproves
for both the acousticmodelandword recognitionwhile network
parametersareslightly increased.Thebestresultis obtainedwith
thebroad-classposteriorsscanningthroughacontext of 35frames,
althoughsimplyproviding 5 framesgivesanequallyattractiveper-
formance.A comparisonperformancefor thebestsystemthatuses
thebroad-classinformationandthesystemwithout that informa-
tion, shows an improvementof 10.4%in phoneclassificationand
8.3%in word recognition. Furthermore,networkparametersare
only increasedby 13.3%.

broadcontext phoneclassif. word recog. #parameters

None 75.9% 71.1% 1,408,875
5 frames 82.8% 74.6% 1,444,950
9 frames 83.1% 75.0% 1,497,600
15 frames 83.5% 75.7% 1,596,660
19 frames 83.5% 76.2% 1,803,750
23 frames 83.7% 76.5% 1,949,220
27 frames 83.9% 76.7% 2,153,775
31 frames 84.0% 76.9% 2,348,385
35 frames 84.1% 77.0% 2,564,835

Table 5. Broad-classposteriorsproviding contextual information.

4. COMPARISON WITH PUBLISHED RESULTS

We compareour bestresultwith thebestresultsin the literature.
Mostmethodsusedifferenttechniquesto capturerelevantacoustic
contextual information.Robinson[11] usesafully connectedNN
with recurrentloopsto keepinformationaboutpastinputsfor an
amountof time that is not fixeda priori, but ratherdependson its
weightsandon the input data. They achieve this at the expense
of beingcomputationallyveryexpensiveto train. Chengalvarayan

Author Method Acc. Classif.

This Paper ModularNN 75.8% 84.1%
Chengal.[5] CD MCE HMM — 83.5%
Chengal.[5] CI MCE HMM — 72.4%
Robinson[11] RecurrentNN 73.8% —
Ming [9] BayesianTriphone 74.4% —

Table 6. Comparisonresultswith othersin theliterature.

explains in [5] how an HMM/Gaussianmixturessystemcanbe
trained using minimum classificationerror (MCE) criterion for
both context-independent(CI) andcontext-dependent(CD) mod-
elling. Our result comparesfavourably with the CD modelling.
This is a goodresultbecauseHMM/NN hybrid methodshave his-
torically comparedwell with standardCI systems,but struggled
for paritywith CD systems.

5. CONCLUSION

We have providedsomeillustrationof theeffectivenessof a mod-
ulardecompositionto acousticmodelling,by phone.In particular,
we haveshown how differentinputobservationvectordimensions

for differentphonesresultin a dramaticreductionof networkpa-
rameters,without any decreasein performance.Furthermore,we
have shown how co-articulatoryeffectscanbeeffective modelled
usingbroad-classposteriors.It seemsthatournotionof thebroad-
classposteriorsis alsoa usefulonefor capturingcontextual infor-
mationfor thephones.We achievedan improvementof 8.3%in
word recognition,without the needfor excessive training of pa-
rameters. In fact, our result (84.1%)comparesfavourably with
thebestpublishedmethod(83.5%)thatusesa context-dependent
Gaussianmixture systemwith thousandsof modelsto represent
eachphonein adifferentleft-right context [5].
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