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ABSTRACT

Therehasbeenconsiderableecentinterestin applyingmaxi-
mal invariant(MI) hypothesigestingasan alternatve to the gen-
eralizedlikelihoodratio (GLR) test. This interesthasbeenmoti-
vatedby severalattractize theoreticapbropertief Ml testsinclud-
ing: exactrohustnesgo variation of nuisanceparametersfinite-
samplemin-maxoptimality (in somecases)anddistributionalro-
bustnessHowever, in thedeephidetargetdetectiorproblem there
areregimesfor which eitherof the Ml andthe GLR testscanout-
performtheother We will discussconditionsunderwhich the Ml
testscan be expectedto outperformthe GLR testsin the context
of aradarimagingandtamgetdetectionapplication. We will also
shaw thattherelative advantageof the Ml testsis robustto bound-
ary estimatiorerrors.

1. INTRODUCTION

In [1], adaptve detectionalgorithmswere developedfor imaging
radartargetsin structured clutter by exploiting both the general-
izedlikelihoodratio (GLR) principleandtheinvarianceprinciple.
In automatidargetrecognitionjt isimportantto beableto reliably
detector classifyatargetin amannemwhichis robustto targetand
clutter variability yet maintainsthe highestpossiblediscrimina-
tion capability The GLR andinvarianceprinciplesareworthwhile
approachesincethey oftenyield good constantfalsealarmrate
(CFAR) tests.

A commonassumptiorin homogeneoubut uncertainclutter
scenariodgs that the tamget is of knovn form but unknavn am-
plitude in Gaussiamoisewhosecovariancematrix is totally un-
known or unstructured. This assumptioninducesparameteiun-
certaintyfor which the generalmultivariate analysisof variance
(GMANOVA) model[2] appliesand optimal and suboptimalde-
tectionalgorithmscanbe easily derived usingthe GLR principle
[3]. However, when somestructureon the covariancematrix is
known apriori, improvementsver this GLR testarepossible.For
adaptve arrays,BoseandSteinhard{4] proposedninvariantde-
tectorwhich outperformsthe Kelly’s test[3] whenthe clutter co-
variancematrix is assumedo have a priori known block diagonal
structure.In [1], theform of the GLR for block structuredcovari-
anceis derived. Thenthe invariantapproachconsideredn [4] is
developedin the context of imagingradarfor deep-hideargets.

In this paper the relative performanceof the GLR and max-
imal invariant(MI) testsderived in [1] are more closelyinvesti-
gated. Specifically we shav via simulationand experimentthat
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thereare regimesof operationwhich separatehe GLR and Mi
testssuchas: tamget-to-clutterpower ratio, numberof snapshots
available,andprescribedalsealarmlevel. We alsoshav robust-
nesswith respecto boundaryestimationerrorsandwe determine
minimum detectabléargetamplitudefor a realisticSAR imaging
application.

2. STRUCTURED GLR AND MI TESTS

Assumethat the comple image has beenscannedor reshaped
into anm x 1 columnvectorz. If multiple snapshotgchips)
z,,...,z, of theterrainareavailable,they canbe concatenated
into a spatio-temporaiatrix X with columns{z,};-,. Let s be
the reshapedarget vectorto be detectedn a clutter background
N havingi.i.d. columnswith zeromean.Thenwe have thesimple
imagemodel

X:agl_)H—l-N

wherea is anunknavn targetamplitudeandb” accountsor the
articulationof the tamget vector into the snapshosequencee.g.
possiblechip locationsof the target. In spatially-scannedadar
imagesthevectorb™ would beequalto [1,0, ... ,0] if thetarget
presencas to be detectedn the first imagechip (1st column of
X). In this case,this columnwill be called primary datawhile
therestof X will becalledsecondandata. Also we assumehat
N is a complex multivariateGaussiaimmatrix with i.i.d. columns:
vec{N} ~ CN(0,R @ I.) whereQ isanmn x 1 zerovector I,,
isann x n identity matrix, and) is theKronecler product.

Underanassumptiorthatthetargetstraddlesheknown bound-
ary of two independentegions,the spatialcomponenhasclutter
covariancematrix R which decompose#to a block diagonalma-
trix. Several casesdenotedn decreasingrderof uncertaintyas
Casedl, 2 and3, of block diagonalcovariancematricesareexam-
ined:

R 0]

O Rp

e Casel: R4 >0,Rg >0

e Case2: R4 > 0, Rp = o’I wherea? > 0
e Case3: R4 >0,Rg =1

wherethe subscriptglenotethetwo differentregionsA andB. For
real valued obsenations, the GLR methodis shavn to have ex-
plicit form for eachof Casesl, 2 and 3, involving the rootsof a
4thorderalgebraicequation For comple valuedobsenations 4th
orderalgebraicequationdor realandimaginarypartsof thetarget



amplitudea mustbe solved numerically The maximalinvariant
statisticsfor Casesl and2 were previously derived by Boseand
Steinhardendinvarianttestswereproposedasecdn thesestatis-
ticsin [4]. WetreatCasesl-3in a unifiedframevork andpropose
alternatve Ml testswhicharebetteradaptedo thedeep-hidearget
application.

GLRteststatisticsarelistedin Tablel wherethemeasurement

matrix is partitionedas

X — Xa _ | za X a2
XpB Tp, XpB2

andeachcolumn correspondgo pixel valuesin a differentchip.
Theknown targetsignatures s = [s’} §§]H, and

p(a,X4) = (T4 — a§A)H(XA2X§2)71(£A1 —asy)
q(a,Xp) = tr{(Xp —aspe; )" (X5 —aspe; )}-
Herez ,,(ma x 1) andz g, (mp x 1) denotepixelsin the chip
whichis beingtestedor containingthetamgetwherem 4 + mp =
m. TheMlI testsarelistedin Table2 where
- tr{XEX
ga=1 +£§1(XA2X,IZQ) 1£A1 , U2 = %

gB = 1+ £g1 (XBZng)_1§B1 , V3 =mn.

The completederivationsof theteststatisticscanbefoundin [5].

| Ra | Rp | LOgGLRZ%lnA:maXa{-} |

1+p(0,X4) 1+2(0,X5)
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2 14p(0.X4) (0.Xp)
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Table 1. GLR testsfor Casel, 2 and3. (Thenotation?’” denotes
‘unknownn’ quantityin themodel)
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Table 2. Ml testsfor Casel, 2 and3

3. NUMERICAL COMPARISONS

To analyzethe performancef the GLR andMI testsrecever op-

eratingcharacteristifROC) curves are generatecand compared.
In Fig. 1, thethreeGLR testsandthe threeMI testsmatchedio

oneof thethreecasesarecompared Also shavn areROC curves
for structuredKelly’s testmatchedo Casel, andBoseandStein-
hardtstestmatchedo Case2. For eachcasetwo testsstandoutas
significantlybetterthantheothersix: the GLR andMI testswhich

arematchedo theunderlyingscenario.
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Fig. 1. ROCcurwesfor (a)Casel (ma = 60, mp = 40,n = 61),
and(b) Case2 (m4 = 50, mp = 50,n = 61).

Of particularinterestarethe curve crossingsn low Pr4 re-
gionsbetweenthe GLR andthe Ml tests,andthe relative advan-
tagesf thosetestsaremorecloselyinvestigatedn Fig. 2and3. In
(a) of bothfigures,we increasech while fixing SNR.Notethatthe
GLR andMI testshave ROCswhicharevirtually indistinguishable
for largen. In (b), however, by increasingSNRwhile fixing n, the
Pr 4 positionsof the crossingof the ROCsfor the GLR and Ml
testsdecreasedn particularif onefixesalevel of falsealarm,say
Pr4 = 0.1, thennotefrom Fig. 2 (b) thatthe GLR testdominates
the MI testfor SNR = 19dB while the reverseis true for SNR =
7dB.

SinceboththestructuredsLR andMI testscanonly beimple-
mentedwith theknown boundaryseparatingwo differentregions,
sensitvity of the teststo boundaryestimationerrorsis illustrated
in Fig. 4. ROC curvesobtainedwith (a) the biasedooundaryand
(b) the estimatedoundaryarecomparedvith thoseusingthetrue
boundary As canbe seenthe overall performancef eachtestis
deterioratedvith falseinformation,but the relative advantagef
the GLR andMI testsstill canbeobsered.

Next, we consideran applicationto real SAR imageryin Fig.
5. The imageshavn is a rural scenenear RedstoneArsenalat



Huntsville,Alabamareproducedrom thedatacollectedusingthe
SandiaNationalLaboratoriesTwin Otter SAR sensoipayloadop-
eratingat X band(centerfrequeng = 9.6 GHz, bandwidth = 590
MHz). This clutterimageconsistsof a forestcanoy ontop and
a field on bottom, separatedy a coarseboundary The bound-
ary washand-atractedanda 9 x 7 SLICY targetextractedfrom
Fig. 6 (e) wasinsertedadditively with the centerat column 305
sothatit straddlegsheboundary Theimagesn Fig. 6 correspond
to the sametargetbut viewed at differentposeanglesof azimuth.
Thedatafrom whichtheseémagesarereproducedvasdovnloaded
fromthe MSTAR SAR databasatthe Centerfor ImagingScience
(www.cis.jhu.edu).Fromthe realignedimagein Fig. 7, we took
subimagegchips)alongtheboundaryby centeringa 20 x 20 win-
dow attheboundaryandslidingit overtheimagefrom left to right.
Eachof thesesubimagess thenconcatenatenhto a columnvector
of sizem = 400 wherema4 = 200 andmp = 200. Sincewe
needatleast200 secondarchipsto implementthe structuredde-
tectorsclutteralonepixelsabore andbelon those20 x 20 subim-
agestakenalongthe boundarywereusedto generateenoughsec-
ondarydatafor region A andB, respectiely. Eachof the subim-
agesalong the boundarywas testedas a primary chip, and the
teststatisticaderivedunderCasel werecalculatecandmaximized
over eachpossiblelocationin the subimage. After normalizing
the known targetsignature we obtainedthe minimum magnitude
of target amplituderequiredfor eachtestto detectthe target at
the correctlocation. Theresultingamplitudeis the minimum de-
tectablethresholdor eachof thedetectorsindthesethresholdsire
shavn in Table3 for differentnumberof secondarghips(n — 1).
As canbeseenwith alargenumberof chips(n — 1 = 250), both
theGLR andMI testsperformaswell asthestructuredKelly’stest.
Ontheotherhand,with alimited numberof chips(n — 1 = 200),
MI test1 successfullydetectsthe target down to a significantly
lowerthresholdthanfor GLR 1 andstructuredKelly’s detectors.

a
Test (n—1:250)|||(n—1:200)
MI testl 1.454 x 1072 | 0.609 x 10!
GLR1 1462 x 102 | 1.042 x 10"
StructuredKelly || 1.407 x 1072 | 1.049 x 107!

Table 3. Minimum detectableamplitudesor detectionof thetar
getatthecorrectlocation.

As afinal experimentwe maximizedtheteststatisticsoverthe
differenttargetposesn Fig. 6 aswell asoverall possibldocations
alongthe boundary Again the normalizedsignaturefrom Fig. 6
(e) wasinsertedwith |a| = 0.015, and250 secondarychipswere
obtainedfrom the surroundingclutter. Testvaluesfor the 3 detec-
torsunderCasel areobtainedusing9 differenttargetsignatures.
For eachtestthe peakvaluesfor 9 targetsignaturesareplottedin
Fig. 8. Notethatall thetestssuccessfullypicked the signatureat
thetrue poseandlocationfor this targetamplitude.

4. CONCLUSION AND FUTURE RESEARCH

The deep-hidescenarioconsideredn this papercomplicateshe
designof optimaltargetdetectorsThisscenari@jivesriseto block
diagonalconstraintamposedby the clutter covariancestructure.
Both GLR and MI testscan be derived undertheseconstraints.
Numericalresultsindicate that neither GLR nor MI testsdomi-
natethe otherin termsof ROC performanceBoth detectorshave

comparablgerformancenvhenhigh estimatoraccuray is attain-
able,e.g. for a large numberof independentlutter sampleshut
otherwiseMI testis betterespeciallyin low Pr4. This property
is alsoshavn to be rohustto segmentationerrors. Therefore Ml

testnot only playsanimportantrole asan alternatve to the GLR
procedure put also hasthe desirablepropertyof reliable perfor

mancein low Pr 4 with a smallnumberof snapshotsTheresults
in this paperare generalizabldo other applicationswherethere
exists covariancestructure.

However, the known boundaryassumptiorof the structured
detectorsnaynotberealisticin radarimagingapplicationsThus,
tomoveto afully automatigorocedurdor combiningboundaryes-
timation andstructureddetectionjmagesegmentatiortechniques
suchasthe onein [6] should be investigated. In real applica-
tions, boundaryestimatiorwill bedifficult evenwith a strongtar
get straddlingthe boundary Therefore boundaryestimationand
its interactionwith detectionshouldalso be investigatednclud-
ing sensitvity of detectomperformanceéo boundaryestimationand
tradeofs betweersegmentatioranddetection.
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Fig. 2. Comparisonof GLR andMI testsfor Casel by (a) in-
creasingn with fixed SNR and (b) increasingSNR with fixed n
(ma = 60, mp = 40).



- Mitest2
- GLR2

0.4 06 0.8 1

() SNR= 10dB (b)n = 51

Fig. 3. Comparisonof GLR andMI testsfor Case2 by (a) in-
creasingn with fixed SNR and (b) increasingSNR with fixed n
(ma =50, mp = 50).
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Fig. 4. Comparisorof ROC curvesfor Casel usingtrue bound-
ariesand (a) biasedboundariesmoved dowvnward by one pixel;
(b) estimatedboundariesn eachsnapsho(True values: ma =
60, mp = 40,n = 61).
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Fig. 5. SAR clutterimagewith targetin Fig. 6 (e) straddlingthe
boundaryat column305.

(a)142° (b) 147° (c) 152°
(d) 157° (e)163° (f) 169°
- -
(g) 175° (h) 187° (i) 193°

Fig. 6. SLICY canonicakargetimages(54 x 54) atelevation 39°
anddifferentazimuthangles.imagein (e) is insertedn Fig. 5.

Fig. 7. Imagerealignedalong the extractedboundary SLICY
target is locatedat column 305 with |a| = 0.015. This tamget
is just above the minimal detectablehresholdfor the threetests
investigatedn Fig. 8.
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Fig. 8. Peakvaluesobtainedfor 9 differenttargetimagesn Fig. 6

(la| = 0.015,n — 1 = 250).



