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ABSTRACT

This paperreportson experimentsof porting the ITC-irst Italian

broadcasnews recognitionsystemto two spontaneouslialogue
domains. The trade-of betweenperformanceand the required
amountof taskspecificdatawasinvestigated Portingwasexper

imentedby applying supervisecadaptationrmethodson acoustic
andlanguagemodels.By usingtwo hoursof manuallytranscribed
speechword errorratesof 26.0%and28.4%wereachieved by the

adaptedsystems. Two referencesystemsdevelopedon a larger
training corpus,achiezed word error ratesof 22.6%and 21.2%,
respectiely.

1. INTRODUCTION

An interestingssueof speechrecognitiontechnologyis the ability
to port atlow costa systemfrom onetaskto another This papet
investigatesortability issuesencounteredvhenadaptinga large
vocahulary Italian broadcashews recognizeito two spontaneous
speecldialoguetasks.
Consideringheintroductorysentencethefirst questiorthatarises
is haw to measurehe “cost” of a porting operation. Given that
mostof the developmentof a speechrecognizeis datadriven,i.e.
acousticandlanguagemodeling,it seemgeasonabléo relatethe
costof portingto theamountof requireddata.Iln generalacoustic
modelingrequiresspeectrecordingswith accuratdranscriptions,
thatinclude annotationof spontaneouspeechphenomenalan-
guagemodelingusuallyrequirestaskrelatedtranscripts.

The here consideredapproachis to apply acousticmodel (AM)
andlanguagenodel(LM) adaptatiortechniquedy usingincreas-
ing amountsof supervisedlatafrom eachtask. Baselineof LMs
andAMs of eachtaskwereavailableandtakenasreferencesTwo
significanttestsetswereusedto evaluateword errorrates| M per
plexity andout-of-vocahulary word ratesof eachevaluatedspeech
recognizerEffectivenes®f AM andLM adaptatiorwasinspected
by performingcontrastve experimentsthatkeepeitherthe AM or
theLM fixed.
Experimentatesultsshavedthatthemanualannotatiorof sponta-
neousspeectphenomendid notresultrelevantfor thesale of AM
adaptationasthey were sufficiently well modelledby the broad-
castnews AM. Moreover, by usingup to two hoursof supervised
datafor adaptinghe AM andLM of thebroadcashews systema
44.3%word errorratereductionwasachiezed on bothtasks.

The paperis organizedasfollows. Section2 quickly introduces
the ITC-irst large vocalulary speechrecognitionsystem,andde-
scribessomeof its featureshatwerenot caveredby previous pa-
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pers. Section3 presentthe broadcashews transcriptionbaseline
andthetwo spolen dialoguetaskswith their respectie reference
baselines.Section4 describeshe methodsappliedto adaptfrom
supervisedlataboththe AM andLM of thebroadcashews base-
line. Section5 presentshe experimentatesultsof thiswork. Sec-
tion 6 endsthe presentatioy giving someconclusions.

2. SYSTEM DESCRIPTION

The ITC-irst large vocalulary speechrecognitionsystemfeatures
asinglepassbeam-searctecodercontext dependentiMMs, and
a trigram LM. The acousticfront-endusesa sliding window of

20ms,with astepof 10ms.to computel2 mel-scaledepstrakoef-

ficients,thelog-enegy andtheir first andsecondime-dervatives.
The following subsectionsvill focuson two featuresof the sys-
tem: theLM representatioandsomeimplementatiorsolutionex-

ploiting parallelism. Complementarynformation aboutthe sys-
temcanbefoundin [1].

2.1. Shared-tail Representation of Trigram LMs

An interpolatedrigram LM (seesubsectiort.2)is mappednto a
staticnetwork with ashared-taitopology As describedn [2], this
topologyallows to dramaticallyreducethesizeof astaticLM rep-
resentatiorby exploiting both sparsenesm the LM training data
andredundang in the tree-basedepresentationSincethe publi-
cationof [2], the algorithmhasbeenextendedin two ways: first,
supportfor multiple pronunciationsof a single word was intro-
ducedwithoutrequiringduplicationof the successoiree;second,
thecompilationof trigram LMs wasmadepossible.

In orderto allow multiple pronunciation®f words,duringthecon-
structionof the network, a correspondencis kept betweenlexi-
cal entries which dependon pronunciationandwords. Sincethe
structureof treesdependn phonetictranscription treeleafsare
associatedo lexical entries,while the root of the successotree
of a word depend=nly on the word identity. Therefore,differ-
entleafscorrespondingo differentpronunciationsof a word are
linkedto theroot of acommonsuccessoiree.

The generalizatiorto trigram LMs extendsdefinition andproper
tiesof the basictopologyof bigramLMs presentedn [2]. In par
ticular, the sameprocedureof identifying andsharinglinear tails
in successotrees thatwasappliedto treesat the secondevel, is
now appliedto treesat the third level. Figurel depictsan exam-
ple of asimpletrigramsetcompiledinto a network. Thetriangles
denotedby S() arethe successotreesof a context (a singleword
or aword pair), thatis thesupportof the correspondingliscounted
relative frequeng. The symbolA(-) refersto the zero-frequeng



probability of a context, ascomputedby the discountingmethod
usedin LM estimation(seesubsectiont.2).
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Fig. 1. Sharedail topologyof atrigramLM.

As anexample the61K-wordtrigramLM usedfor BN recognition
includesabout20M parametersind is compiledinto a network
with about11M states,10M namedtransitionsand 20M empty
transitions.

2.2. Exploiting Parallelism

The necessityof processingarge amountof datais by now an
endurednuisancein the developmentand applicationof speech
recognition systems. The relative inexpensvenessof medium
classhardware permitsto exploit parallelismby distributing the
computationalload amongseveral CPUs. The following para-
graphsdescribethe way coarse-grairparallelismwasintroduced
in the|TC-irst system.

Distributed Processing. Most of the moduleg(featureextraction,
decoding.etc.) run as“filters”, readingdatafrom standardnput
andwriting resultsto standarcbutput. A completesystemis built
by connectingmodulesby meansof pipes. Parallelismis there-
fore introducedby inserting,at a certainpoint of the pipeline, a
programthatinstantiatesnultiple copiesof a module,runningon
thesamemachineor ondifferentmachinesandthendispatche-
cominginputrecordgo thedifferentinstancesTo avoid interleas-
ing of resultscoming from differentsourcesthe dispatcheralso
collectsthe output streamsof the different processesind writes
themon its standardoutput, preservingtheir structure. The dis-
patcheris implementedso asto balancethe load amongthe dif-
ferentseners, andkeepthemall asbusy aspossible. In several
experiments a homogeneouslistribution of processingime was
actuallyobsered, while the amountof processedlatavariedac-
cordingto therelative speedf theseners.

Shared Memory Decoding. Memory sharingamongprocesses
running on the samemachinecan be appliedin the speechde-
codingprocess.The ITC-irst systemcanstorein sharedmemory

thefinite statenetworksusedfor representinghelanguagemodel.
For large languagemodels, this allows to fit two decodingpro-
cesse®n adual processomachinewith a considerableaving in
globalmemoryspaceg.g. two 700Mb speechdecodersnto 1Gb
of memory

Statistics Recombination. In HMM training, dataare processed
to collectglobalstatistican orderto updatethe HMM parameters.
If several processeareworking on differentportionsof thetrain-
ing set,eachof themwill collect partial statistics. An additional
modulewasdevelopedthat recombinedifferent partial statistics
into globalones.The additionalstepdoesnot introducea signifi-
cantoverhead.

3. BASELINES

Threebaselinesystemsareinvolvedin thiswork: anltalianbroad-
castnews (BN) transcriptiorsystemandtwo spontaneoudialogue
recognitionsystems.

TheAM of theBN speechrecognizemwastrainedonrecordingsof
radioandtelevision news programs.The BN LM wastrainedover
alarge sampleof newspapershewnswire,andnews transcripts.
The domainsof thetwo dialoguerecognitionsystemsare,respec-
tively, appointmentscheduling(SCHE) and tourist information
(TOUR). A corpusof two-party task-orienteccorversationswas
alreadyavailable. Recordingswerein studio quality and manu-
ally transcribedspontaneouspeechphenomenavereaccurately
labeled.A singlespontaneoudialogue(SD) AM wastrainedover
theunionof the SCHEandTOUR corpora becausdothdatasets
presenthe sameacousticconditions. TaskspecificLMs werein-
steaddevelopedover therespectie trainingtranscriptcorpora.
Statisticsregardingthe AMs and LMs of the threebaselinesare
reportedn Tablel andTable2.

BN SD
duration 36h:34m  10h:56m
#triphones 6554 1956
#bacloff models 2367 896
#gaussians 14087 8829

Table 1. Statisticsof AM training setsandpropertiesof models.

BN SCHE TOUR
corpussize(#words) 215M 21.6K 61.7K
vocahulary size 61K 1.2K 2.2K
#trigrams 7™M 14K 37.5K

Table 2. Statisticsof LM trainingsetsandpropertiesof models.

4. ADAPTATION TECHNIQUES

4.1. AM Adaptation

Adaptationof the AM, thatis basedon HMMs having emission
distributions modeledby mixturesof Gaussiardensitieswith di-
agonalkovariancematricesjs carriedoutthroughMaximumLik e-
lihood LinearRegressionMLLR) [3, 4].

During adaptatiora regressionclasstreeis employed in orderto
determineregressiorclassesaccordingto the availableadaptation



data. The regressionclasstreeis generatecdby meansof an ag-

glomeratve clusteringprocedureemploying the likelihood mea-
sure. Theregressiorclasstreeis built in two steps:first, for each
phone-lile unit Gaussiatomponentsrehierarchicallyclustered;
secondtherootsof treesobtainedwith thefirst stepareclustered
in their turn. Baseregressionclassesarethendeterminecdby im-

posinga minimum numberof Gaussiarcomponentgi.e. 32) per
class.

Two MLLR iterationsareperformedo adaptmeansandvariances.
Meanvectorsareadaptedisingfull transformatiommatriceswhile

diagonaltransformatiormatricesareusedto adaptthevariances.

4.2. LM Adaptation

BasicLMs areestimatedhroughaninterpolationschemeij.e. the
probability of an n-gram hw, whereh representshe history of
wordw, is computedoy:

Pr(w|h) = f*(w | h) + A(h)Pr(w | k). 1)

f* is a discountedrelative frequeng thatis smoothedwith the
zerofrequeng estimate) (h) weightedwith thedistribution of the
lower order(n — 1)-gramhaw.

Givenk interpolatedanguagemodels,onecandefinethe follow-
ing mixturediscountedelative frequeng:

k
Fruiw(w [ B) = pafi (w | h) #)

wherep; areweightsof aconvex combination.Fromthedefinition
of thezerofrequeng probability (seee.qg.[5]), it follows that:

k
Amio(h) =Y piXi(h) @3)

i=1
which leadsto theinterpolationmixture model:
Proig(w | B) = fio(w | h) + Amiz(h) Prous(w | B)  (4)

An adwantageof the proposedmixture modelis thatit preseres
the basicinterpolationscheme(1) and henceallows the efficient
languagemodelrepresentationescribedn Section2. Moreover,

the mixtureweightsu; canbeestimatedy applyingthe EM algo-
rithm.

Improvementsin performancewnere obtainedby letting the inter-

polationweightsyu; dependnthemostrecentword of the history
h. Parametetying wasappliedto copewith datasparseness.

In the hereconsidered_M adaptatiorcase two componenimix-

ture LMs were taken, by combiningthe BN trigram LM with

taskspecifictrigramLMs estimatecn relatively smalladaptation
texts. Both LMs applieda non-lineardiscountingmethod,.e.:

* _C(hw)_ﬂ
f (“W’U—W

with 3 estimatedaccordingto [5] on the adaptatiordata,andset

to 1 for theBN LM. Moreover, trigrampruningwasappliedto the

BN LM [1]. Finally, the EM estimationof the mixture parameters
wascarriedoutontheadaptatiordatasample by applyingacross-
validationtechnique.

with 0< 8 <1 (5)

5. PORTABILITY EXPERIMENTS

Several experimentson the portability of the BN systemto the
SCHEandTOUR domainswereconductedtestingthe adaptation
algorithmsdescribedn Section4. Performancevaluationwere
carriedout on testsetswith no speakr overlapwith the training
data.Statisticsaboutthetestsamplesarereportedn Table3.

#turns duration #speakrs #words
1007 1h:34m 24 10.8K
1520 1h:46m 19 13.6K

SCHE
TOUR

Table 3. Testsetsstatisticsof portingexperiments.

5.1. Adaptation Corpora

In orderto adaptBN AM andLM to the spontaneouslialogue
tasks, increasingamountsof speechdatafrom the task specific
datawereused;detailsarereportedn Table4.

SCHE TOUR
#trn #spk #wrd voc. #trn #spk #wrd voc.
0.5h 386 14 35K 444 448 13 3.6K 557
1.0h 770 22 7.0K 634 913 24 7.7K 774
1.5h 1034 27 10.5K 790 1312 32 10.9K 863
2.0h 1356 31 14.2K 1020 1841 40 15.3K 967

Table 4. Statisticsof superviseddaptatiordata.

SCHE TOUR
detailed plain detailed plain
0.0h 31.8 31.8 324 324
0.5h 27.9 27.7 28.0 27.8
1.0h 254 25.5 26.2 26.4
1.5h 26.2 26.2 25.9 26.0
2.0h 258 25.8 25.0 25.3

Table 5. WER resultsafteradaptinghe BN AM by usingdetailed
or plaintranscripts.

5.2. Results

SupervisedAM adaptationwas investigatedby using manually
producedverbatim speechtranscriptseither including (detailed)
or not including (plain) the annotationof spolen languagephe-
nomena,.e. hesitationsfilled pausesnoises,mispronunciation
of words, truncatedwords, etc. In both casesthe actualmodel
sequencecorrespondingo a given speechsignal was estimated
through a decodingstep using the BN AM and constrainedoy
the supervisiontranscript, with the optional insertion of extra-
linguistic phenomen&detweerannotatedvents.

In Table5 resultsarereportedin termsof word errorrate (WER),
by usingthebaselind_M for eachtask. It comesoutthatAM adap-
tationis effective evenif spontaneouspeectphenomenannota-
tionis notavailable. Thedetectiorof suchphenomenachieredby
BN AM provedto be suficiently reliable. In termsof portability,
this resultcanimply significantcostsavings.

Hence by exploiting plain transcriptsbothfor AM andLM adap-
tation, a numberof comparatre experimentswere performedon
the SCHEandTOURtaskswhich arereportedn Figures2 and3,
respectiely. The WER figuresonthebordersareto beinterpreted
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Fig. 2. WER resultsby porting the BN systemto the SCHE do-
main.
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Fig. 3. WER resultsby portingthe BN systemto the TOUR do-
main.

asreferenceswhile thosein the internalgrid give the actualper

formanceof differentadaptedrecognizers.Referenceesultsare
insteadbbtainedby usingthe AM and/ortheLM of abaselinesys-
tem.

Adaptationresults shav that two hours of adaptationmaterial
yields a relative error ratereductionof 44.3%both on the SCHE
task (from 46.7%to 26.0%)andon the TOUR task(from 51.0%
t0 28.4%).

TheWERsreportedn therightmostcolumnsshawv thatLM adap-
tationis alreadyeffective with little adaptatiordata,andthatfur-

ther improvementsare obtainedby enlaging the adaptationset.
By comparingthe LM adaptatiorspeedagainstthe AM one,in

the uppermostow, it resultsthatthe difficulty in porting the BN

systemis mostlydueto the acousticmismatch.

Table 6 reportsperformancepn both tasks,of the referenceand
adapted_Ms, in termsof perpleity (PP)and out-of-vocatulary
word rate (OOV). It resultsthat 90% of the gapbetweenthe BN

LM andthe task dependent.M is filled with just half an hour
of adaptatiormaterial. The WER achiezed on the SCHE taskby
adaptinghe BN LM with two hoursof transcriptg22.2%)is even
betterthanthatof the baseling22.6%). This is mainly dueto the
lower OOV rateachiezed by theadaptedBN LM.

It is alsoworth noticingthatthe potentialincreasen word confus-
ability, introducedby thelarge BN LM vocahulary, doesnotseem
to beanimportantsourceof errors.

SCHE TOUR

PP OOV% PP OOV%

BN baseline 538.6 1.12 5240 1.11
0.5h 91.9 0.67 106.9 0.67
1.0h 72.7 0.58 83.2 0.59
1.5h 65.2 0.53 74.3 0.53
2.0h 60.1 0.48 69.2 0.51
Taskbaseline 63.5 2.46 53.9 1.40

Table 6. LM adaptatiomesults.

6. CONCLUSIONS

This work addressedhe problemof porting a large-vocatlulary
broadcashens recognitionsystemto two spontaneouslialogue
domains:appointmenschedulingandtouristinformation.
Sincethe developmentof a speechrecognizeris datadriven, the
costof porting was relatedto requiredamountof dataand qual-
ity of the supervision. Recognitionexperimentswere conducted
by adaptingthe AM andLM with increasingamountsof taskde-
pendentsupervisediata. In particular AM adaptatiorwasevalu-
atedversuswo possibldevelsof supervisionverbatimtranscripts
or verbatimtranscriptawith the annotationof spontaneouspeech
phenomena.

Experimentalresults shaved that manualannotationof sponta-
neousspeechphenomends notrelevantfor supervisedAM adap-
tation,assuminghatthe baselineAM providessomecoverageof
thesephenomenaBy usingupto two hoursof transcribedspeech,
the WERs of the adaptedsystemswere 26.0%and 28.4%,to be
comparedwith 22.6% and 21.2% obtainedby the task specific
baselines.

In thefuture,themodelingof spontaneouspeectphenomenavill
be investigated,which is knowvn to have an impact on the sys-
tem accuray and was not taken into accountin this work. In
the reportedporting experiments the optionalinsertionbetween
words of ary noiseor filled pausewasin fact allowed with the
samechanceasin the BN system.Automaticestimationmethods
would be desirablethat can automaticallyadaptexisting models
of spontaneouspeechphenomendrom unsupervisedr lightly
supervisediata.
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