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ABSTRACT

Therehasbeenconsiderablerecentinterestin applyingmaxi-
mal invariant(MI) hypothesistestingasanalternative to thegen-
eralizedlikelihoodratio (GLR) test. This interesthasbeenmoti-
vatedby severalattractivetheoreticalpropertiesof MI testsinclud-
ing: exact robustnessto variationof nuisanceparameters,finite-
samplemin-maxoptimality (in somecases),anddistributionalro-
bustness.However, in thedeephidetargetdetectionproblem,there
areregimesfor which eitherof theMI andtheGLR testscanout-
performtheother. We will discussconditionsunderwhich theMI
testscanbe expectedto outperformthe GLR testsin the context
of a radarimagingandtargetdetectionapplication.We will also
show thattherelativeadvantageof theMI testsis robustto bound-
aryestimationerrors.

1. INTRODUCTION

In [1], adaptive detectionalgorithmsweredevelopedfor imaging
radartargetsin structured clutter by exploiting both the general-
izedlikelihoodratio (GLR) principleandtheinvarianceprinciple.
In automatictargetrecognition,it is importantto beableto reliably
detector classifya targetin amannerwhich is robustto targetand
clutter variability yet maintainsthe highestpossiblediscrimina-
tion capability. TheGLR andinvarianceprinciplesareworthwhile
approachessincethey often yield goodconstantfalsealarmrate
(CFAR) tests.

A commonassumptionin homogeneousbut uncertainclutter
scenariosis that the target is of known form but unknown am-
plitude in Gaussiannoisewhosecovariancematrix is totally un-
known or unstructured. This assumptioninducesparameterun-
certaintyfor which the generalmultivariateanalysisof variance
(GMANOVA) model[2] appliesandoptimal andsuboptimalde-
tectionalgorithmscanbe easilyderived usingthe GLR principle
[3]. However, whensomestructureon the covariancematrix is
known apriori, improvementsover thisGLR testarepossible.For
adaptive arrays,BoseandSteinhardt[4] proposedaninvariantde-
tectorwhich outperformstheKelly’s test[3] whentheclutterco-
variancematrix is assumedto have a priori known block diagonal
structure.In [1], theform of theGLR for block structuredcovari-
anceis derived. Thenthe invariantapproachconsideredin [4] is
developedin thecontext of imagingradarfor deep-hidetargets.

In this paper, the relative performanceof the GLR andmax-
imal invariant (MI) testsderived in [1] aremoreclosely investi-
gated. Specifically, we show via simulationandexperimentthat
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thereare regimesof operationwhich separatethe GLR and MI
testssuchas: target-to-clutterpower ratio, numberof snapshots
available,andprescribedfalsealarmlevel. We alsoshow robust-
nesswith respectto boundaryestimationerrorsandwe determine
minimumdetectabletargetamplitudefor a realisticSAR imaging
application.

2. STRUCTURED GLR AND MI TESTS

Assumethat the complex image has beenscannedor reshaped
into an ����� column vector � . If multiple snapshots(chips)� �
	��
����	�� � of the terrainareavailable,they canbe concatenated
into a spatio-temporalmatrix � with columns ��� ��� ������ . Let � be
the reshapedtarget vector to be detectedin a clutter background�

having i.i.d. columnswith zeromean.Thenwehave thesimple
imagemodel ����� � ! "$# �
where � is anunknown targetamplitudeand ! " accountsfor the
articulationof the target vector into the snapshotsequence,e.g.
possiblechip locationsof the target. In spatially-scannedradar
images,thevector ! " would beequalto %&�'	)(*	
���
��	)(�+ if thetarget
presenceis to be detectedin the first imagechip (1st columnof� ). In this case,this column will be called primary datawhile
the restof � will becalledsecondarydata.Also we assumethat�

is a complex multivariateGaussianmatrix with i.i.d. columns:,.-
/ � � �103254768( 	)9�:<; �>= where( is an �@?A�A� zerovector, ; �
is an ?7�@? identitymatrix,and : is theKronecker product.

Underanassumptionthatthetargetstraddlestheknown bound-
ary of two independentregions,thespatialcomponenthasclutter
covariancematrix 9 whichdecomposesinto ablockdiagonalma-
trix. Several cases,denotedin decreasingorderof uncertaintyas
Cases1, 2 and3, of block diagonalcovariancematricesareexam-
ined:

9B�DC 9FE GG 9FHJIK Case1: 9LE$MN( , 9 H MN(K Case2: 9LE$MN( , 9 H �3OQP
; where OQPRMN(K Case3: 9 E MN( , 9FHS��;
wherethesubscriptsdenotethetwo differentregionsA andB. For
real valuedobservations, the GLR methodis shown to have ex-
plicit form for eachof Cases1, 2 and3, involving the rootsof a
4thorderalgebraicequation.Forcomplex valuedobservations,4th
orderalgebraicequationsfor realandimaginarypartsof thetarget



amplitude � mustbe solved numerically. The maximal invariant
statisticsfor Cases1 and2 werepreviously derived by Boseand
Steinhardtandinvarianttestswereproposedbasedon thesestatis-
tics in [4]. We treatCases1-3 in a unifiedframework andpropose
alternativeMI testswhicharebetteradaptedto thedeep-hidetarget
application.

GLR teststatisticsarelistedin Table1 wherethemeasurement
matrix is partitionedas

�B�DC �FE�THUI �DC � E �V�FE P� H �W�@H P I
andeachcolumncorrespondsto pixel valuesin a differentchip.
Theknown targetsignatureis � �YXZ� "E � "H [ " , and\ 6]�^	�� E = �_6]� E �a`b�c� E = "168� E P �@"E P =ed � 6]� E �a`7�>� E =f 6]�g	)�@H = �ih�jk�.68�@Hl`7�c� H - m � = "168�TH7`l�c� H - m � = �k�
Here � E ��6]�nEi�S� = and � H ��6]� H �$� = denotepixels in thechip
which is beingtestedfor containingthetargetwhere�nEo#n� H �� . TheMI testsarelistedin Table2 wheref E �_�p#$� "E �
68� E P �T"E P =ed � � E �q	 , P � h�jk�r� "H �@Hs��nHf H$�_�p#$� "H ��68�TH P �T"H P =ed � � H �t	 ,'u �3?a�
Thecompletederivationsof theteststatisticscanbefoundin [5].

9 E 9FH Log GLR :
��ovxw y �3zL{r|.}.�k~ �

? ? v�w�� �����'�x�
� �p������>��� } � � � �)� # vxw�� ���>�'�x�
� �p��������'� } � � � �)�
? O P ; v�w � �����'�x�
� �p������>��� } � �p��� � #��nHl~ vxw �
� �&�
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? ; v�w � �����'�x�
� � � ����>��� } � �p��� � # ��a� � �x�
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Table 1. GLR testsfor Case1, 2 and3. (Thenotation‘?’ denotes
‘unknown’ quantityin themodel)
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Table 2. MI testsfor Case1, 2 and3

3. NUMERICAL COMPARISONS

To analyzetheperformanceof theGLR andMI tests,receiver op-
eratingcharacteristic(ROC) curvesaregeneratedandcompared.
In Fig. 1, the threeGLR testsandthe threeMI testsmatchedto
oneof thethreecasesarecompared.Also shown areROC curves
for structuredKelly’s testmatchedto Case1, andBoseandStein-
hardt’s testmatchedto Case2. For eachcase,two testsstandoutas
significantlybetterthantheothersix: theGLR andMI testswhich
arematchedto theunderlyingscenario.
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Fig. 1. ROCcurvesfor (a)Case1 ( �TE7���'(*	)� H �� �(*	)?T�¡�.� ),
and(b) Case2 ( � E �¡¢r(*	)�nHb�¡¢'(*	�?����*� ).

Of particularinterestarethe curve crossingsin low £�¤ E re-
gionsbetweentheGLR andthe MI tests,andthe relative advan-
tagesof thosetestsaremorecloselyinvestigatedin Fig. 2 and3. In
(a)of bothfigures,weincreased? while fixing SNR.Notethatthe
GLR andMI testshaveROCswhicharevirtually indistinguishable
for large ? . In (b), however, by increasingSNRwhile fixing ? , the£�¤ E positionsof thecrossingsof theROCsfor theGLR andMI
testsdecreased.In particular, if onefixesalevel of falsealarm,say£�¤ E ��(.��� , thennotefrom Fig. 2 (b) thattheGLR testdominates
the MI test for SNR = 19dB while the reverseis true for SNR =
7dB.

SinceboththestructuredGLR andMI testscanonly beimple-
mentedwith theknown boundaryseparatingtwo differentregions,
sensitivity of the teststo boundaryestimationerrorsis illustrated
in Fig. 4. ROC curvesobtainedwith (a) thebiasedboundaryand
(b) theestimatedboundaryarecomparedwith thoseusingthetrue
boundary. As canbeseen,theoverall performanceof eachtestis
deterioratedwith falseinformation,but therelative advantagesof
theGLR andMI testsstill canbeobserved.

Next, we consideranapplicationto realSAR imageryin Fig.
5. The imageshown is a rural scenenearRedstoneArsenalat



Huntsville,Alabama,reproducedfrom thedatacollectedusingthe
SandiaNationalLaboratoriesTwin OtterSAR sensorpayloadop-
eratingat X band(centerfrequency = 9.6GHz,bandwidth = 590
MHz). This clutter imageconsistsof a forestcanopy on top and
a field on bottom,separatedby a coarseboundary. The bound-
ary washand-extractedanda ¥L�7¦ SLICY targetextractedfrom
Fig. 6 (e) wasinsertedadditively with the centerat column305
sothatit straddlestheboundary. Theimagesin Fig. 6 correspond
to thesametargetbut viewedat differentposeanglesof azimuth.
Thedatafrom whichtheseimagesarereproducedwasdownloaded
from theMSTAR SARdatabaseattheCenterfor ImagingScience
(www.cis.jhu.edu).From the realignedimagein Fig. 7, we took
subimages(chips)alongtheboundaryby centeringa §r(R�¨§'( win-
dow attheboundaryandslidingit overtheimagefrom left to right.
Eachof thesesubimagesis thenconcatenatedinto acolumnvector
of size ���B k(�( where �TE©�U§'('( and � H �Y§'('( . Sincewe
needat least200secondarychipsto implementthestructuredde-
tectors,clutter-alonepixelsaboveandbelow those§'(R�¨§'( subim-
agestakenalongtheboundarywereusedto generateenoughsec-
ondarydatafor region A andB, respectively. Eachof thesubim-
agesalong the boundarywas testedas a primary chip, and the
teststatisticsderivedunderCase1 werecalculatedandmaximized
over eachpossiblelocation in the subimage. After normalizing
theknown targetsignature,we obtainedtheminimummagnitude
of target amplituderequiredfor eachtest to detectthe target at
thecorrectlocation. Theresultingamplitudeis theminimumde-
tectablethresholdfor eachof thedetectorsandthesethresholdsare
shown in Table3 for differentnumberof secondarychips( ?A`$� ).
As canbeseen,with a largenumberof chips( ?@`��R��§�¢r( ), both
theGLR andMI testsperformaswell asthestructuredKelly’stest.
On theotherhand,with a limited numberof chips( ?L`��R�¡§r(�( ),
MI test 1 successfullydetectsthe target down to a significantly
lower thresholdthanfor GLR 1 andstructuredKelly’s detectors.ª � ªTest

( ?@`«�¬�¡§�¢r( ) ( ?@`«�R��§'('( )
MI test1 �'�  k¢r L�­�
( d P (.� �'(�¥A�7��( d �
GLR 1 �'�  ��k§��­�
( d P �'� (r ®§��7��( d �

StructuredKelly �'�  �(k¦��­�
( d P �'� (r k¥A�7��( d �
Table 3. Minimum detectableamplitudesfor detectionof thetar-
getat thecorrectlocation.

As afinal experimentwemaximizedtheteststatisticsover the
differenttargetposesin Fig. 6 aswell asoverall possiblelocations
alongthe boundary. Again the normalizedsignaturefrom Fig. 6
(e) wasinsertedwith

ª � ª �¯(*� (*�
¢ , and250secondarychipswere
obtainedfrom thesurroundingclutter. Testvaluesfor the3 detec-
torsunderCase1 areobtainedusing9 differenttargetsignatures.
For eachtestthepeakvaluesfor 9 targetsignaturesareplottedin
Fig. 8. Notethatall thetestssuccessfullypicked thesignatureat
thetrueposeandlocationfor this targetamplitude.

4. CONCLUSION AND FUTURE RESEARCH

The deep-hidescenarioconsideredin this papercomplicatesthe
designof optimaltargetdetectors.Thisscenariogivesriseto block
diagonalconstraintsimposedby the clutter covariancestructure.
Both GLR and MI testscan be derived undertheseconstraints.
Numericalresultsindicatethat neitherGLR nor MI testsdomi-
natetheotherin termsof ROC performance.Both detectorshave

comparableperformancewhenhigh estimatoraccuracy is attain-
able,e.g. for a largenumberof independentclutter samples,but
otherwiseMI test is betterespeciallyin low £�¤ E . This property
is alsoshown to be robust to segmentationerrors. Therefore,MI
testnot only playsan importantrole asanalternative to theGLR
procedure,but alsohasthe desirablepropertyof reliableperfor-
mancein low £ ¤ E with a smallnumberof snapshots.Theresults
in this paperaregeneralizableto other applicationswherethere
existscovariancestructure.

However, the known boundaryassumptionof the structured
detectorsmaynotberealisticin radarimagingapplications.Thus,
to moveto afully automaticprocedurefor combiningboundaryes-
timationandstructureddetection,imagesegmentationtechniques
suchas the one in [6] should be investigated. In real applica-
tions,boundaryestimationwill bedifficult evenwith a strongtar-
get straddlingthe boundary. Therefore,boundaryestimationand
its interactionwith detectionshouldalso be investigatedinclud-
ing sensitivity of detectorperformanceto boundaryestimationand
tradeoffs betweensegmentationanddetection.
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Fig. 2. Comparisonof GLR andMI testsfor Case1 by (a) in-
creasing? with fixed SNR and(b) increasingSNR with fixed ?
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Fig. 4. Comparisonof ROC curvesfor Case1 usingtruebound-
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Fig. 5. SAR clutter imagewith target in Fig. 6 (e) straddlingthe
boundaryat column305.
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Fig. 6. SLICY canonicaltargetimages( ¢r A�n¢r  ) at elevation ¿�¥ ¹
anddifferentazimuthangles.Imagein (e) is insertedin Fig. 5.
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Fig. 7. Imagerealignedalong the extractedboundary. SLICY
target is locatedat column 305 with

ª � ª �À(*� (*�
¢ . This target
is just above the minimal detectablethresholdfor the threetests
investigatedin Fig. 8.
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