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ABSTRACT

We discuss the DPASTd algorithm for signal subspace tracking.
Our analysis shows that, under a sufficient condition on the step
size, the DPASTd algorithm islocally stable even though delayed
updating is applied. A pipelined redlization of the algorithm and
the corresponding systolic architecture are also proposed and a
method for reciprocal computation is discussed. We also present
simulation results to validate the algorithm.

1. INTRODUCTION

Estimating and tracking the signal subspace is required in many
signal processing applications such as direction of arrival (DOA)
estimation and blind equalization. Traditionally, this operation has
been performed in software because of its high computational com-
plexity. In recent years, however, the appearance of low-cost sub-
space tracking algorithms, along with the development of VLSI
technology, are tending to make it possible to construct a pure
hardware solution.

The PASTd algorithm described in [1] is an example of such
an agorithm. This algorithm has a very low computational com-
plexity of O(rN) and isrecursive least-squares (RLS) based, thus
potentially converging fast.

One unfortunate aspect of the original PASTd agorithm isthat
it suffers from long computation delay. In order to facilitate a
high-speed implementation, we have proposed in [2] the DPAST
algorithm, based on the idea of delayed updating. In this paper,
we discuss the local stability and a systolic implementation of a
deflated version of the DPAST algorithm (DPASTd).

In the second section of this paper, we briefly review the PASTd
algorithm. Section 3 discusses the DPASTd algorithm and espe-
cialy its local stability under an independence assumption. We
propose in Section 4 a pipelined realization of the algorithm and
the corresponding systolic architecture. The design of critical cells
isalso studied. Section 5 summarizes our conclusions.

2. THEALGORITHM UNDER DISCUSSION

A novel cost function is proposed in [1] to solve the subspace
tracking problem adaptively. Let z(n) be areal random sequence,
let x(n) be an N-vector with x(n) = [z(n), z(n—1), ...,

z(n — N + 1)]T and let R = E[x(n)x(n)T] be its correlation
matrix. The subspace constructed by ther < IV largest eigenvec-
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tors' can be identified by minimizing
J(W) = E|jx - WWTx]|]?. 1)

Itis proved in [1] that W is the global minimum of J(W) if
and only if W = U, Q, where U, contains the r largest eigen-
vectors and Q is an arbitrary unitary matrix.

Modifying the cost function to be

J (W (n)) = Zﬁ"‘iIIX(i) - W(n)y (@]

where y (i) = W7 (i — 1)x(i), and following the same procedure
as is used in deriving the RLS algorithm, we can obtain the so-
called PAST algorithm. The PASTd algorithm is derived from the
PAST using the deflation technique. The computational complex-
ity isthus reduced to O(rN). Descriptions of both algorithms can
be found in[1].

3. THE DPASTD ALGORITHM

3.1. Thealgorithm

We have proposed an aternative cost function, which could lead
to ahigh-speed solution. That is, let

Tp(W(n)) = E[|lx(n — D) =WW'x(n - D)|I’l. (2

Under the condition that x(n) is a stationary signal, or a time-
varying signal but one whose statistical properties do not change
during the length-D time period, the solution to (2) is the same
as that to (1). Both an LM S-like algorithm and an RLS-like algo-
rithm can be derived to minimize (2). In particular, the RLS-like
algorithm is called DPAST and it is summarized in[2].

Similar to [1], we invoke the deflation technique to reduce the
computational complexity of DPAST to O(rN). The deflated ver-
sion of the DPAST algorithm (to be called DPASTd) is shown in
Tablel.

Notice that we use w;(n — 2), instead of w;(n — 1) asin
PASTd, in the updating equation for the error term e;(n) in order
to further reduce the computation delay in a pipelined realization.
Furthermore, x” (n) in the table is not a delayed version of signal
xi(n), but rather, it is deflated from x?_, (n). Therefore, unlikein
the PASTd agorithm, two deflations need to be carried out in the
DPASTd algorithm.

1\We use the term “largest eigenvector” to indicate the eigenvector that
corresponds to the largest eigenvalue of R. That is, we order the eigenvec-
tors according to the natural ordering of the corresponding eigenval ues.



TABLEI

DPASTd ALGORITHM FOR SUBSPACE TRACKING
Choose d; (0) and w; (0) properly;
forn=1,2, ... do

z1(n) = z(n);

a7 (n) = z(n — D);

fori=1,,2,...,r
wi(n —1)"xi(n);

yi(n) = ‘
di(n) = Bdi(n — 1) + yi(n — D);
ei(n) = x{"(n) — wi(n — 2)yi(n — D);
wi(n) = wi(n — 1) +ei(n)yi(n — D)/di(n);
Xit1(n) = xi(n) — wi(n)y:(n);
x21(n) = xP (n) — wi(n)yi(n — D);
end
end

3.2. Analysisof local stability

Since extra delays have been inserted, the difference equation for
the DPASTd algorithm has a different order than that of the PASTd
algorithm. Certain mathematical analyses must be carried out to
guarantee the algorithm’s convergence and stability.

In this paper, we only analyze the local stability of the algo-
rithm and our analysisis carried out in three steps. We start with a
special case of the algorithm where r = 1 and pu(n) = 755 = p
is a constant and we show that DPASTd is locally stable under
these two assumptions. Then, the assumption on u(n) is released
and we discuss how atime-varying step-size affects the proof. r is
still assumed to be one at this point. Finally, the resultsin step 1
and step 2 are extended to the stability proof of the more general
DPASTd algorithm, where r can be an arbitrary positive integer.

3.2.1. Sep1: aspecial casewherer = 1and u(n) = p

Inthisspecial case, the DPASTd algorithm coincideswithan LM S-
like algorithm similar to the onein [1], which reads

w(n) =w(n —1) + pu(x(n — D)
— w(n—2)y(n — D))y(n— D). ®

In order to prove the local stability of (3), let us construct an
expanded nonlinear state-space model for it. Defining W(n) =
[w(n), win—1), ..., ..., win—D)]TasanN(D+1) x 1
state vector, we obtain the following recursion from (3):

I 0 -« .. 0
I 0 -« --- 0

Win) = I Win - 1)
I o

xxTw(n —D—1)
—w(n—-2)wl'(n—-D—1)xxTw(n—-D—1)

4

2In this paper, x represents x(n — D), if not mentioned explicitly.

An assumption that is usually made in the literature is that the
eigenvaues of R, A1, Az, ... , An, satisfy

>\1>>\22~~~Z)\N~

That is, \; isstrictly larger than the other eigenvalues. The “inde-
pendence theory” of [4] isalso assumed in this paper.

Let Wi = [wi,wi,...,w1]", where w; isthe eigenvector
corresponding to \; . We define W(n) = W(n)—W . Sinceonly
the local behavior is of interest, we linearize (4) around W, and
obtain a linear state-space model for WW(n), which is not shown
here. However, it can be predicted from (4) that the resulting equa-
tion, although linear, is still time-varying and stochastic, hence too
complicated to analyze.

If pissmall, on the other hand, the “direct-averaging method”
can be invoked to simplify this equation [4]. It has been proved
that the behavior of such astochastic difference equation, under the
assumption of small i, can be approximated by another stochastic
difference equation with aconstant system-matrix. More precisely,
the linear updating equation for W (n), under the quasi-stationary
assumption, can be approximated by

W(n) = AW(n — 1) + pu(n) (5)
where
I —pyI ... ... pR
I 0 . ... 0
A= :
roo

u(n) = [xxTwl —wiwlixxTwi,0,... ,O]T.

Notice that u(n) iszero-mean.
It follows [5] that the stability of (5) depends on the eigen-
distribution of the matrix A.

Proposition 1 Any eigenvalue X of the matrix A must satisfy
APTEHOZ = X+ pdn) = ph (6)
fori=2,..., N.

Proof: Suppose ) is an eigenvalue of A and y is the corre-
sponding eigenvector. Writey as[yo, y1, ..., yp]® Wherey;,
i=0,1,..., D,isalength-IV vector. Wecan expand Ay = \y
as
I —pI .. ... uR Yo Yo
I 0 0 Y1 Y1
=
1 0 yb y}a

Itis not difficult to verify that

yo — phy1 + pRyp = Ayo

Yo = Ay1
Y1 = Ay2
Yp-1=AyD



which implies
APTH O = A+ ph)yp = pRyp. @)

Eqn. (7) showsthat A° =" (A” — A+ pA1) isan eigenvalue of pR.
From the definition of R we conclude that (6) must be satisfied. B

Proposition 2 A sufficient condition for A to be a stable matrixis
that

AP
for any |A| > 1.

)\+M)\1)| > pA2

The sufficiency of this condition isobvious because it excludes
the possibility that an eigenvalue of A fallsintheregion |A| > 1.

Proposition 3 Let f(A) = AP71(A% — XA + pA1). The minimum
of [£(X\)| intheregion |A| > 1ispuA; if p < 5

Proof: It isevident [6] that the minimaof | ()| are on the unit
circle. Thus, let A = /9. We derive |f(A)[> = 4pi cos 87 —
2(1 4 pAi)cos B +2 — 2ud; + 22 Itisnot difficult to verify
that, if 4 < 537, the minimaof |f(\)|* occur at 6 = 2k, k =
0, 1, ... ,and, therefore, | f(A)|min = pA1. |

We easily conclude, from Proposition 2, Proposition 3 and our
assumption on the eigen- distribution of the matrix R, that Eqn.
(3), if its step sizeis less than 51—, islocaly stable, regardiess of
the actual value D. Noticethat the condltlon on p isonly sufficient.

3.2.2. Sep 2: proof without assuming p(n) being a constant

The only difference between (3) and the DPASTd algorithm when
r =1, isthat the step size p isreplaced by p,, = d( ) in DPASTd,

whered(n) = Bd(n—1)+|y(n—D)|?. Thelinearized state-space
model for DPASTd hence becomes
W(n) = A, W(n —1) + pru(n) ®
where
Aun =
% 7unwfxxTw1 tn (xxT — wlexxT)

N = N ]
o

O

To analyze this system’s local stability, et us assume that py,
is uniformly bounded from below, i.e, p, > d > 0 for any
n > 0. We can show intuitively that ., for a proper initial value
o and sufficiently large n, will vary slowly around a non-zero
mean value. In this case, we make an assumption that is similar
to Assumption 1 in [7]. That is, we assume that u, and x are
independent. Under this assumption, the system matrix for the
“averaged” system reads

I —Elu, ]I ... ... E[u.,R
I 0 .. 0

1 0
The stability is then proved in asimilar manner as before. We
just use E[u,] instead of a constant i. A sufficient condition for
local stahility is: Eun] < ﬁ which can easily be satisfied by
choosing a proper initia value d(0).

3.2.3. Sep 3: extensiontothecaser > 1
In the case where » > 1, we further assume that Ay > A2 >
> A > Apg1 > ... > Aw. It can be seen from Table | that
the updating equation for w»(n), for example, is the same as the
one for wi (n) except its inputs are xa(n) and x¥’(n). In other
words, this equation estimates the largest eigenvector of x(n).
We learn from the deflation equations that, for sufficiently large
n, the largest eigenval ue of the correlation matrices of both x»(n)
and x¥’ (n) is A2, with corresponding eigenvector ws, since both
wi(n) and wi(n — D) have dready converged to w;. The sta-
bility of the algorithm can be proved in the same way as before.
Similar arguments were made in the proof of the original PASTd
algorithm [3].

4. THE PIPELINED REALIZATION

4.1. A hardware-realizable form of the algorithm

In order to make the algorithm more favorable to a pure hardware
realization, we propose the following simplifications.

First of all, we release the dependency between y;(n) and
w;—1(n) by substituting the updating equation for x; (n) into the
equation for y; (n)

yi(n) = wi(n —1)"x;(n)
=wi(n—1)"xi_1(n) (10)
—wi(n—1)"w;_1(n)yi_1(n— D), fori > 2.

Since W (n) converges to an orthogonal matrix, the second term
in (10) has little effect on the computation of y;(n) in the steady
state. Therefore, we can assume that wi (n — 1)Tw;_1(n) = 0in
the steady state and (10) is hence simplified to

yi(n) =~ wi(n— 1)Txi_1(n)
wi(n — 1)Txi_2(n)

Q

Q

wi(n—1)"x;
wi(n — l)T

Q

(n), fori> 2. (12)

In other words, y;(n) ~
input data at time n.
Second, we derive the following updating equation for e;(n):

x(n) depends only on the

D), i=1

x(n— D) —w;(n—2)y;(n —
ei (n) - { ﬁsxi_l(n))ei_l(gt) — Vgiyﬁs — 2)yl(n — D), i > 2. 12
where
a;i—1(n) = L
ot B+ pi(n — 1)y#(n - D)
Finally, pi(n) = gy can be updated directly as
pi(n) = ci(n)pi(n — 1). (13)

The modified algorithm (to be called pipelined DPASTd) can
then be summarized as follows:

yi(n) = wi(n —1)Tx(n)
zi(n) = ui(n — Dys(n — D)?
ai(n) = g2ty
ei(n) = { x(n—D) —w;(n—2)y;(n—D), i=1
¢ Bai—1(n)ei—1(n) — wi(n —2)y;(n — D), i > 2
pi(n) = a;(n)pui(n —1)
wi(n) = Wz‘(n — 1) + pi(n)ei(n)yi(n — D).




Fig. lillustrates the smulation results of both PASTd and the
pipelined DPASTd algorithms with system parameters N = 10,
D = 13 and r = 3. Thelearning curves of all three eigenvector
estimations are shown. It is seen from the figure that the pipelined
DPASTd reaches almost the same M SEs with slight degradation in
convergence speed.

—— DPASTd, 1% eigenvector
—o— DPASTd, 2™ eigenvector
—e— DPASTd, 3" eigenvector
—— PASTd, 1% eigenvector
—— PASTd, 2™ eigenvector
—— PASTd, 3" eigenvector
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Fig. 1. Simulation results of PASTd and DPASTd algorithms.

4.2. Thesystolicimplementation

A broader-sense 2-D systolic array implementation of the pipelined
DPASTd algorithm can be designed by using retiming. Two differ-
ent time scales are present in the pipelined DPASTd algorithm: the
data sampling time “n” and the eigenvector index “i.” Both are
available for retiming. Although pipelining on the “i" scale does
not reduce the overal time required for updating one eigenvec-
tor, it does improve the concurrency of the computations of mul-
tiple eigenvectors and, hence, it increases the system throughput.
Therefore, we have pipelined on both time scales in our develop-
ment. Fig. 2 shows an example of the resulting arrays.

In this example, we choose D = N + 3 and assume r = 3.
Two types of registers are found in the array, corresponding to the
two time scales in the algorithm. However, if the “n” registers
(labeled with “T” in the figure) can be seen as external inputs, the
array itself is driven exclusively by an “7” scale clock.

The function blocks in this implementation can be encapsu-
lated into either internal cells or boundary cells. All internal cells
have a similar structure, containing a multiplier, an adder, a reg-
ister file and possibly a multiplexer. The only difference is the
interconnection. Hence, it is possible to design a universal cell to
realize them dll, as shown in Fig. 3.

Boundary Cells

ﬁk: Universal Cell ~ »: Pipeline register

Fig. 2. A systalic realization of the pipelined DPASTd a gorithm.

Fig. 3. Theuniversal cell.

Most of the processing packaged in the boundary cells con-
sists of only multiplications and additions. They can be realized
by using either dedicated hardware or even the above universal
cells. The only exception is the reciprocal operation needed in
computing «; (n). In the steady state, a;(n) can be approximated
by % - B%yf(n)ui(n), thus requiring no division. During the
convergence period, however, this approximation is invalid, and
during this period we propose to use a table look-up followed by
one iteration of the Newton-Raphson method. That is, we look up
in a ROM-table, indexed by the value of i (n)pi(n), an of (n)
value, which isan initial approximation of «;(n), and we then re-
fine the estimation by using ai(n) = af(n) (2 — af(n)zi(n))
where z;(n) = yZ(n)p:(n). This operation can be integrated into
other boundary cellsand can be pipelined.

5. CONCLUSION

In this paper, we have studied the DPASTd agorithm for estimat-
ing the complete signal subspace. We have shown that delayed up-
dating does not affect the algorithm’s local stability under a mild
condition on the step size.

A systolic realization of the algorithm has also been discussed.
The processing time of the structure is as low as, roughly, the de-
lay of one MAC. It is suitable to be employed in a high-speed
communication environment. More details of the systolic imple-
mentations can also be found in [8].
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