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ABSTRACT

This paperreportson experimentsof porting the ITC-irst Italian
broadcastnews recognitionsystemto two spontaneousdialogue
domains. The trade-off betweenperformanceand the required
amountof taskspecificdatawasinvestigated.Portingwasexper-
imentedby applying supervisedadaptationmethodson acoustic
andlanguagemodels.By usingtwo hoursof manuallytranscribed
speech,worderrorratesof 26.0%and28.4%wereachievedby the
adaptedsystems.Two referencesystems,developedon a larger
training corpus,achieved word error ratesof 22.6%and21.2%,
respectively.

1. INTRODUCTION

An interestingissueof speechrecognitiontechnologyis theability
to port at low costa systemfrom onetaskto another. This paper1

investigatesportability issuesencounteredwhenadaptinga large
vocabulary Italian broadcastnews recognizerto two spontaneous
speechdialoguetasks.
Consideringtheintroductorysentence,thefirst questionthatarises
is how to measurethe “cost” of a porting operation. Given that
mostof thedevelopmentof a speechrecognizeris datadriven,i.e.
acousticandlanguagemodeling,it seemsreasonableto relatethe
costof portingto theamountof requireddata.In general,acoustic
modelingrequiresspeechrecordingswith accuratetranscriptions,
that includeannotationof spontaneousspeechphenomena.Lan-
guagemodelingusuallyrequirestaskrelatedtranscripts.
The hereconsideredapproachis to apply acousticmodel (AM)
andlanguagemodel(LM) adaptationtechniquesby usingincreas-
ing amountsof superviseddatafrom eachtask.Baselinesof LMs
andAMs of eachtaskwereavailableandtakenasreferences.Two
significanttestsetswereusedto evaluateworderrorrates,LM per-
plexity andout-of-vocabularyword ratesof eachevaluatedspeech
recognizer. Effectivenessof AM andLM adaptationwasinspected
by performingcontrastiveexperiments,thatkeepeithertheAM or
theLM fixed.
Experimentalresultsshowedthatthemanualannotationof sponta-
neousspeechphenomenadidnotresultrelevantfor thesakeof AM
adaptation,asthey weresufficiently well modelledby thebroad-
castnews AM. Moreover, by usingup to two hoursof supervised
datafor adaptingtheAM andLM of thebroadcastnews system,a
44.3%worderrorratereductionwasachievedonbothtasks.
The paperis organizedas follows. Section2 quickly introduces
the ITC-irst large vocabulary speechrecognitionsystem,andde-
scribessomeof its featuresthatwerenot coveredby previouspa-

1This work waspartially financedby theEuropeanCommissionunder
theprojectCORETEX(IST-1999-11876).

pers.Section3 presentsthebroadcastnews transcriptionbaseline
andthe two spoken dialoguetaskswith their respective reference
baselines.Section4 describesthemethodsappliedto adaptfrom
superviseddataboththeAM andLM of thebroadcastnews base-
line. Section5 presentstheexperimentalresultsof thiswork. Sec-
tion 6 endsthepresentationby giving someconclusions.

2. SYSTEM DESCRIPTION

TheITC-irst largevocabulary speechrecognitionsystemfeatures
asinglepassbeam-searchdecoder, context dependentHMMs, and
a trigram LM. The acousticfront-endusesa sliding window of
20ms,with astepof 10ms,to compute12mel-scaledcepstralcoef-
ficients,thelog-energy andtheir first andsecondtime-derivatives.
The following subsectionswill focuson two featuresof the sys-
tem: theLM representationandsomeimplementationsolutionex-
ploiting parallelism. Complementaryinformationaboutthe sys-
temcanbefoundin [1].

2.1. Shared-tail Representation of Trigram LMs

An interpolatedtrigramLM (seesubsection4.2) is mappedinto a
staticnetwork with ashared-tailtopology. As describedin [2], this
topologyallows to dramaticallyreducethesizeof astaticLM rep-
resentationby exploiting bothsparsenessin theLM trainingdata
andredundancy in thetree-basedrepresentation.Sincethepubli-
cationof [2], thealgorithmhasbeenextendedin two ways: first,
supportfor multiple pronunciationsof a single word was intro-
duced,without requiringduplicationof thesuccessortree;second,
thecompilationof trigramLMs wasmadepossible.
In orderto allow multiplepronunciationsof words,duringthecon-
structionof the network, a correspondenceis kept betweenlexi-
cal entries,which dependon pronunciation,andwords. Sincethe
structureof treesdependson phonetictranscription,treeleafsare
associatedto lexical entries,while the root of the successortree
of a word dependsonly on the word identity. Therefore,differ-
ent leafscorrespondingto differentpronunciationsof a word are
linkedto therootof a commonsuccessortree.
Thegeneralizationto trigramLMs extendsdefinitionandproper-
tiesof thebasictopologyof bigramLMs presentedin [2]. In par-
ticular, the sameprocedureof identifying andsharinglinear tails
in successortrees,thatwasappliedto treesat thesecondlevel, is
now appliedto treesat the third level. Figure1 depictsanexam-
ple of a simpletrigramsetcompiledinto a network. Thetriangles
denotedby S(� ) arethesuccessortreesof a context (a singleword
or awordpair), thatis thesupportof thecorrespondingdiscounted
relative frequency. The symbol

��� � � refersto the zero-frequency



probability of a context, ascomputedby the discountingmethod
usedin LM estimation(seesubsection4.2).
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Fig. 1. Sharedtail topologyof a trigramLM.

As anexample,the61K-wordtrigramLM usedfor BN recognition
includesabout20M parametersand is compiledinto a network
with about11M states,10M namedtransitionsand 20M empty
transitions.

2.2. Exploiting Parallelism

The necessityof processinglarge amountof datais by now an
endurednuisancein the developmentand applicationof speech
recognition systems. The relative inexpensivenessof medium
classhardware permitsto exploit parallelismby distributing the
computationalload amongseveral CPUs. The following para-
graphsdescribethe way coarse-grainparallelismwasintroduced
in theITC-irst system.

Distributed Processing. Most of themodules(featureextraction,
decoding,etc.) run as“filters”, readingdatafrom standardinput
andwriting resultsto standardoutput.A completesystemis built
by connectingmodulesby meansof pipes. Parallelismis there-
fore introducedby inserting,at a certainpoint of the pipeline,a
programthat instantiatesmultiple copiesof a module,runningon
thesamemachineor ondifferentmachines,andthendispatchesin-
cominginputrecordsto thedifferentinstances.To avoid interleav-
ing of resultscoming from differentsources,the dispatcheralso
collectsthe output streamsof the different processesand writes
themon its standardoutput,preservingtheir structure. The dis-
patcheris implementedso as to balancethe load amongthe dif-
ferentservers,andkeepthemall asbusy aspossible. In several
experiments,a homogeneousdistribution of processingtime was
actuallyobserved,while theamountof processeddatavariedac-
cordingto therelative speedof theservers.

Shared Memory Decoding. Memory sharingamongprocesses
running on the samemachinecan be applied in the speechde-
codingprocess.The ITC-irst systemcanstorein sharedmemory

thefinite statenetworksusedfor representingthelanguagemodel.
For large languagemodels,this allows to fit two decodingpro-
cesseson a dualprocessormachinewith a considerablesaving in
globalmemoryspace,e.g. two 700Mbspeechdecodersinto 1Gb
of memory.

Statistics Recombination. In HMM training,dataareprocessed
to collectglobalstatisticsin orderto updatetheHMM parameters.
If severalprocessesareworking on differentportionsof thetrain-
ing set,eachof themwill collect partial statistics.An additional
modulewasdevelopedthat recombinesdifferentpartial statistics
into globalones.Theadditionalstepdoesnot introducea signifi-
cantoverhead.

3. BASELINES

Threebaselinesystemsareinvolvedin thiswork: anItalianbroad-
castnews(BN) transcriptionsystemandtwo spontaneousdialogue
recognitionsystems.
TheAM of theBN speechrecognizerwastrainedonrecordingsof
radioandtelevisionnews programs.TheBN LM wastrainedover
a largesampleof newspapers,newswire,andnews transcripts.
Thedomainsof thetwo dialoguerecognitionsystemsare,respec-
tively, appointmentscheduling(SCHE) and tourist information
(TOUR). A corpusof two-party task-orientedconversationswas
alreadyavailable. Recordingswere in studioquality andmanu-
ally transcribed;spontaneousspeechphenomenawereaccurately
labeled.A singlespontaneousdialogue(SD)AM wastrainedover
theunionof theSCHEandTOURcorpora,becausebothdatasets
presentthesameacousticconditions.TaskspecificLMs werein-
steaddevelopedover therespective trainingtranscriptcorpora.
Statisticsregardingthe AMs andLMs of the threebaselinesare
reportedin Table1 andTable2.

BN SD
duration ��� h:�	� m 
�� h:
	� m
#triphones ��
�
�� 
���
	�
#backoff models ������� �����
#gaussians 
�������� �����	�

Table 1. Statisticsof AM trainingsetsandpropertiesof models.

BN SCHE TOUR
corpussize(#words) 215M 21.6K 61.7K
vocabularysize 61K 1.2K 2.2K
#trigrams 77M 14K 37.5K

Table 2. Statisticsof LM trainingsetsandpropertiesof models.

4. ADAPTATION TECHNIQUES

4.1. AM Adaptation

Adaptationof the AM, that is basedon HMMs having emission
distributionsmodeledby mixturesof Gaussiandensitieswith di-
agonalcovariancematrices,is carriedoutthroughMaximumLike-
lihood LinearRegression(MLLR) [3, 4].
During adaptationa regressionclasstreeis employed in orderto
determineregressionclassesaccordingto theavailableadaptation



data. The regressionclasstree is generatedby meansof an ag-
glomerative clusteringprocedureemploying the likelihoodmea-
sure.Theregressionclasstreeis built in two steps:first, for each
phone-like unit Gaussiancomponentsarehierarchicallyclustered;
second,therootsof treesobtainedwith thefirst stepareclustered
in their turn. Baseregressionclassesarethendeterminedby im-
posinga minimumnumberof Gaussiancomponents(i.e. 32) per
class.
Two MLLR iterationsareperformedto adaptmeansandvariances.
Meanvectorsareadaptedusingfull transformationmatrices,while
diagonaltransformationmatricesareusedto adaptthevariances.

4.2. LM Adaptation

BasicLMs areestimatedthroughaninterpolationscheme,i.e. the
probability of an � -gram ��� , where � representsthe history of
word � , is computedby:

��� � ����� �! #"%$ � ����� �'& ��� � � ��� � �(�*)� �,+ (1)

" $ is a discountedrelative frequency that is smoothedwith the
zerofrequency estimate

��� � � weightedwith thedistributionof the
lower order

� �.-/
 � -gram )�0� .
Given 1 interpolatedlanguagemodels,onecandefinethefollow-
ing mixturediscountedrelative frequency:

" $24365 � �(��� �7 
89
3;:=<?>

3 " $3 � �(��� � (2)

where>
3 areweightsof aconvex combination.Fromthedefinition

of thezerofrequency probability(seee.g.[5]), it follows that:

� 243;5 � � �! 
89
3;:=<?>

3 � 3 � � � (3)

which leadsto theinterpolationmixturemodel:

��� 243;5 � �@��� �A #" $243;5 � ����� �'& � 243;5 � � � ��� 24365 � �(�B)� � (4)

An advantageof the proposedmixture model is that it preserves
the basicinterpolationscheme(1) andhenceallows the efficient
languagemodelrepresentationdescribedin Section2. Moreover,
themixtureweights>

3 canbeestimatedby applyingtheEM algo-
rithm.
Improvementsin performancewereobtainedby letting the inter-
polationweights>

3 dependon themostrecentwordof thehistory� . Parametertying wasappliedto copewith datasparseness.
In thehereconsideredLM adaptationcase,two componentmix-
ture LMs were taken, by combining the BN trigram LM with
taskspecifictrigramLMs estimatedon relatively smalladaptation
texts. BothLMs applieda non-lineardiscountingmethod,i.e.:

" $ � �@�	� �7 DC � ��� � -FE
C � � � with �HGIEJGK
 (5)

with E estimatedaccordingto [5] on the adaptationdata,andset
to 1 for theBN LM. Moreover, trigrampruningwasappliedto the
BN LM [1]. Finally, theEM estimationof themixtureparameters
wascarriedoutontheadaptationdatasample,by applyingacross-
validationtechnique.

5. PORTABILITY EXPERIMENTS

Several experimentson the portability of the BN systemto the
SCHEandTOURdomainswereconducted,testingtheadaptation
algorithmsdescribedin Section4. Performanceevaluationwere
carriedout on testsetswith no speaker overlapwith the training
data.Statisticsaboutthetestsamplesarereportedin Table3.

#turns duration #speakers #words
SCHE 1007 1h:34m 24 10.8K
TOUR 1520 1h:46m 19 13.6K

Table 3. Testsetsstatisticsof portingexperiments.

5.1. Adaptation Corpora

In order to adaptBN AM and LM to the spontaneousdialogue
tasks,increasingamountsof speechdata from the task specific
datawereused;detailsarereportedin Table4.

SCHE TOUR
#trn #spk #wrd voc. #trn #spk #wrd voc.

0.5h 386 14 3.5K 444 448 13 3.6K 557
1.0h 770 22 7.0K 634 913 24 7.7K 774
1.5h 1034 27 10.5K 790 1312 32 10.9K 863
2.0h 1356 31 14.2K 1020 1841 40 15.3K 967

Table 4. Statisticsof supervisedadaptationdata.

SCHE TOUR
detailed plain detailed plain

0.0h 31.8 31.8 32.4 32.4
0.5h 27.9 27.7 28.0 27.8
1.0h 25.4 25.5 26.2 26.4
1.5h 26.2 26.2 25.9 26.0
2.0h 25.8 25.8 25.0 25.3

Table 5. WERresultsafteradaptingtheBN AM by usingdetailed
or plain transcripts.

5.2. Results

SupervisedAM adaptationwas investigatedby using manually
producedverbatimspeechtranscriptseither including (detailed)
or not including (plain) the annotationof spoken languagephe-
nomena,i.e. hesitations,filled pauses,noises,mispronunciation
of words, truncatedwords, etc. In both cases,the actualmodel
sequencecorrespondingto a given speechsignal was estimated
through a decodingstep using the BN AM and constrainedby
the supervisiontranscript,with the optional insertion of extra-
linguistic phenomenabetweenannotatedevents.
In Table5 resultsarereportedin termsof word errorrate(WER),
by usingthebaselineLM for eachtask.It comesoutthatAM adap-
tation is effective even if spontaneousspeechphenomenaannota-
tion is notavailable.Thedetectionof suchphenomenaachievedby
BN AM provedto besufficiently reliable. In termsof portability,
this resultcanimply significantcostsavings.
Hence,by exploiting plain transcriptsbothfor AM andLM adap-
tation, a numberof comparative experimentswereperformedon
theSCHEandTOURtasks,whicharereportedin Figures2 and3,
respectively. TheWERfiguresonthebordersareto beinterpreted
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asreferences,while thosein the internalgrid give theactualper-
formanceof differentadaptedrecognizers.Referenceresultsare
insteadobtainedby usingtheAM and/ortheLM of abaselinesys-
tem.
Adaptation results show that two hours of adaptationmaterial
yields a relative error ratereductionof 44.3%both on theSCHE
task(from 46.7%to 26.0%)andon the TOUR task(from 51.0%
to 28.4%).
TheWERsreportedin therightmostcolumnsshow thatLM adap-
tation is alreadyeffective with little adaptationdata,andthat fur-
ther improvementsare obtainedby enlarging the adaptationset.
By comparingthe LM adaptationspeedagainstthe AM one, in
the uppermostrow, it resultsthat thedifficulty in porting the BN
systemis mostlydueto theacousticmismatch.
Table6 reportsperformance,on both tasks,of the referenceand
adaptedLMs, in termsof perplexity (PP)andout-of-vocabulary
word rate(OOV). It resultsthat 90% of the gapbetweenthe BN
LM and the task dependentLM is filled with just half an hour
of adaptationmaterial. TheWER achieved on theSCHEtaskby
adaptingtheBN LM with two hoursof transcripts(22.2%)is even
betterthanthatof thebaseline(22.6%).This is mainly dueto the
lower OOV rateachievedby theadaptedBN LM.
It is alsoworthnoticingthatthepotentialincreasein wordconfus-
ability, introducedby thelargeBN LM vocabulary, doesnot seem
to beanimportantsourceof errors.

SCHE TOUR
PP OOV% PP OOV%

BN baseline 538.6 1.12 524.0 1.11
0.5h 91.9 0.67 106.9 0.67
1.0h 72.7 0.58 83.2 0.59
1.5h 65.2 0.53 74.3 0.53
2.0h 60.1 0.48 69.2 0.51

Taskbaseline 63.5 2.46 53.9 1.40

Table 6. LM adaptationresults.

6. CONCLUSIONS

This work addressedthe problemof porting a large-vocabulary
broadcastnews recognitionsystemto two spontaneousdialogue
domains:appointmentschedulingandtourist information.
Sincethe developmentof a speechrecognizeris datadriven, the
costof porting wasrelatedto requiredamountof dataandqual-
ity of the supervision.Recognitionexperimentswereconducted
by adaptingtheAM andLM with increasingamountsof taskde-
pendentsuperviseddata.In particular, AM adaptationwasevalu-
atedversustwo possiblelevelsof supervision:verbatimtranscripts
or verbatimtranscriptswith theannotationof spontaneousspeech
phenomena.
Experimentalresultsshowed that manualannotationof sponta-
neousspeechphenomenais not relevantfor supervisedAM adap-
tation,assumingthat thebaselineAM providessomecoverageof
thesephenomena.By usingup to two hoursof transcribedspeech,
the WERsof the adaptedsystemswere26.0%and28.4%,to be
comparedwith 22.6% and 21.2% obtainedby the task specific
baselines.
In thefuture,themodelingof spontaneousspeechphenomenawill
be investigated,which is known to have an impact on the sys-
tem accuracy and was not taken into accountin this work. In
the reportedporting experiments,the optional insertionbetween
words of any noiseor filled pausewas in fact allowed with the
samechanceasin theBN system.Automaticestimationmethods
would be desirablethat canautomaticallyadaptexisting models
of spontaneousspeechphenomenafrom unsupervisedor lightly
superviseddata.
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