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ABSTRACT

The work presentedhereis centeredarounda speechproduction
modelcalledChainedDynamicalSystemModel(CDSM)whichis
motivatedby the fundamentallimitationsof themainstreamASR
approaches.The CDSM is essentiallya smoothly time varying
continuousstatenonlineardynamicalsystem,consistingof two
subdynamicalsystemscoupledasa chainsothatonesystemcon-
trols the parametersof the next system. The speechrecognition
problemis posedas inverting the CDSM, for which we propose
a solutionbasedon the theoryof Embedding. The resultingar-
chitecture,which we call InvertedCDSM (ICDSM) is evaluated
in a setof experimentsinvolving a speaker independent,contin-
uousspeechrecognitiontaskon the TIMIT database.Resultsof
theseexperimentswhichcanbecomparedwith thecorresponding
resultsin the literature,confirm the feasibility andadvantagesof
theapproach.

1. INTRODUCTION

From the statisticalpatternrecognitionpoint of view, ASR is a
classificationproblemwherethevectorto beclassifiedis theinput
speechwaveform � andclassescorrespondto differentsentences�

. The ASR systemitself shouldrepresentthe joint probabil-
ity ��� ��� ���

, but the commonpracticeis to focus the attention
on ���
	 � ���

, where 	 is thefeaturevectorsequence,ratherthan��� ��� ���
itself. Themissinglink, ��� �
� 	 � , is usuallymodeledasa

deterministicrelationshipbetween� and 	 andcommonlyknown
asfeatureextraction.Thisapproachaspracticedtodayhasat least
two main drawbacks. Firstly, the connectionbetween� and 	
aremadethroughproceduressuchasFourieranalysis,which are
basedon the linearphilosophy[1]. It is highly questionablehow
sucha simplified view of a nonlinearphenomenoncanserve the
purposeof modeling ��� �
� 	 � . Secondlythe “artificial” natureof	 dueto this approachwill not allow easyandefficient model-
ing of ���
	 � ���

using, for example, the predictive relationship
betweensuccessive featurevectors[2]. The lack of sucha pos-
sibility hascontributedtheerrornessassumptionof featurevector
independenceto becomeade-factostandardin acousticmodeling.

Oneobvious solutionto the above problemsis to look for a
modelingparadigmwhichdirectlyoperatesonthewaveformspace
andrespectstheinherentnonlinearnatureof theprocess.Nonlin-
eardynamicalsystemsfit nicely to this requirementand in fact,
severalauthorshave tried to applythesetechniquesonspeechsig-
nals (see[3] andreferencestherein). However thesetechniques
work properlyonly for longstationarysegmentsof signals.

In thispaper, weproposeanonlineardynamicalsystemsbased
acousticmodelingapproach,in whichthedynamicswithin station-
arysegmentsaswell astransitiondynamicsaretakencareof. The
coreof theapproachis to view thehumanspeechproductionsys-
temastwo dynamicalsystemscoupledasachain.In thispaperwe
refer to this as the ChainedDynamicalSystemModel (CDSM).
Theinput to theCDSMis anabstractcoderepresentingthespeech
unit sequence(eg: a phonemesequence)which is corresponding
to the speechwaveform at the output. Thereforethe ASR prob-
lem canbeviewedasinvertingtheCDSM.We proposea solution
to this inversionproblem,which is rootedin Taken’s embedding
theorem[4].

Therestof thepaperis organizedasfollows. In section2 we
outline the structureof the CDSM. In section3, how the CDSM
canbe invertedis sketchedandsection4 is devotedto a brief de-
scriptionof the training procedurefor the ICDSM. Next, experi-
mentsandresultsarepresentedin section5. Finally, in section6,
we make someconcludingremarkson thework.

2. THE CDSM

Figure1 depictsthesystemwhatwecall theCDSM.Here,thenon-
linear function � � ������� � modelsthedynamicsof thearticulatorcon-
figurationscontainedin the statevector � � ������� � . Thesedynamics
areundersupervisionof thecontrol vector � � ����� � which represents
thecurrentsoundclass(eg: phoneme)to begenerated.We denote
this dynamicalsystemby ��� . Thenonlinearfunctions� � ������� � and� ��� � modelthebio-mechanicsof theproductionof thespeechsig-
nal  
��� � having � � �!�"��� � asthestatevector. We call this dynamical
system��� .
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Fig. 1. ChainedDynamicalSystemmodel(CDSM).Here
$

de-
notesa delayelement.



3. INVERSION OF THE CDSM

With referenceto the CDSM of speechproduction,the speech
recognition problem can be posedas finding the control vec-
tor sequence� � ����� � � �('*) �"+��-,",", for a given speechwaveform #��� � � �.'/) �"+��-,",0, . This is nothingelsebut invertingtheCDSM.
Our solutionto this inversionproblemis basedon a generalized
versionof Taken’s theorem[4], accordingto which a frame of
waveformsamples1 �-��� � '32  #��� � �  #����465 � �  #����48795 � �",",",:�  #����4;�=<>4 + � 5 �
?
has a one-to-onesmooth correspondencewith the actual state� � � � ��� � of thedynamicalsystem� � , if < is greaterthantwice the
dimension@ of theactualstatespaceof �%� . However, thereis no
theoreticalwayto obtain@ or 5 . Fortunately, therearemany practi-
cal recipesavailableto cover this deficiency [5]. But theserecipes
aread-hocin natureandnotoptimalwith respectto a relevantcri-
terion. Thereforeassuggestedin [6], we view 1 � ��� � asa projec-
tion of a sufficiently long waveformvectoron the < -dimensional
space.Thatis

1 ����� � 'BA.��CD ��� �E� (1)

whereA.��� � is the(possiblynonlinear)projectionoperatorandCD ��� � 'F2  #��� � �  #���G4 + � �",0,-,H�  #���G4 CI�J%K + �
?ML is a waveform
vectorof length CI J which is sufficiently high. Notehowever thatA.��� � hasto estimatedusingavailabletrainingdata,which is most
effective whenwehave roughvaluesfor < and 5 (andhence CI J )
at handfrom ad-hocapproaches.
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Fig. 2. Inversionof theCDSM.

Oncewe have an estimate1 � ��� � for � � � � ��� � , we canfind an
estimatefor � � ������� � , using the relation � � �!�-��� � 'R���S�-�M�� �!�-���T4+ � � � � �U����� �E� asseenfrom figure 1. Namely, assumingthat � � �S�-��� �
is invertiblewe canwrite

1 �9��� � ' CN �"� 1 �-��� � �E1 �-����4 + �E� (2)

where 1 � ��� � and CN � ��� � areestimatesfor � � � � ��� � and � � � Q � ��� �
respectively.

Finally, anestimateO ��� � for thecontrolvector� � ����� � canbeob-
tainedthroughtherelation � � � � ��� � ';�� � � �V�� � � ���W4 + � � � � �X��� �E� which
is observable from figure 1. As wasdonefor the caseof � � �Y����� � ,
wecanassumethat � � �%����� � is invertibleandobtain O ��� � right away.
But sincewe would like to avoid suchassumptionsas much as
possible,a moredemanding,but moreaccurateprocedureis fol-
lowed.Namely, first it is assumedthatanestimate

N �9��� � for � � �%����� �
and O ��� � areerrornouslyknown. Thatis

1 � ��� � ' N � � 1 � ����4 + � �ZO ��� �E��K P ��� � (3)

Thenparametersof
N ����� � aswell as O ��� � areadjustedin such

a way thatthenormof P ��� � is minimized.
The whole procedureof inversionas definedby eqns.1, 2

and3 is presentedpictorially in figure2. Thearchitectureshown
in figure2 canbefurtherrefinedwith regardto two aspects.

First, the architectureshown in figure 2 usesthe sametime
constant[:\ in both dynamicalsystems� � and � � . (i.e. in both
systems,predictive relationshipsof thestatevectorswhich are [ \
time unitsapartareutilized). But it is generallyacceptedthatar-
ticulator configurationdynamics(eg: vocal tractdynamics)takes
placein a slower time scalethandoesthe within-articulatordy-
namics. Therefore,time constant[:\ � of � � mustbe larger than
that ( [ \ �]'^[ \ ) of ��� . This changecanbeachievedby inserting
adecimatorbetween� Q �� and � Q �� in thearchitecturein figure2.
We selecta decimatorwhich averagesthe past _Z`�acb`�aed f samplesin
every [ \ � time for this purpose.With sucha decimator, we can
show by simpleblock manipulationthat the mappingfrom CD ��� �
to 1 ����� � (performedby theprojectionblock A andtheblock CN � )
is equivalent to a mappingfrom a longer speechframe D ��� � to1 � ��� � by a singlefunction

N&g
. Here D ��� � is givenby

D ��� � '32  
���h�ji � �  #���k�ji84 + � �",-,",:�  #���h�jiT4 I J K + �
?
where� i ' `9a
b`9a�d and

I�J 'B� i K CI�J .
The secondrefinementis to considerthe error quantity P ��� �

a randomvariablewith a zero meanGaussiandistribution. We
accomplishthisby introducingablock Amlon for eachclassp whose
outputis givenby

����� � p � '3�c7�q � Q�r:sb � t n � Q dbUuovkw x 4 +7 P ��� � L t Q �n P ��� �-y (4)

where
$Wz

is thedimensionof P ��� � and t n is thecovariance
matrix.

With thesemodifications,our invertedCDSM will appearas
depictedin figure3.
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Fig. 3. A modifiedversionof theICDSMsuitablefor practicalASR

4. TRAINING ALGORITHM FOR THE ICDSM

The goalof training is to estimatetheparametersof the function
blocks

N g
and

N � which areimplementedasMultilayer Percep-
trons, as well ascovariancematrix t n andcontrol input O n for
eachclassp{'B) �-+��",0,",H�Z| 4 + .



We usetwo typesof trainingalgorithms;anisolatedmodeal-
gorithmwhichdependsonboundaryinformationandadiscrimina-
tivecontinuousmodealgorithm.In bothcasesagradienttechnique
basedon theRPROPupdaterule is employed[7].

In the isolatedmodeof training, the objective function used
for gradientbasedoptimizationis

} '~4��Z��� Q ���"�������%������� �E� ��� �E��� (5)

where � is thetrainingsetand � is thenumberof framesof
the currentutterance. � ��� � is a function which mapsthe frame
index � to the classindex p . Basedon this equation,it is trivial
to obtainthe derivative of

}
with respectto theerror probability����� �Z� ��� �E� .

Thediscriminativetrainingalgorithmis basedontheMMI cri-
terion[7], whichis definedconsideringthewholeerrorprobability
matrix ����� � p � � ��'�) �"+��-,0,",H� �{��4 +�� p�'�) �"+��-,",",:��| 4 + for
eachutterancein � . Sincewe can view this matrix as a trellis
(with its elementsasnodes),thereis a straightforward similarity
to the HMM basedsystems.Thereforethe derivative of the cri-
terion with respectto ����� � p � canbe obtainedusing the formula
givenin [7].

Once the gradientof the objective function with respectto
the error probabilitiesare known, they can be back-propagated
throughthewholesystemsimilarto theapproachin [7]. Thisgives
thegradientswith respectto systemparametersso that thosecan
beupdatedtowardsanoptimumpoint.

5. EXPERIMENTS AND RESULTS

In orderto evaluatethe ICDSM, we selectthe so called39-class
taskon the TIMIT database[7]. The training set for the task is
preparedby picking all theSI andSX sentences(3696sentences
all together)from all 462speakersin theTIMIT trainingset,while
takingthesocalledcore testsetfor testing.

Thebaselinesystemweusedin theseexperimentshastheraw
form asdepictedin figure3. Thesystemis fedwith speechframes
of 25mstakenat10msintervals,whichimpliesthat

I�J '(��)�) and� i ' +-� ) asthesamplingrateis 16kHz.All vectorsin thesystem
( 1 � , O and P ) aredimensionedto 8. Following thestateconceptin
HMMs, we usethreecontrolvectorsto representeachclass,even
thoughin earliersectionswe assumethat a singlecontrol vector
representsaclass,for thesake of clarity.

The implementationdetailsof the functionblocksareasfol-
lows. The function block Aml"no� \ for eachclassp and“state”  is
implementedwith a diagonalcovariancematrix t no� \ . N � ��� � is
implementedasa threelayer MLP with dimensions(8-10-10-8),
tan-sigmoidsin thefirst two layersanda linearoutputlayer. The
inputsto

N � ��� � , namely 1 � ���.4 + � and O ��� � arecombinedusing
elementwisemultiplications. We studiedseveral different imple-
mentationsof the functionblock

N�g
, becauseit is a crucial com-

ponentof theICDSM.
(1) An MLP like architectureobtainedthroughgeneralization

of a Mel Frequency basedCepstralCoefficient (MFCC) calcula-
tion procedure[8]. ThisarchitecturecalledMFCC-MLPis dimen-
sionedto representthecalculationof 8-dimensionalMFCCsusing
a 256-pointFourierTransformbased24-channelfilter bank.

(2) Thefirst layerof theMLP-likestructurein item1, is mod-
ified to representtheFastFourierTransform(FFT) algorithms.In
this waya computationaladvantageis obtained.

(3) A threelayer MLP with dimensions(400-24-24-8),tan-
sigmoidsin the first two layersand a linear output layer. This
MLP is initialized randomlyusinga normaldistributionwith zero
meanand0.1variance.

(4) ThesameMLP in item3, but initialized in suchaway that
MFCCsareproducedat theoutputwhenfedwith speechframes.

(5) A globallyrecurrentnetwork with dimensions(208-24-24-
8), tan sigmoidsin the first two layersanda linear output layer.
Thearchitectureis initialized randomly.

Beforetraining,any elementwhichdoesnothaveasystematic
methodfor initialization,is initializedrandomly. Thentheisolated
modetrainingprocedureis run. Finally, discriminative trainingis
carriedout in continuousmode.Theresultsfor theseexperiments
areshown in table1, wherepercentagecorrect(%Corr) andper-
centageaccuracy (%Accu)arecalculatedasin [7].N�g ��� � variant/code %Corr %Accu

MFCC-MLP (Freezed
N�g

)/ VA1 59.38 55.97
MFCC-MLP (Freezedlayer1)/ VA2 62.30 58.72
MFCC-MLP (FFT basedlayer1)/VA3 64.75 60.44
MLP (randomlyinitialized)/VA4 65.39 61.62
MLP (initialized to MFCC)/ VA5 65.56 62.78
RecurrentNet/VA6 67.37 64.11

Table 1. Recognitionresultsfor the39-classrecognizer, for differ-
entarchitecturesrepresenting

N g ��� � . VAx is a codenamefor theN g ��� � variant

As seenfrom table1, thebestresultsis obtainedfor therecur-
rent net implementationof

N�g
. Furtherthe randomlyinitialized

MLP performsextremelywell. This meansthat
N g

implementa-
tions which arecompletelyindependentof the traditionalfeature
extractionalgorithmscanperformalmostasgoodas(or evenbet-
ter than) thoserelatedto traditionalalgorithms. Further, we can
seethatany form of optimizationof

N�g
givesriseto considerable

improvementsover thecaseof unoptimized
N g

(MFCC-MLPwith
freezed

N g
in table1).

Onedrawbackof the ICDSM is that it specializesmerelyon
thedynamicsin thestatespace,while ignoringthestaticinforma-
tion aboutthestatespaceitself. On theotherhand, HMMs incor-
poratea lot of staticinformation(of MFCCsfor example),albeit
not of exactly thesamestatespace.Thereforesuperiorresultscan
be expectedfrom a combinedsystem. To study this possibility
we usea separatelytrainedsinglemixturemonophoneHMM sys-
tem,which is basedon 26-dimensionalfeaturevectorsconsisting
of MFCCs,log energy andtheir deltas.This HMM is trainedus-
ing the ConditionalMaximum Likelihoodcriterion as in [7] and
in stand-alonetestingit gives64.45%correctand61.22%accu-
racy. TheICDSM andtheHMM systemarecombinedin thetest-
ing phaseby summingstateconditionedlikelihoodsfrom thetwo
systems.Resultsfor this experimentareshown in table2. These
resultsshow thatwereallycangainsomethingby combiningthese
systems.Additional staticinformationbroughtinto thesystemby
theHMMs, in all caseshascausedan increaseof 3-4%in recog-
nition accuracies.

The systemsdescribedso far do not have an explicit mech-
anismfor absorbingspeaker variations. Oneway to incorporate
this ability is to usea mixture of predictors(insteadof a single
predictor)in theICDSM. In practicethis canbeachievedby hav-
ing severalcontrolvectorsperclass,but still usingthesamesingle



Codeof theN g ��� � variant ICDSM Combined
%Corr %Accu %Corr %Accu

VA3 64.75 60.44 66.86 63.69
VA4 65.39 61.62 69.17 65.17
VA5 65.56 62.78 69.55 65.63
VA6 67.37 64.11 70.95 67.86

Table 2. Recognition resultsfor the39-classtaskusingthecom-
binedICDSM-HMMrecognizer.

predictorfunctionblock
N � . Theclassconditionedprobabilitycan

thenbe expressedasa weightedsumof the mixture component
predictionerrorprobabilities.

In order to evaluatethe ICDSM with mixture of predictors,
thesystemwith

N g
variantVA4 (theonewith randomlyinitialized

MLP) is used. Table3 summarizesthe results. It is clear from
theseresultsthatasthenumberof mixturecomponentsin thepre-
dictor increasesthe resultsget improved. This behavior can be
expectedto continueuntil theadvantageof theadditionalparame-
tersof theaddedmixturecomponentslevelsoutwith thereduction
of thegeneralizationability.

#mixture-
Predictors ICDSM

Combined
HMM-ICDSM

%Corr %Accu %Corr %Accu
1 65.39 61.62 69.17 65.17
2 67.67 63.31 70.39 66.29
3 69.25 64.61 70.71 67.73

Table 3. Recognition results for the mixture predictor based
ICDSM.

6. CONCLUDING REMARKS

Theexperimentsandresultspresentedin this papershow that the
ICDSM canbesuccessfullyusedasa speechrecognizer. Thear-
chitecturestestedherearecharacterizedby thepropertyof effec-
tive extractionof dynamicinformation,especiallythoseat transi-
tions. Basedon this, we canexpect that they arecapableof fil-
tering out co-articulationeffects in an efficient manner. There-
fore it would be interestingto comparethe performanceof the
ICDSM with that of systemswhich arespecificallydesignedfor
handlingco-articulationeffects.Table4 showstheresultsfor some
of suchsystemswhich are evaluatedusing the TIMIT-database.
Eventhoughtheseresultscannotbecompareddirectly, weseethat
performanceof theICDSM basedsystemslies reasonablyclosely
to thegeneralperformancelevel of theothersystems.Howeverthe
ICDSM achievesthis performanceonly with a significantlylower
numberof parameters.

Thereareother interestingaspectsof the ICDSM which are
worthwhile to mention. Onesuchaspectis that the ICDSM op-
eratesdirectly on thewaveformspace,somethingwhich makesit
suitablefor noiserobustASR.Anotherinterestingpoint is thatas
the ICDSM can model the speechsignalwith a smallernumber
parameters,it is a goodcandidatefor high performancespeaker
adaptation.We have experimentedwith thoseaspectsandplanto
reporttheresultsin a separatepaper.

Model approach NFP testset %Accu
Thispaper ICDSM alone 8k core 64.11

ICDSM+HMM 16k core 67.86

Young[9] triphoneHMM 800k full 72.3
Robinson[10] recurrentnet 47k core 73.9
Chen [11] HMM+context N/A random 70.4
Sun[12] interpolation 25k random 72.5

Table 4. Comparisonwith thesystemswhich handleco-articula-
tion explicitly. Here NFP standsfor numberof freeparameters.
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