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ABSTRACT In this paper, we present a wavelet transform that is invari-
ant to affine distortions. Affine distortions arise in many imag-
ing environments where the objects in the scene are in relative
dmotion with respect to the imaging sensor. Affine distortions in-

anisotropic scaling, rotation, and shearing of the input signal. In- clude translation, reflection, uniform and anisotropic scaling, rota-

variance of the wavelet transform to affine distortions is achieved 10 and shearing. Anisotropic scaling and She"?‘“”.gv in particular,
in our work by developing an algorithm that reduces replicas of change the shape of the signal and pose a significant challenge

a signal related by affine distortions to a unique prototype signal. in achieving affine Invariance. Our affine invariant wavelet trans-
The affine invariant wavelet transform is then defined as the two- for_m (A_IWT) genera_tes unique transfo_rm coefficients for arbitrary
dimensional wavelet transform of the prototype signal, which pro- afnnle ?;]storte(;l ver?_lons of t_h? nge stlhgnal. t of the affine i

vides the wavelet coefficients that are invariant to affine distortions n the next section, we Introduce the concept ot tne atfine in-

of the input signal. We describe our algorithm and show examples variant wavelet transform. In section 3, we describe the blind nor-
that demonstrate .our claims malization algorithm (BNA) that provides the affine invariance.

Experimental results are shown in section 4. Section 5 concludes
the paper. Proofs are ommitted due to lack of space. They will be
1. INTRODUCTION presented in the full version of the paper.

We present a two-dimensional wavelet transform that is invari-
ant to affine distortions of the input signal. Affine distortions in-
clude geometric effects such as translation, reflection, uniform an

The wavelet transform is widely used in many interesting signal
processing applications including image coding and analysis. The
discrete wavelet transform in particular is very popular due to its . . . - '
compact representation and efficient implementation. The one di-A tw?-dlm_ensmhnal _(2D)d5|gnaf(a:h, y) is distorted by an affine
mensional discrete wavelet transform of a square integrable signafr@nsform into the signaf® (z, y) where

t) € L2(R) is written as o
el ® Fi(.y) = £2.). ©)

2. AFFINE INVARIANT WAVELET TRANSFORM

DWT{f()} = (f (1), ¥jn(t)) = /fo fOY;a(B)dt (1) and

8l

. _ Al A} x x

where the wavelet fram@y;, (t) = —=t(552)} (j.n)ez2 forms X = [ ] = [ A% Ag ] [ y ] + [ y: ] =Ax+t (3)
an orthonormal basis fdt? (R). .

Unfortunately, the discrete wavelet transform lacks shiftability for {A}(; jyeq1,23 € Rand{z:,y:} € R.
as discussed in [1]. That is, the wavelet coefficients vary signifi- By recentering the signal with respect to the center of mass,
cantly when the input signal is shifted, for example, by transla- {g., gz}, we remove the translation factor= [z, y:]” as in
tion, scale, and rotation. This lack of shiftability is troublesome
especially in image identification and classification problems in X" =(X—8gx) = A(x —gx) = Ax” 4
which objects present in the image are affected by geometric dis- ] ] ) ) )
tortions resulting from translation, scaling, rotation, and shearing. @nd safely disregard the translation distortion of the sigfiét, ).
Research has been reported on the shiftability of the wavelet trans-T herefore, we consider only the linear part of the affine transform
form. Translation invariant wavelet and wavelet packet transforms in the remainder of the paper. )
are studied in [2] [3] [4] [5]. Joint shiftability in translation and Our goal with the affine invariant wavelet transform is to gen-
scale is considered in [1] by relaxing the shiftability constraint in €rate the same set of transform coefficiefttor any affine dis-
one of the domains, and in [6] by iterating back and forth between torted signalf®(z,y). Denote byAIWT{-} the affine invariant
shiftability invariance on the two domains. A non-linear approach Wavelet transform. Then, for a 2D signf(z,y) and its affine
is investigated in [7] for joint shiftability under theémilarity trans- distorted versionf“(z, y),
form, which is restricted to translation, uniform scaling, and rota- 4 d
tion. C=AWT{f(z,y)} = AWT{f(z,y)} =C".  (5)
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The AIWT allows us to represent all affine distorted signals by the The above matrix multiplication is repeat@dtimes in the BNA
same set of wavelet coefficients. To describe the basic idea under-

lying the AIWT, we defineD(f) to be the set of all affine distorted X = (SnR)...(S1R)(SoR)x ©)
versions of the signagf, and letf® be a representative prototype of  where the matriXR is a rotation by a fixed anglé and the scal-
the setD(f). Given an affine distorted sign#f' € D, we reduce  ing matrix S; contains the scaling factorsl /o, 1/3;} that are
the signalf* to the prototype signaf® by the blind normalization  recomputed for each rotated signal. We call the multiplication by
algorithm (BNA) that we describe in section 3. The normalization the scaling matrix; the scale normalization. The number of repe-

algorithm is blind because it does not know either the prototype titions \V is determined by the choice of the rotation arjleshich
signal f° of the setD to which f¢ belongs, or the particular affine repeats itself afteN = 2m iterations ifd = 7/m.

transformA that rela;esf ¢ and f°. Then, the affine invariant The outcome of the RnS step is the shape-recovered signal at
wavelet transform of “ becomes simply the wavelet transform of  different orientations. In order to obtain the one at the standard
the prototype signaf®, i.e., orientation of the prototype signgP, we need the orientation in-
AlWT{fd} = WT{f°}. (6) fjicator index (el])) t_hat monitors the orientation of the signal. We
introduce this new index measure next.
Due to f° being unique, this results in a unique set of wavelet
coefficients for the seb(f). _ o 3.2. Orientation Indicator Index (OII)
In the next section, we introduce the blind normalization algo-
rithm that converts® to f°. We define the orientation indicator index (Oll) for the sigfiét, y)
— 2 2
3. THE BLIND NORMALIZATION ALGORITHM (BNA) Olly = ue+u (10)
3
The blind normalization algorithm (BNA) transforms an affine dis- Pa = / (z = 92)" f(z,y) de dy (11)
torted signalf? into a prototype signaf’. The algorithm does not R
compute the affine parametefd; }, thus no explicit inversion of 3
the affine matrix is performed. Further, the BNA uses no knowl- Hy = /(y —9y)" f(x,y) dz dy. (12)
edge of the prototype signgr. R

The BNA consists of two components. Thg firstis a Rotate and gacause the signaf (
Scale (RnS) step that rotates the signal by a fixed &hfyibowed
by a scale normalization. The second component is the computa-
tion of the orientation indicator index (Oll) that is defined below. ?
The algorithm iterates repeatedly the RnS step and computes the [Ollf]2 /ng(iv,y)dxdy + /
Oll after each iteration. After a finite number of iterations, the % %
signal corresponding to the maximum value of the Oll is chosen
and stored as the normalized sigif4l. Since the BNA reduces // (®u® 4+ y*0*) f(x,y) f (u, v)dzdydudo.
any affine distorted replicA® to the prototypef®, the normalized £
signal f™ is identical to the prototype signg’. We then com- ) . )
pute the wavelet transform of the normalized sigffato generate Ifethe signal f (z, y) IS rEJtated by_ an anglé, the rotated signal
the AIWT coefficients. We now detail the two components of the /* (€, ¥) is equal tof (z, y) wherex = Rx. The orientation indi-

x,y) is centered at its center of mass by
Equation (4), we rewrite Equation (10)

v’ f(z, y)d:vdy} (13)

BNA: RnS and Oll. cator index off? is
— 2 2

3.1. Rotate and Scale (RnS) Ollye = W1z +nuy (14)
The Rotate and Scale (RnS) step restores the standard shape of the pz = / ( cos(8) & +sin(8) y)° f(z,y) dedy  (15)
prototype signal from any arbitrary affine distorted signal. In this R
step, the signal is rotated by a fixed anglend is scaled by factors ) 5
{1/a, 1/B}, wherea and 3 are the dimensions of the region of py = /(— sin(0) « + cos(0) y)” f (z, y) dz dy. (16)
support of the signal along the x— and y— axes defined as R

a = ‘max{ z: f(z,y) # 0 for somey € R} @) From Equations (10) — (16), we derive the following properties.

—min{z: f(z,y) # 0 for somey € R}‘ Properties of OlI:
e 1. If f(z,y) is symmetric about both the x— and y— axes, the
g = ‘max{ y : f(z,y) # 0 for somez € R} Oll is zero for all rotation angle8 = [0, 2x]. This is be-
y ’ cause the third order central momefits., ., } are zero for
such a signal.

_mym{y + f(w,y) # 0 for somex € R}‘ ’ 2. The Oll is periodic with periodr/2. That is, Oll., =

. . . oll z,. This is due to the relationship,
If the signal f(z,y) is the input to the RnS step, the outcome A2 P

f(z,y) is obtained by a coordinate transform, .1 01 )
HEER B A SRS,

for any two signals separated by a rotatiomg® radians.
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3. If the signal is symmetric about only one or none of the x— ~ A N /
and y-axes, the Oll has a finite number of maximum points . A T T T
in each interval of = [0, 2]. The maximum points inthe T
Oll plot represent unique orientations of the signal.

-
et

We now present the blind normalization algorithm.

The Blind Normalization Algorithm:

1. Recentering: Recentgi(z,y) with respect to the center = < = & & & @ d e
of mass{gz, g5} (a) Prototype Signaf® (b) Orientation Indicator Index

1 1F b5 1F
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2. Scale Normalization: Compuftey, 3} from Equation (7).
Scale the pixel coordinatés, y) to (Z, ). Fig. 1. Prototype Signaf?

3. Rotate and Scale (RnS): Choose a fixed afigied rotate

the signalf? (=, y) by this angle. Perform scale normaliza-
tion. Table 1 shows the maginitude, with its location index in the coeffi-

— . cient vector in parenthesis, of the three largest wavelet approxima-
4. ol C.omputatlon. Compute the Oll at the rotate.d pc-)smon. tion and detail coefficients at the resolution level 3. We conclude
5. lteration: Repeat steps 3 and 4 for a full rotation interval that the AIWT coefficients are very close to the WT coefficients
6 =0, 2]. of the prototype signal occuring at the same spatial locations. In
6. Normalization: Select the signal corresponding to the max- contrast, the WT coefficients of the distorted sigfialdiffer sig-
imum value of the Oll and store it as the normalized signal nificantly from the other two sets of coefficients as expected. The
fr. results are similar for other resolution levels and are omitted here.
Fig.4 shows additional examples of the airplane test signal.

7. AIWT: Compute the wavelet transform of the normalized Fig.5 shows the affine distorted versions of another test signal and

signal f*. the outcome of the BNA applied to them. These figures as well as

The next section presents experimental results that demonstrate thether experiments with different distortions and test signals con-

BNA and the affine invariance of the AIWT. firm the good performance of the BNA and the affine invariance of
the AIWT.

4. EXPERIMENTAL RESULTS

We first choose the test signélto be the binary image of a jet 5. CONCLUSION

plane. We choose as the prototype sigfidlthe output of the
BNA applied to the test signgl. The result is shown in Fig.1(a).
Fig.1(b) plots the orientation indicator index of the prototype sig-
nal as a function of the rotation andgle= [0, 27]. Observe that the
Oll plot is periodic inw/2 as discussed earlier. For the test signal
used in this experiment, there are four maximum points over the
2x interval of the Oll plot. The orientation of the prototyé in
Fig.1(a) corresponds to the maximum poindat 0.

In this paper, we presented the affine invariant wavelet transform.
This transform is obtained by blindly normalizing the affine dis-
torted signal replica to a prototype signal. The orientation of this
normalized signal is determined by an orientation indicator index.
Experimental results show a high level of invariance provided by
the AIWT. The detailed analysis of the blind normalization algo-
rithm and the orientation indicator index are to be presented else-

Fig.2(a) shows an affine distorted sigrfdl obtained from the where.
test signalf by applying the coordinate transform
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Fig. 3. The Blind Normalization Algorithm
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Fig. 5. Additional Examples

WT of f° 2155 (91)| 2104 (119)| 2208 (133)
AIWT of f¢ 2120 (91)| 2097 (119)| 2204 (133)
WT of f¢ 27.0(91)| 611.6(119)| 396.5(133)
Horiz. Detail Coefficients (index)
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Vert. Detall Coefficients (index)
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