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ABSTRACT

We present a two-dimensional wavelet transform that is invari-
ant to affine distortions of the input signal. Affine distortions in-
clude geometric effects such as translation, reflection, uniform and
anisotropic scaling, rotation, and shearing of the input signal. In-
variance of the wavelet transform to affine distortions is achieved
in our work by developing an algorithm that reduces replicas of
a signal related by affine distortions to a unique prototype signal.
The affine invariant wavelet transform is then defined as the two-
dimensional wavelet transform of the prototype signal, which pro-
vides the wavelet coefficients that are invariant to affine distortions
of the input signal. We describe our algorithm and show examples
that demonstrate our claims.

1. INTRODUCTION

The wavelet transform is widely used in many interesting signal
processing applications including image coding and analysis. The
discrete wavelet transform in particular is very popular due to its
compact representation and efficient implementation. The one di-
mensional discrete wavelet transform of a square integrable signal
f(t) 2 L2(R) is written as

DWTff(t)g = hf(t);  j;n(t)i =

Z 1

�1
f(t) �j;n(t)dt (1)

where the wavelet framef j;n(t) = 1p
2j
 ( t�2jn

2j
)g(j;n)2Z2 forms

an orthonormal basis forL2(R).
Unfortunately, the discrete wavelet transform lacks shiftability

as discussed in [1]. That is, the wavelet coefficients vary signifi-
cantly when the input signal is shifted, for example, by transla-
tion, scale, and rotation. This lack of shiftability is troublesome
especially in image identification and classification problems in
which objects present in the image are affected by geometric dis-
tortions resulting from translation, scaling, rotation, and shearing.
Research has been reported on the shiftability of the wavelet trans-
form. Translation invariant wavelet and wavelet packet transforms
are studied in [2] [3] [4] [5]. Joint shiftability in translation and
scale is considered in [1] by relaxing the shiftability constraint in
one of the domains, and in [6] by iterating back and forth between
shiftability invariance on the two domains. A non-linear approach
is investigated in [7] for joint shiftability under thesimilarity trans-
form, which is restricted to translation, uniform scaling, and rota-
tion.

In this paper, we present a wavelet transform that is invari-
ant to affine distortions. Affine distortions arise in many imag-
ing environments where the objects in the scene are in relative
motion with respect to the imaging sensor. Affine distortions in-
clude translation, reflection, uniform and anisotropic scaling, rota-
tion and shearing. Anisotropic scaling and shearing, in particular,
change the shape of the signal and pose a significant challenge
in achieving affine invariance. Our affine invariant wavelet trans-
form (AIWT) generates unique transform coefficients for arbitrary
affine distorted versions of the same signal.

In the next section, we introduce the concept of the affine in-
variant wavelet transform. In section 3, we describe the blind nor-
malization algorithm (BNA) that provides the affine invariance.
Experimental results are shown in section 4. Section 5 concludes
the paper. Proofs are ommitted due to lack of space. They will be
presented in the full version of the paper.

2. AFFINE INVARIANT WAVELET TRANSFORM

A two-dimensional (2D) signalf(x; y) is distorted by an affine
transform into the signalfd(x; y) where

fd(x; y) = f(�x; �y): (2)

and
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�
= Ax+ t (3)

for fAj
ig(i;j)2f1;2g 2 R andfxt; ytg 2 R.

By recentering the signal with respect to the center of mass,
fgx; g�xg, we remove the translation factort = [xt; yt]

T as in

�x
� = (�x� g�x) = A(x� gx) = Ax

� (4)

and safely disregard the translation distortion of the signalfd(x; y).
Therefore, we consider only the linear part of the affine transform
in the remainder of the paper.

Our goal with the affine invariant wavelet transform is to gen-
erate the same set of transform coefficientsC for any affine dis-
torted signalfd(x; y). Denote byAIWTf�g the affine invariant
wavelet transform. Then, for a 2D signalf(x; y) and its affine
distorted versionfd(x; y),

C = AIWTff(x; y)g = AIWTffd(x; y)g = Cd: (5)



The AIWT allows us to represent all affine distorted signals by the
same set of wavelet coefficients. To describe the basic idea under-
lying the AIWT, we defineD(f) to be the set of all affine distorted
versions of the signalf , and letfo be a representative prototype of
the setD(f). Given an affine distorted signalfd 2 D, we reduce
the signalfd to the prototype signalfo by the blind normalization
algorithm (BNA) that we describe in section 3. The normalization
algorithm is blind because it does not know either the prototype
signalfo of the setD to whichfd belongs, or the particular affine
transformA that relatesfd and fo. Then, the affine invariant
wavelet transform offd becomes simply the wavelet transform of
the prototype signalfo, i.e.,

AIWTffdg = WTffog: (6)

Due to fo being unique, this results in a unique set of wavelet
coefficients for the setD(f).

In the next section, we introduce the blind normalization algo-
rithm that convertsfd to fo.

3. THE BLIND NORMALIZATION ALGORITHM (BNA)

The blind normalization algorithm (BNA) transforms an affine dis-
torted signalfd into a prototype signalfo. The algorithm does not
compute the affine parametersfAi

jg, thus no explicit inversion of
the affine matrix is performed. Further, the BNA uses no knowl-
edge of the prototype signalfo.

The BNA consists of two components. The first is a Rotate and
Scale (RnS) step that rotates the signal by a fixed angle� followed
by a scale normalization. The second component is the computa-
tion of the orientation indicator index (OII) that is defined below.
The algorithm iterates repeatedly the RnS step and computes the
OII after each iteration. After a finite number of iterations, the
signal corresponding to the maximum value of the OII is chosen
and stored as the normalized signalfn. Since the BNA reduces
any affine distorted replicafd to the prototypefo, the normalized
signalfn is identical to the prototype signalfo. We then com-
pute the wavelet transform of the normalized signalfn to generate
the AIWT coefficients. We now detail the two components of the
BNA: RnS and OII.

3.1. Rotate and Scale (RnS)

The Rotate and Scale (RnS) step restores the standard shape of the
prototype signal from any arbitrary affine distorted signal. In this
step, the signal is rotated by a fixed angle� and is scaled by factors
f1=�; 1=�g, where� and� are the dimensions of the region of
support of the signal along the x– and y– axes defined as

� =
���max

x
fx : f(x; y) 6= 0 for somey 2 Rg (7)

�min
x

fx : f(x; y) 6= 0 for somey 2 Rg
���

� =

����max
y

f y : f(x; y) 6= 0 for somex 2 Rg

�min
y
f y : f(x; y) 6= 0 for somex 2 Rg

���� :
If the signalf(x; y) is the input to the RnS step, the outcome
f(�x; �y) is obtained by a coordinate transform,�

�x
�y

�
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1
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cos(�) sin(�)

� sin(�) cos(�)

��
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y

�
: (8)

The above matrix multiplication is repeatedN times in the BNA

�x = (SNR) : : : (S1R)(SoR)x (9)

where the matrixR is a rotation by a fixed angle� and the scal-
ing matrixSi contains the scaling factorsf1=�i; 1=�ig that are
recomputed for each rotated signal. We call the multiplication by
the scaling matrixSi the scale normalization. The number of repe-
titionsN is determined by the choice of the rotation angle�, which
repeats itself afterN = 2m iterations if� = �=m.

The outcome of the RnS step is the shape-recovered signal at
different orientations. In order to obtain the one at the standard
orientation of the prototype signalfo, we need the orientation in-
dicator index (OII) that monitors the orientation of the signal. We
introduce this new index measure next.

3.2. Orientation Indicator Index (OII)

We define the orientation indicator index (OII) for the signalf(x; y)

OIIf =
q
�2x + �2y (10)

�x =

Z
R

(x� gx)
3f(x; y)dxdy (11)

�y =

Z
R

(y � gy)
3f(x; y) dxdy: (12)

Because the signalf(x; y) is centered at its center of mass by
Equation (4), we rewrite Equation (10)

[OIIf ]
2 =

2
4Z
R

x3f(x; y)dxdy

3
5
2

+

2
4Z
R

y3f(x; y)dxdy

3
5
2

(13)

=

ZZ
R

(x3u3 + y3v3)f(x; y)f(u; v)dxdydudv:

If the signalf(x; y) is rotated by an angle�, the rotated signal
f�(x; y) is equal tof(�x; �y) where�x = Rx. The orientation indi-
cator index off� is

OIIf� =
q
�2�x + �2�y (14)

��x =

Z
R

( cos(�)x+ sin(�) y)3f(x; y) dxdy (15)

��y =

Z
R

(� sin(�)x+ cos(�) y)3f(x; y) dxdy: (16)

From Equations (10) – (16), we derive the following properties.

Properties of OII :

1. If f(x; y) is symmetric about both the x– and y– axes, the
OII is zero for all rotation angles� = [0; 2�]. This is be-
cause the third order central momentsf�x; �yg are zero for
such a signal.

2. The OII is periodic with period�=2. That is, OIIf� =
OII

f
(�+�

2
) . This is due to the relationship,

�
��x

��y

�
=

�
0 1

�1 0

��
�x
�y

�
; (17)

for any two signals separated by a rotation of�=2 radians.



3. If the signal is symmetric about only one or none of the x–
and y–axes, the OII has a finite number of maximum points
in each interval of� = [0; 2�]. The maximum points in the
OII plot represent unique orientations of the signal.

We now present the blind normalization algorithm.

The Blind Normalization Algorithm:

1. Recentering: Recenterfd(x; y) with respect to the center
of massfg�x; g�yg.

2. Scale Normalization: Computef�, �g from Equation (7).
Scale the pixel coordinates(x; y) to ( x

�
; y
�
).

3. Rotate and Scale (RnS): Choose a fixed angle� and rotate
the signalfd(x; y) by this angle. Perform scale normaliza-
tion.

4. OII Computation: Compute the OII at the rotated position.

5. Iteration: Repeat steps 3 and 4 for a full rotation interval
� = [0; 2�].

6. Normalization: Select the signal corresponding to the max-
imum value of the OII and store it as the normalized signal
fn.

7. AIWT: Compute the wavelet transform of the normalized
signalfn.

The next section presents experimental results that demonstrate the
BNA and the affine invariance of the AIWT.

4. EXPERIMENTAL RESULTS

We first choose the test signalf to be the binary image of a jet
plane. We choose as the prototype signalfo the output of the
BNA applied to the test signalf . The result is shown in Fig.1(a).
Fig.1(b) plots the orientation indicator index of the prototype sig-
nal as a function of the rotation angle� = [0; 2�]. Observe that the
OII plot is periodic in�=2 as discussed earlier. For the test signal
used in this experiment, there are four maximum points over the
2� interval of the OII plot. The orientation of the prototypefo in
Fig.1(a) corresponds to the maximum point at� = 0.

Fig.2(a) shows an affine distorted signalfd obtained from the
test signalf by applying the coordinate transform

A =

�
1:6331 �1:3745

�1:5115 1:0507

�
: (18)

The BNA is applied tofd to recover the prototype signalfo. The
RnS step recovers the shape of the prototype signal from the affine
distorted signal after three iterations in this experiment. The signal
obtained at the third iteration of the RnS step is shown in Fig.2(b).
The fixed rotation angle� used in the RnS step is3�=4.

Fig.3(a) shows the OII plot of the distorted signalfd. The OII
plot of fd after application of the BNA converges to a periodic
function with distinct maxima. We choose the signal correspond-
ing to the first maximum point and store it as the normalized signal
fn. The normalized signalfn is a close approximation to the pro-
totype signalfo as shown in Fig.3(b). The normalized signalfn

is not an exact copy of the prototype signalfo due to the discrete
nature of the signals and the finite resolution of the OII plot.

The AIWT is now the wavelet transform offn. In this ex-
periment, we use Daubechies 3 wavelets to compute the WT coef-
ficients of the prototype, affine distorted, and normalized signals.
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Fig. 1. Prototype Signalfo

Table 1 shows the maginitude, with its location index in the coeffi-
cient vector in parenthesis, of the three largest wavelet approxima-
tion and detail coefficients at the resolution level 3. We conclude
that the AIWT coefficients are very close to the WT coefficients
of the prototype signal occuring at the same spatial locations. In
contrast, the WT coefficients of the distorted signalfd differ sig-
nificantly from the other two sets of coefficients as expected. The
results are similar for other resolution levels and are omitted here.

Fig.4 shows additional examples of the airplane test signal.
Fig.5 shows the affine distorted versions of another test signal and
the outcome of the BNA applied to them. These figures as well as
other experiments with different distortions and test signals con-
firm the good performance of the BNA and the affine invariance of
the AIWT.

5. CONCLUSION

In this paper, we presented the affine invariant wavelet transform.
This transform is obtained by blindly normalizing the affine dis-
torted signal replica to a prototype signal. The orientation of this
normalized signal is determined by an orientation indicator index.
Experimental results show a high level of invariance provided by
the AIWT. The detailed analysis of the blind normalization algo-
rithm and the orientation indicator index are to be presented else-
where.
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