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ABSTRACT

We discuss the DPASTd algorithm for signal subspace tracking.
Our analysis shows that, under a sufficient condition on the step
size, the DPASTd algorithm is locally stable even though delayed
updating is applied. A pipelined realization of the algorithm and
the corresponding systolic architecture are also proposed and a
method for reciprocal computation is discussed. We also present
simulation results to validate the algorithm.

1. INTRODUCTION
Estimating and tracking the signal subspace is required in many
signal processing applications such as direction of arrival (DOA)
estimation and blind equalization. Traditionally, this operation has
been performed in software because of its high computational com-
plexity. In recent years, however, the appearance of low-cost sub-
space tracking algorithms, along with the development of VLSI
technology, are tending to make it possible to construct a pure
hardware solution.

The PASTd algorithm described in [1] is an example of such
an algorithm. This algorithm has a very low computational com-
plexity of O(rN) and is recursive least-squares (RLS) based, thus
potentially converging fast.

One unfortunate aspect of the original PASTd algorithm is that
it suffers from long computation delay. In order to facilitate a
high-speed implementation, we have proposed in [2] the DPAST
algorithm, based on the idea of delayed updating. In this paper,
we discuss the local stability and a systolic implementation of a
deflated version of the DPAST algorithm (DPASTd).

In the second section of this paper, we briefly review the PASTd
algorithm. Section 3 discusses the DPASTd algorithm and espe-
cially its local stability under an independence assumption. We
propose in Section 4 a pipelined realization of the algorithm and
the corresponding systolic architecture. The design of critical cells
is also studied. Section 5 summarizes our conclusions.

2. THE ALGORITHM UNDER DISCUSSION

A novel cost function is proposed in [1] to solve the subspace
tracking problem adaptively. Let x(n) be a real random sequence,
let x(n) be an N -vector with x(n) = [x(n); x(n� 1); : : : ;
x(n � N + 1)]T and let R = E[x(n)x(n)T ] be its correlation
matrix. The subspace constructed by the r < N largest eigenvec-

This work was supported in part by UC MICRO GRANT 00-104.

tors1 can be identified by minimizing

J(W) = Ekx�WW
T
xk

2
: (1)

It is proved in [1] that W is the global minimum of J(W) if
and only if W = UrQ, where Ur contains the r largest eigen-
vectors andQ is an arbitrary unitary matrix.

Modifying the cost function to be

J 0(W(n)) =

nX

i=1

�n�ikx(i)�W(n)y(i)k2

where y(i) =WT (i� 1)x(i), and following the same procedure
as is used in deriving the RLS algorithm, we can obtain the so-
called PAST algorithm. The PASTd algorithm is derived from the
PAST using the deflation technique. The computational complex-
ity is thus reduced to O(rN). Descriptions of both algorithms can
be found in [1].

3. THE DPASTD ALGORITHM

3.1. The algorithm

We have proposed an alternative cost function, which could lead
to a high-speed solution. That is, let

JD(W(n)) = E[kx(n�D)�WW
T
x(n�D)k2]: (2)

Under the condition that x(n) is a stationary signal, or a time-
varying signal but one whose statistical properties do not change
during the length-D time period, the solution to (2) is the same
as that to (1). Both an LMS-like algorithm and an RLS-like algo-
rithm can be derived to minimize (2). In particular, the RLS-like
algorithm is called DPAST and it is summarized in [2].

Similar to [1], we invoke the deflation technique to reduce the
computational complexity of DPAST to O(rN). The deflated ver-
sion of the DPAST algorithm (to be called DPASTd) is shown in
Table I.

Notice that we use wi(n � 2), instead of wi(n � 1) as in
PASTd, in the updating equation for the error term ei(n) in order
to further reduce the computation delay in a pipelined realization.
Furthermore, xDi (n) in the table is not a delayed version of signal
xi(n), but rather, it is deflated from xDi�1(n). Therefore, unlike in
the PASTd algorithm, two deflations need to be carried out in the
DPASTd algorithm.

1We use the term “largest eigenvector” to indicate the eigenvector that
corresponds to the largest eigenvalue ofR. That is, we order the eigenvec-
tors according to the natural ordering of the corresponding eigenvalues.



TABLE I
DPASTd ALGORITHM FOR SUBSPACE TRACKING

Choose di(0) and wi(0) properly;
for n = 1; 2; : : : do
x1(n) = x(n);
xD1 (n) = x(n�D);
for i = 1; ; 2; : : : ; r
yi(n) = wi(n� 1)Txi(n);
di(n) = �di(n� 1) + y2i (n�D);
ei(n) = x

D
i (n)�wi(n� 2)yi(n�D);

wi(n) = wi(n� 1) + ei(n)yi(n�D)=di(n);
xi+1(n) = xi(n)�wi(n)yi(n);
x
D
i+1(n) = x

D
i (n)�wi(n)yi(n�D);

end
end

3.2. Analysis of local stability

Since extra delays have been inserted, the difference equation for
the DPASTd algorithm has a different order than that of the PASTd
algorithm. Certain mathematical analyses must be carried out to
guarantee the algorithm’s convergence and stability.

In this paper, we only analyze the local stability of the algo-
rithm and our analysis is carried out in three steps. We start with a
special case of the algorithm where r = 1 and �(n) = 1

d(n)
= �

is a constant and we show that DPASTd is locally stable under
these two assumptions. Then, the assumption on �(n) is released
and we discuss how a time-varying step-size affects the proof. r is
still assumed to be one at this point. Finally, the results in step 1
and step 2 are extended to the stability proof of the more general
DPASTd algorithm, where r can be an arbitrary positive integer.

3.2.1. Step 1: a special case where r = 1 and �(n) = �

In this special case, the DPASTd algorithm coincides with an LMS-
like algorithm similar to the one in [1], which reads

w(n) = w(n� 1) + �(x(n�D)

�w(n� 2)y(n�D))y(n�D):
(3)

In order to prove the local stability of (3), let us construct an
expanded nonlinear state-space model for it. Defining W(n) =
[w(n); w(n� 1); : : : ; : : : ; w(n�D)]T as an N(D+1)� 1
state vector, we obtain the following recursion from (3)2:

W(n) =

2
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(4)

2In this paper, x represents x(n�D), if not mentioned explicitly.

An assumption that is usually made in the literature is that the
eigenvalues ofR, �1; �2; : : : ; �N , satisfy

�1 > �2 � : : : � �N :

That is, �1 is strictly larger than the other eigenvalues. The “inde-
pendence theory” of [4] is also assumed in this paper.

Let W1 = [w1;w1; : : : ;w1]
T , where w1 is the eigenvector

corresponding to �1. We define ~W(n) =W(n)�W1 . Since only
the local behavior is of interest, we linearize (4) around W1 and
obtain a linear state-space model for ~W(n), which is not shown
here. However, it can be predicted from (4) that the resulting equa-
tion, although linear, is still time-varying and stochastic, hence too
complicated to analyze.

If � is small, on the other hand, the “direct-averaging method”
can be invoked to simplify this equation [4]. It has been proved
that the behavior of such a stochastic difference equation, under the
assumption of small �, can be approximated by another stochastic
difference equation with a constant system-matrix. More precisely,
the linear updating equation for ~W(n), under the quasi-stationary
assumption, can be approximated by

~W(n) = A ~W(n� 1) + �u(n) (5)

where

A =

2
66666664

I ���1I : : : : : : � �R
I 0 : : : : : : 0
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�R =
PN

i=2
�iwiw

T
i and

u(n) = [xxTw1 �w1w
T
1 xx

T
w1;0; : : : ;0]

T :

Notice that u(n) is zero-mean.
It follows [5] that the stability of (5) depends on the eigen-

distribution of the matrixA.

Proposition 1 Any eigenvalue � of the matrixA must satisfy

�
D�1(�2 � �+ ��1) = ��i (6)

for i = 2; : : : ; N:

Proof: Suppose � is an eigenvalue of A and y is the corre-
sponding eigenvector. Write y as [y0; y1; : : : ; yD]T where yi,
i = 0; 1; : : : ; D; is a length-N vector. We can expandAy = �y
as
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It is not difficult to verify that

y0 � ��1y1 + � �RyD = �y0

y0 = �y1

y1 = �y2

...

yD�1 = �yD



which implies

�
D�1(�2 � �+ ��1)yD = � �RyD: (7)

Eqn. (7) shows that �D�1(�2��+��1) is an eigenvalue of ��R:
From the definition of �R we conclude that (6) must be satisfied.

Proposition 2 A sufficient condition forA to be a stable matrix is
that

j�
D�1(�2 � �+ ��1)j > ��2

for any j�j � 1:

The sufficiency of this condition is obvious because it excludes
the possibility that an eigenvalue ofA falls in the region j�j � 1.

Proposition 3 Let f(�) = �D�1(�2 � �+ ��1). The minimum
of jf(�)j in the region j�j � 1 is ��1 if � < 1

3�1
:

Proof: It is evident [6] that the minima of jf(�)j are on the unit
circle. Thus, let � = ej� . We derive jf(�)j2 = 4��1 cos �

2
�

2(1 + ��1) cos � + 2� 2��1 + �2�21: It is not difficult to verify
that, if � < 1

3�1
, the minima of jf(�)j2 occur at � = 2k�, k =

0; 1; : : : ; and, therefore, jf(�)jmin = ��1.
We easily conclude, from Proposition 2, Proposition 3 and our

assumption on the eigen-distribution of the matrix R, that Eqn.
(3), if its step size is less than 1

3�1
, is locally stable, regardless of

the actual value D:Notice that the condition on � is only sufficient.

3.2.2. Step 2: proof without assuming �(n) being a constant
The only difference between (3) and the DPASTd algorithm, when
r = 1, is that the step size � is replaced by �n = 1

d(n)
in DPASTd,

where d(n) = �d(n�1)+jy(n�D)j2. The linearized state-space
model for DPASTd hence becomes

~W(n) = A�n
~W(n� 1) + �nu(n) (8)

where
A�n =2
66666664
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To analyze this system’s local stability, let us assume that �n
is uniformly bounded from below, i.e., �n � � > 0 for any
n � 0. We can show intuitively that �n, for a proper initial value
�0 and sufficiently large n, will vary slowly around a non-zero
mean value. In this case, we make an assumption that is similar
to Assumption 1 in [7]. That is, we assume that �n and x are
independent. Under this assumption, the system matrix for the
“averaged” system reads

A =

2
66666664

I �E[�n]�1I : : : : : : E[�n] �R
I 0 : : : : : : 0

. . .
. . .

.

.

.

. . .
. . .

.

.

.
I 0

3
77777775
: (9)

The stability is then proved in a similar manner as before. We
just use E[�n] instead of a constant �. A sufficient condition for
local stability is: E[�n] <

1
3�1

which can easily be satisfied by
choosing a proper initial value d(0).

3.2.3. Step 3: extension to the case r > 1

In the case where r > 1, we further assume that �1 > �2 >
: : : > �r > �r+1 � : : : � �N : It can be seen from Table I that
the updating equation for w2(n), for example, is the same as the
one for w1(n) except its inputs are x2(n) and xD2 (n). In other
words, this equation estimates the largest eigenvector of x2(n).
We learn from the deflation equations that, for sufficiently large
n, the largest eigenvalue of the correlation matrices of both x2(n)
and xD2 (n) is �2, with corresponding eigenvector w2, since both
w1(n) and w1(n � D) have already converged to w1. The sta-
bility of the algorithm can be proved in the same way as before.
Similar arguments were made in the proof of the original PASTd
algorithm [3].

4. THE PIPELINED REALIZATION

4.1. A hardware-realizable form of the algorithm

In order to make the algorithm more favorable to a pure hardware
realization, we propose the following simplifications.

First of all, we release the dependency between yi(n) and
wi�1(n) by substituting the updating equation for xi(n) into the
equation for yi(n)

yi(n) = wi(n� 1)Txi(n)

= wi(n� 1)Txi�1(n)

�wi(n� 1)Twi�1(n)yi�1(n�D); for i � 2:

(10)

Since W(n) converges to an orthogonal matrix, the second term
in (10) has little effect on the computation of yi(n) in the steady
state. Therefore, we can assume thatwi(n� 1)Twi�1(n) � 0 in
the steady state and (10) is hence simplified to

yi(n) � wi(n� 1)Txi�1(n)

� wi(n� 1)Txi�2(n)

� : : :

� wi(n� 1)Tx1(n); for i � 2: (11)

In other words, yi(n) � wi(n � 1)Tx(n) depends only on the
input data at time n.

Second, we derive the following updating equation for ei(n):

ei(n) =

�
x(n�D)�wi(n� 2)yi(n�D); i = 1
��i�1(n)ei�1(n)�wi(n� 2)yi(n�D); i � 2:

(12)

where

�i�1(n) =
1

� + �i(n� 1)y2
i
(n�D)

and �i(n� 1) = 1
di(n�1)

.

Finally, �i(n) = 1
di(n)

can be updated directly as

�i(n) = �i(n)�i(n� 1): (13)

The modified algorithm (to be called pipelined DPASTd) can
then be summarized as follows:

yi(n) = wi(n� 1)Tx(n)

zi(n) = �i(n� 1)yi(n�D)2

�i(n) =
1

�+zi(n)

ei(n) =

�
x(n�D)�wi(n� 2)yi(n�D); i = 1
��i�1(n)ei�1(n)�wi(n� 2)yi(n�D); i � 2

�i(n) = �i(n)�i(n� 1)
wi(n) = wi(n� 1) + �i(n)ei(n)yi(n�D):



Fig. 1 illustrates the simulation results of both PASTd and the
pipelined DPASTd algorithms with system parameters N = 10,
D = 13 and r = 3. The learning curves of all three eigenvector
estimations are shown. It is seen from the figure that the pipelined
DPASTd reaches almost the same MSEs with slight degradation in
convergence speed.
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Fig. 1. Simulation results of PASTd and DPASTd algorithms.

4.2. The systolic implementation

A broader-sense 2-D systolic array implementation of the pipelined
DPASTd algorithm can be designed by using retiming. Two differ-
ent time scales are present in the pipelined DPASTd algorithm: the
data sampling time “n” and the eigenvector index “i.” Both are
available for retiming. Although pipelining on the “i” scale does
not reduce the overall time required for updating one eigenvec-
tor, it does improve the concurrency of the computations of mul-
tiple eigenvectors and, hence, it increases the system throughput.
Therefore, we have pipelined on both time scales in our develop-
ment. Fig. 2 shows an example of the resulting arrays.

In this example, we choose D = N + 3 and assume r = 3.
Two types of registers are found in the array, corresponding to the
two time scales in the algorithm. However, if the “n” registers
(labeled with “T” in the figure) can be seen as external inputs, the
array itself is driven exclusively by an “i” scale clock.

The function blocks in this implementation can be encapsu-
lated into either internal cells or boundary cells. All internal cells
have a similar structure, containing a multiplier, an adder, a reg-
ister file and possibly a multiplexer. The only difference is the
interconnection. Hence, it is possible to design a universal cell to
realize them all, as shown in Fig. 3.
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Fig. 2. A systolic realization of the pipelined DPASTd algorithm.
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Fig. 3. The universal cell.

Most of the processing packaged in the boundary cells con-
sists of only multiplications and additions. They can be realized
by using either dedicated hardware or even the above universal
cells. The only exception is the reciprocal operation needed in
computing �i(n). In the steady state, �i(n) can be approximated
by 1

�
�

1

�2
y2i (n)�i(n), thus requiring no division. During the

convergence period, however, this approximation is invalid, and
during this period we propose to use a table look-up followed by
one iteration of the Newton-Raphson method. That is, we look up
in a ROM-table, indexed by the value of y2i (n)�i(n), an �0i (n)
value, which is an initial approximation of �i(n), and we then re-
fine the estimation by using �i(n) = �0i (n)

�
2� �0i (n)zi(n)

�

where zi(n) = y2i (n)�i(n). This operation can be integrated into
other boundary cells and can be pipelined.

5. CONCLUSION

In this paper, we have studied the DPASTd algorithm for estimat-
ing the complete signal subspace. We have shown that delayed up-
dating does not affect the algorithm’s local stability under a mild
condition on the step size.

A systolic realization of the algorithm has also been discussed.
The processing time of the structure is as low as, roughly, the de-
lay of one MAC. It is suitable to be employed in a high-speed
communication environment. More details of the systolic imple-
mentations can also be found in [8].
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