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ABSTRACT

The work presentedhereis centeredarounda speechproduction
modelcalledChainedDynamicalSystemModel (CDSM)whichis
motivatedby the fundamentalimitations of the mainstreamASR
approaches.The CDSM is essentiallya smoothlytime varying
continuousstate nonlineardynamicalsystem,consistingof two
subdynamicalsystemsoupledasa chainsothatonesystemcon-
trols the parameter®f the next system. The speechrecognition
problemis posedasinverting the CDSM, for which we propose
a solution basedon the theory of Embedding. The resultingar-
chitecture,which we call InvertedCDSM (ICDSM) is evaluated
in a setof experimentsinvolving a spealkr independentcontin-
uousspeectrecognitiontaskon the TIMIT database Resultsof
theseexperimentavhich canbe comparedvith the corresponding
resultsin the literature,confirm the feasibility and advantagesof
theapproach.

1. INTRODUCTION

From the statisticalpatternrecognitionpoint of view, ASR is a
classificatiorproblemwherethevectorto be classifieds theinput
speechwaveforms andclassesorrespondo differentsentences
W. The ASR systemitself shouldrepresenthe joint probabil-
ity p(s, W), but the commonpracticeis to focus the attention
onp(0, W), whereO is thefeaturevectorsequenceratherthan
p(s, W)itself. Themissinglink, p(s|O), is usuallymodeledasa
deterministiarelationshipbetweers andO andcommonlyknown
asfeatureextraction. This approachaspracticectodayhasat least
two main drawbacks. Firstly, the connectionbetweens and O
aremadethroughproceduresuchasFourier analysis,which are
basedon thelinear philosophy[1]. It is highly questionabldowv
sucha simplified view of a nonlinearphenomenortansene the
purposeof modelingp(s|O). Secondlythe “artificial” natureof
O dueto this approachwill not allow easyand efficient model-
ing of p(O, W) using, for example, the predictive relationship
betweensuccessie featurevectors[2]. The lack of sucha pos-
sibility hascontritutedthe errornessassumptiorof featurevector
independenct becomea de-factostandardn acoustianodeling.

One obvious solutionto the abore problemsis to look for a
modelingparadigmwhichdirectly operate®nthewaveformspace
andrespectghe inherentnonlineamatureof the process Nonlin-
eardynamicalsystemdfit nicely to this requirementandin fact,
severalauthorshave tried to applythesetechniquesn speectsig-
nals (see[3] andreferencegherein). However thesetechniques
work properlyonly for long stationarysegmentsof signals.

In thispaperwe proposeanonlineadynamicalkystem$ased
acoustianodelingapproachin whichthedynamicswithin station-
ary sgmentsaswell astransitiondynamicsaretakencareof. The
coreof theapproachs to view the humanspeectproductionsys-
temastwo dynamicalsystemsoupledasachain.In this papemwe
refer to this asthe ChainedDynamical SystemModel (CDSM).
Theinputto the CDSMis anabstractoderepresentinghespeech
unit sequencdeg: a phonemesequenceyvhich is corresponding
to the speechwaveform at the output. Thereforethe ASR prob-
lem canbeviewedasinvertingthe CDSM. We proposea solution
to this inversionproblem,which is rootedin Taken's embedding
theorem4].

Therestof the paperis organizedasfollows. In section2 we
outline the structureof the CDSM. In section3, how the CDSM
canbeinvertedis sketchedandsection4 is devotedto a brief de-
scriptionof the training procedurefor the ICDSM. Next, experi-
mentsandresultsarepresentedn section5. Finally, in section6,
we make someconcludingremarkson thework.

2. THECDSM

Figurel depictsthesystemwhatwe callthe CDSM.Here thenon-
linearfunction F(-) modelsthe dynamicsof the articulatorcon-
figurationscontainedin the statevectorse, (k). Thesedynamics
areundersupervisiorof the contmol vectora(k) which represents
the currentsoundclass(eg: phoneme}o be generatedWe denote
this dynamicalsystemby €. Thenonlinearfunctions¥:(-) and
h(-) modelthebio-mechanic®f the productionof the speectsig-
nal s(k) having s¢1 (k) asthe statevector We call this dynamical
system®; .
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Fig. 1. ChainedDynamicalSystenmodel(CDSM).Here D de-
notesa delayelement.



3. INVERSION OF THE CDSM

With referenceto the CDSM of speechproduction,the speech
recognition problem can be posedas finding the control vec-

tor sequenca(k), k = 0,1,... for a given speechwaveform

s(k), k=0,1,.... Thisis nothingelsebut invertingthe CDSM.

Our solutionto this inversionproblemis basedon a generalized
version of Taken’s theorem[4], accordingto which a frame of

waveformsamples

x1(k) = [s(k),s(k — 1),s(k — 27),... ,8(k — (m — 1)7)]

has a one-to-onesmooth correspondenceavith the actual state
21 (k) of thedynamicalsystem®, if m is greaterthantwice the
dimensiond of the actualstatespaceof ®,. However, thereis no

theoreticalvayto obtaind or 7. Fortunatelytherearemary practi-
calrecipesavailableto cover this deficieny [5]. But theserecipes
aread-hocin natureandnot optimalwith respecto arelevantcri-

terion. Thereforeassuggestedh [6], we view x1(k) asa projec-
tion of a sufficiently long waveformvectoron the m-dimensional
spaceThatis

x1(k) = P(v(k)) @

whereP(-) is the (possiblynonlinear)projectionoperatorand
(k) = [s(k),s(k —1),...,s(k — Ky + 1)]* is a waveform
vectorof Iengthf(f which is sufiiciently high. Note hawvever that
P(-) hasto estimatedisingavailabletraining data,which is most
effective whenwe have roughvaluesfor m andr (and hencekf)

athandfrom ad-hocapproaches.

Fig. 2. Inversionof the CDSM.

Oncewe have an estimatex (k) for s¢;(k), we canfind an
estimatefor s¢;(k), using the relation se; (k) = Fi(se1(k —
1),3¢2(k)) asseenfrom figure 1. Namely assuminghat F1(-)
is invertiblewe canwrite

xa(k) = F1(x1(k), x1(k — 1)) )

wherexs (k) andF; (-) areestimategor s, (k) andF 1 (-)
respectiely.

Finally, anestimatea(k) for thecontrolvectora (k) canbeob-
tainedthroughtherelationses (k) = Fa(se2(k — 1),a(k)) which
is obserablefrom figure 1. As wasdonefor the caseof F1(-),
we canassumehatF(-) is invertibleandobtaina(k) right away.
But sincewe would like to avoid suchassumptionss much as
possible,a more demanding put more accurateprocedures fol-
lowed. Namely firstit is assumedhatanestimateF's (-) for Fa(-)
anda(k) areerrornouslyknown. Thatis

x2(k) = Fa(x2(k — 1), a(k)) + e(k) ©)

Thenparametersf F»(-) aswell asa(k) areadjustedn such
away thatthenormof e(k) is minimized.

The whole procedureof inversionas definedby eqgns.1, 2
and3 is presentegictorially in figure 2. The architectureshavn
in figure 2 canbefurtherrefinedwith regardto two aspects.

First, the architectureshavn in figure 2 usesthe sametime
constantT’; in both dynamicalsystems®; and®-. (i.e. in both
systemspredictive relationshipf the statevectorswhich are T
time units apartareutilized). But it is generallyacceptedhatar
ticulator configurationdynamics(eg: vocaltractdynamics)takes
placein a slower time scalethan doesthe within-articulatordy-
namics. Therefore time constantTs» of &, mustbe largerthan
that(Ts1 = T) of @;. Thischangecanbeachieved by inserting
adecimatorbetween®; ' and®; ! in thearchitecturen figure2.
We selecta decimatorwhich averageghe past [%] samplesn
every T, time for this purpose. With sucha decimator we can
shav by simple block manipulationthat the mappingfrom v (k)
to x2 (k) (performedby the projectionblock P andthe block F1)
is equivalentto a mappingfrom a longer speechframe v(k) to
x2(k) by asinglefunctionF,. Herev (k) is givenby

v(k) = [S(k'kD), s(kkp —1),...,s(kkp — Kr+ 1)]

wherekp = 722 andKy = kp + K.
The secondrefinements to considerthe error quantity e(k)

a randomvariable with a zero meanGaussiardistribution. We

accomplistthis by introducingablock Pr; for eachclassj whose

outputis givenby

DE
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whereDg is thedimensionof e(k) andX; is the covariance
matrix.

With thesemodifications,our invertedCDSM will appearas
depictedn figure 3.
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Fig. 3. AmadifiedversionofthelCDSMsuitablefor practical ASR

4. TRAINING ALGORITHM FOR THE ICDSM

The goal of trainingis to estimatethe parameter®f the function
blocksF, andF» which areimplementedasMultilayer Percep-
trons, aswell as covariancematrix 3; and control input a; for
eachclassj = 0,1,... ,C —1.



We usetwo typesof trainingalgorithms;anisolatedmodeal-
gorithmwhichdepend®nboundanjinformationandadiscrimina-
tive continuousnodealgorithm.In bothcasesagradientechnique
basedbnthe RPROP updaterule is employed[7].

In the isolatedmodeof training, the objective function used
for gradientbasedoptimizationis

N-1
E=-Y"Y In(p(k,Qk))) ()
T k=0

whereT is thetraining setand NV is the numberof framesof
the currentutterance.Q(k) is a function which mapsthe frame
index k to the classindex j. Basedon this equation,it is trivial
to obtainthe derivative of E with respecto the error probability
p(k, Q(k)).

Thediscriminatve trainingalgorithmis baseconthe MMI cri-
terion[7], whichis definedconsideringhewholeerrorprobability
matrixp(k,j), k =0,1,... ,N;—1, 5=0,1,...,C — 1 for
eachutterancein 7. Sincewe canview this matrix as a trellis
(with its elementsasnodes) thereis a straightforvard similarity
to the HMM basedsystems. Thereforethe derivative of the cri-
terion with respectto p(k, j) canbe obtainedusing the formula
givenin [7].

Oncethe gradientof the objective function with respectto
the error probabilitiesare known, they can be back-propagated
throughthewholesystensimilarto theapproachn [7]. Thisgives
the gradientswith respecto systemparameterso thatthosecan
be updatedowardsanoptimumpoint.

5. EXPERIMENTSAND RESULTS

In orderto evaluatethe ICDSM, we selectthe so called 39-class
taskon the TIMIT databasg7]. The training setfor the taskis
preparedoy picking all the SI and SX sentence$3696 sentences
all together)¥rom all 462spealersin theTIMIT trainingset,while
takingthe socalledcore testsetfor testing.

Thebaselinesystemwe usedin theseexperimentshastheraw
form asdepictedn figure 3. Thesystems fed with speectHrames
of 25mstakenat 10msintervals,whichimpliesthatK y = 400 and
kp = 160 asthesamplingrateis 16kHz. All vectorsin thesystem
(x2, a ande) aredimensionedo 8. Following the stateconcepin
HMMs, we usethreecontrol vectorsto represeneachclass,even
thoughin earlier sectionswe assumethat a single control vector
representsi.class for the sale of clarity.

The implementatiordetailsof the function blocksareasfol-
lows. The function block Pr; , for eachclassj and“state” s is
implementedwith a diagonalcovariancematrix ;.. Fa(:) is
implementedas a threelayer MLP with dimensiong8-10-10-8),
tan-sigmoidsn thefirst two layersanda linear outputlayer The
inputsto F»(-), namelyxz(k — 1) anda(k) arecombinedusing
elementwisenultiplications. We studiedseveral differentimple-
mentationf the functionblock F,,, becausaét is a crucial com-
ponentof theICDSM.

(1) An MLP like architectureobtainedthroughgeneralization
of a Mel Frequeng basedCepstralCoeficient (MFCC) calcula-
tion procedurd8]. ThisarchitecturealledMFCC-MLP is dimen-
sionedto representhe calculationof 8-dimensionaMFCCsusing
a 256-pointFourier Transformbased4-channefilter bank.

(2) Thefirst layerof the MLP-lik e structurein item 1, is mod-
ified to representhe FastFourier Transform(FFT) algorithms.In
this way a computationabdwantages obtained.

(3) A threelayer MLP with dimensions(400-24-24-8) tan-
sigmoidsin the first two layersand a linear outputlayer This
MLP is initialized randomlyusinga normaldistribution with zero
meanand0.1 variance.

(4) ThesameMLP in item 3, but initialized in suchaway that
MFCCsareproducedat the outputwhenfed with speecHrames.

(5) A globallyrecurrennetwork with dimensiong208-24-24-
8), tan sigmoidsin the first two layersand a linear outputlayer.
Thearchitecturas initialized randomly

Beforetraining,ary elementwhich doesnothave asystematic
methodfor initialization, is initialized randomly Thentheisolated
modetraining procedurds run. Finally, discriminatve trainingis
carriedoutin continuousmode. Theresultsfor theseexperiments
areshavn in table 1, wherepercentageorrect(%Corr) and per
centageaccurag (YoAccu)arecalculatedasin [7].

F,(-) variant/code %Corr | %Accu
MFCC-MLP (Freezed, )/ VA1 59.38 | 55.97
MFCC-MLP (Freezedayer1)/ VA2 62.30 | 58.72
MFCC-MLP (FFT basedayerl)/VA3 | 64.75 | 60.44
MLP (randomlyinitialized)/ VA4 65.39 | 61.62
MLP (initialized to MFCC)/ VA5 65.56 | 62.78
RecurreniNet/ VA6 67.37 | 64.11

Table 1. Recognitiorresultsfor the 39-clasgecognizerfor differ-
entarchitecturesepresenting”, (-). VAX is a codenamefor the
F,(-) variant

As seerfrom tablel, thebestresultsis obtainedfor therecur
rent netimplementatiorof F,,. Furtherthe randomlyinitialized
MLP performsextremelywell. This meansthatF, implementa-
tions which are completelyindependenof the traditionalfeature
extractionalgorithmscanperformalmostasgoodas(or evenbet-
ter than) thoserelatedto traditional algorithms. Further we can
seethatary form of optimizationof F,, givesriseto considerable
improvementsover thecaseof unoptimizedf, (MFCC-MLP with
freezedF, in tablel).

Onedravbackof the ICDSM is thatit specializesnerelyon
thedynamicsin the statespacewhile ignoring the staticinforma-
tion aboutthe statespacdtself. Ontheotherhand, HMMs incor
poratea lot of staticinformation(of MFCCsfor example),albeit
not of exactly the samestatespace.Thereforesuperiorresultscan
be expectedfrom a combinedsystem. To study this possibility
we usea separatelyrainedsinglemixture monophoneHMM sys-
tem, which is basedon 26-dimensionafeaturevectorsconsisting
of MFCCs,log enegy andtheir deltas. This HMM s trainedus-
ing the ConditionalMaximum Likelihood criterionasin [7] and
in stand-alondestingit gives 64.45%correctand61.22 %accu-
rag). ThelCDSM andtheHMM systemarecombinedn thetest-
ing phaseby summingstateconditionedik elihoodsfrom the two
systems.Resultsfor this experimentareshavn in table2. These
resultsshav thatwe really cangainsomethingoy combiningthese
systems Additional staticinformationbroughtinto the systemby
the HMMs, in all caseshascausedanincreaseof 3-4%in recog-
nition accuracies.

The systemsdescribedso far do not have an explicit mech-
anismfor absorbingspealkr variations. One way to incorporate
this ability is to usea mixture of predictors(insteadof a single
predictor)in the ICDSM. In practicethis canbe achieved by hav-
ing severalcontrolvectorsperclass but still usingthesamesingle



Codeof the
F,(-) variant ICDSM Combined
%Corr | %Accu | %Corr | %Accu
VA3 64.75 | 60.44 66.86 | 63.69
VA4 65.39 | 61.62 69.17 | 65.17
VA5 65.56 | 62.78 69.55 | 65.63
VA6 67.37 | 64.11 70.95 | 67.86

Table 2. Recagnition resultsfor the 39-classtaskusingthe com-
binedICDSM-HMMrecanizer

predictorfunctionblock F». Theclassconditionedprobabilitycan

thenbe expressedas a weightedsum of the mixture component

predictionerror probabilities.

In orderto evaluatethe ICDSM with mixture of predictors,
thesystenmwith F,, variantVA4 (theonewith randomlyinitialized
MLP) is used. Table 3 summarizeshe results. It is clearfrom
theseresultsthatasthe numberof mixture componentén the pre-
dictor increaseghe resultsget improved. This behaior canbe
expectedo continueuntil theadwantageof theadditionalparame-
tersof theaddedmixturecomponentsevelsoutwith thereduction
of thegeneralizatiorability.

#mixture- Combined
Predictors ICDSM HMM-ICDSM
%Corr | %Accu | %Corr | %Accu
1 65.39 | 61.62 | 69.17 | 65.17
2 67.67 | 63.31 | 70.39 | 66.29
3 69.25 | 64.61 | 70.71 | 67.73
Table 3. Recanition resultsfor the mixture predictor based

ICDSM.

6. CONCLUDING REMARKS

The experimentsandresultspresentedn this papershav thatthe
ICDSM canbe successfullyjusedasa speectrecognizer The ar

chitecturegestedhereare characterizedby the propertyof effec-
tive extractionof dynamicinformation,especiallythoseat transi-
tions. Basedon this, we canexpectthat they are capableof fil-

tering out co-articulationeffects in an efficient manner There-
fore it would be interestingto comparethe performanceof the
ICDSM with that of systemswhich are specificallydesignedor
handlingco-articulatioreffects. Table4 shavs theresultsfor some

of suchsystemswhich are evaluatedusing the TIMIT -database.

Eventhoughtheseresultscannote comparedlirectly, we seethat
performancef the ICDSM basedsystemdies reasonablyclosely
to thegeneraperformancdevel of theothersystemsHoweverthe
ICDSM achievesthis performancenly with a significantlylower
numberof parameters.

Thereare otherinterestingaspectf the ICDSM which are
worthwhile to mention. One suchaspects thatthe ICDSM op-
eratesdirectly on the waveform space somethingwhich malesit
suitablefor noiserobust ASR. Anotherinterestingpoint is thatas
the ICDSM can modelthe speechsignalwith a smallernumber
parametersit is a good candidatefor high performancespealer
adaptation We have experimentedvith thoseaspectsandplanto
reporttheresultsin a separatgaper

Model approach NFP | testset | %Accu
This paper ICDSMalone | 8k core 64.11
ICDSM+HMM | 16k | core 67.86
Young|[9] triphoneHMM | 800k | full 72.3
Robinson10] | recurrentnet 47k | core 73.9
Chen[11] HMM+context | N/A | random| 70.4
Sun[12] interpolation 25k | random| 72.5

Table 4. Comparisornwith the systemsvhich handleco-articula-
tion explicitly. Here NFP standsfor numberof freeparametes.
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