ANALYTICAL EXPLORATION OF POWER EFFICIENT DATA-REUSE
TRANSFORMATIONSON MULTIMEDIA APPLICATIONS

S. Kougia, A. Chatzigeorgiou, N. Zervas', S. Nikolaidis

Section of Electronics and Computers, Department of Physics
Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
VLSl Design Lab, Department of Electrical Engineering & Computers
University of Patras, Patras 26500, Greece

ABSTRACT

Power savings that can be achieved by data-reuse decisions
targeting at a custom memory hierarchy for multimedia
applications executing on embedded cores are examined in
this paper. Exploiting the tempora locaity of memory
accesses in data-intensive applications a set of data-reuse
transformations on a typical motion estimation algorithm is
determined. The aim is to reduce data related power
consumption by moving background memory accesses to
smaller foreground memories, which are less power costly.
The impact of these transformations on power,
performance and area is evaluated both for application
specific circuits and general purpose processors. The
number of data and instruction memory accesses is
anaytically calculated, enabling a fast exploration of the
design space by varying algorithmic parameters.

1. INTRODUCTION

Multimedia applications realized on embedded cores turn
out to be data-dominated with the data-related power
consumption affecting heavily the total power budget [1].
Real time applications such as image and video processing
are increasingly being available on portable devices. Low
power consumption is of primary importance for such
systems since it determines their battery life and the
maximum possible integration scale because of the related
cooling and reliability issues[2].

A number of code transformations can be applied to
any algorithm aiming at a memory hierarchy where copies
of data from larger memories that exhibit high data-reuse
are stored to additional layers of smaller memories. In this
way, exploiting the temporal locality of data memory
references, the greater part of the accesses is moved to
smaller memories. Accesses to smaller levels of the
memory hierarchy are less power costly and therefore
significant power savings can be obtained [1].

Multimedia applications require increased performance
and dedicated hardware in order to satisfy the requirement
for high throughput of real-time programs. In order to
confront this problem two implementation choices exist:
The first is to use specific hardware (e.g. ASICs), which
offers increased performance at a high cost. The second
choice is to use embedded instruction set processors which
offer increased flexibility and smaller time-to-market at
the cost of lower performance than the previous solution.

In this paper a set of datareuse transformations is
examined using as demonstrator application the three-step

Thiswork is supported by the Greek General Secretariat of
Research and Development (PENED’ 99)

logarithmic search motion estimation algorithm. A specific
memory hierarchy is developed in order to exploit the
presence of highly reused data sets in each transformation.
The effect of each transformation on power, performance
and area is evaluated for both application specific and
general purpose platforms. For the first time, analytical
expressions for the number of accesses to each data
memory layer and to the instruction memory are extracted,
enabling the fast exploration of the design space in order to
determine the optimal solution.

2. DATA-REUSE TRANSFORMATIONS

In order to satisfy the requirements for high throughput
and low power consumption of multimedia applications, an
appropriate processor and data memory architecture has to
be used. The target architecture is based on an embedded
processor core with its own instruction memory, which is
considered to be an on-chip single port ROM. Its size is
determined by the code size, which in turn depends on the
applied transformation to the origina code. The data
memory hierarchy may consist of several memory blocks
communicating with the processor over a globa bus.
Memory blocks are considered to reside on chip except for
the first memory layer, which is an off-chip memory.

As test vehicle a typical motion estimation algorithm
will be used: The two-dimensional logarithmic search
which aims at reducing the computational complexity of
the typical full-search algorithm by employing a heuristic
search strategy for motion estimation similar to binary
search. The algorithm structure is shown in Fig. 1, which
has three double nested loops. For the calculation of the
mean absolute error and the corresponding motion vector
macroblock regions of size NxM, a reference window of
size[-p,p] and blocks of size BxB are considered [3].

In the proposed approach only the power due to
accesses to foreground and background memories is taken
into account since the power due to accesses to register
files is significantly smaller [4]. According to the power
model that has been used, the power consumed on memory
accesses is a function of the memory size, the access
frequency, the technology, the number and the type (R or
R/W) of ports and the number of bits per word.

In data-dominated applications such as multimedia
algorithms significant power savings can be achieved by
developing a custom memory organization that exploits the
tempora locality in memory accesses. According to the

for(x=0;x<N/B;x++) [* For al blocksin the current frame */

for(y=0;y<M/B;y++)
{

d=4;
while(d>0)
{

for(i=-d:i<d+L;i+=d)
for(j=-d;j<d+1;j+=d)

/* For al candidate blocks */

{
for(k=0;k<B;k++)
for(1=0;1<B;|++)
check whether apixel lies outside the frame
read pixel in current and previous frame;
}

d=d/2;
1}

[* For dl pixelsin the block */

Fig. 1: Three step logarithmic search algorithm

proposed methodology data sets that are often being
accessed in a short period of time are identified and placed
into smaller levels of the memory hierarchy. Since smaller
memory blocks have a lower energy cost per access, the
total power consumption is reduced. Obvioudly, the total
number of accesses to memory elements is increased since
additional accesses are required in order to move data from
the background to foreground memories.

The data-reuse exploration is performed by applying a
number of code transformations to the original code, which
are determined by the group of data sets that are being used
in the algorithm. For motion estimation agorithms the
possible data-reuse transformations together with the
introduced levels in the memory hierarchy, which
correspond to reused data sets, are shown in Fig. 2. These
transformations involve memories for a line of reference
windows (RW line), a reference window (RW), a line of
candidate blocks (PB line), a candidate block (PB), a line
of current blocks (CB line) and a current block (CB). Each
rectangle in the figure is annotated by the number of the
corresponding transformation and the size of the
introduced memory, given parametrically.

3. DESIGN EXPLORATION
As aready mentioned there are two general approaches
for the implementation of multimedia applications:
Application specific 1C's (non-programmable) or general
purpose processors (programmable platforms). Since the
power component due to instruction memory accesses is
different for each approach, each case has to be studied

separately:

3.1. Non-programmable platfor ms

In the case of an application specific integrated circuit
the largest portion of the total power consumption is due to
the accesses to the data memory. Application specific
processors with a custom instruction set suited to the target
algorithm are also considered to belong in this case. That is
because the corresponding code size and number of
executed program cycles is small. These in turn lead to a
reduced memory size reducing significantly the power

BiZp

Be2p PE line |E

o =
‘JE
dzeg
L
o
CE]
=2}]

p13

|
i

i

i

i

i

|

i

| i
|l EWEne f
i b
|

i

i

i

i

i

M 4.5

previous |W
frame 1(2)

B+2p

[FB e 2

7

]
i
waawgﬂmiﬂw
Cl

]

m
)
o

1
i
1
I 1
|
I 1
| :
| 1
| b2 | —{FBEme el
w 8 Z1
| o B
| | Gk
I 1 ! 12
| ! | Bi2p B
| ! 1 ——E |
| . : PB]me|—B
! : ! []
I 1
! I = _pas
| T |] FB
! u E: B ! LS
W o | |
current | 1 1 | z ! |
framel (%) i ! B ! i
ST |
i |
i

w

Fig. 2: Copy treefor a motion estimation kernel

component due to instruction memory accesses.
Consequently, the dominant power component is that due
to data memory accesses.

In contrast to previous techniques [4] where each code
transformation had to be evaluated by executing the
corresponding code, the total number of accesses to each
memory layer is analyticaly calculated in the proposed
approach. Expressions of the number of accesses between
different memory layers, for the used algorithm, are shown
in Table |I. The horizonta top line refers to the memory
layers to which accesses are made in order to read data
The vertical left column refers to the memory layers that
are being updated. The total number of accesses for a given
memory hierarchy is extracted by summing the number of
accesses between all memory layers. For example, in order
to calculate the total number of accesses to data memory
for transformation 10, the accesses of the shaded cells in
Table | have to be added.

In this way the total number of accesses on each
memory can be fed to the power model in order to evaluate
the total power consumption. Consequently, the most
power efficient solution can be determined very fast
without having to execute each code on a simulator in
order to count the number of accesses.

InFig. 3 the total energy consumption due to accesses
to data memory layers is presented for al transformations
and compared to that corresponding to the original code.
Since transformations on the previous and the current
frame can be concurrently applied, two combinations of
code transformations (7&3, 14&3) have aso been
examined. As expected, the power reduction becomes even
larger when transformations on both frames are applied.

As it can be observed, the most power efficient
transformation for the presented case (MxN=144x176,
B=16, p=7) for the previous frame is transformation #14,
while #3 is the best transformation for the current frame.
One general remark that can be made is that for the current
frame, transformation #3 yields always better results than
the other two, since current blocks have no overlap and
thus no advantage of aline of current blocks can be made.

From Aprevious ARWw Jine Arw Aps line Aps
To
Previous N'Ma
RW._line N N 3
M:(B+2p) +(E—1)' E'M'(B+2'p) +NMa’ +
M:(B+1)- 2p M +(%_1) M @p+1)
RW N N N N N N_ M
— (B+2p)*- — (B+2p)p- | — M(B+2p) + (=-) M(@2p+l) +| — (B+2p)**— (—-1
B(p)B(PP = (B+2p) (B)(p+) B(p)B(B)
(B+2p) (B+4p) + NMa’
-2p(B+p) + M-(E-1)4'B"p E'(B+2'p)'(B+1)+N'(M-1)'(B+2'p) (B+2p) (B+4p)
B B B B
PB_line N M N N N M N M
— —(B+2p)(3B+2 M (B+2p)+ (—-1) M'(B+1+4p) + | — (B+2p)*+ — (— -1)(B+2p)| — — (B+2p)[3B+
BB(p) (3B+2p) (p)(B) (p) o (R o 20 p)BB(Pl
N M N M N M 2((p-)B-p)]+ NM&’
— — (B+2p)3B+— — (B+2p) 2 = =
5 B(P38+ 2 B(p) 2p (B+ap)+ = = (B+2p)(3B+2p)
PB N M N N N M N M N M
— —(9B%+6Bp- 41) — 28N |M(B+2p) +(—-1) M(B+1+4 — (B+2p)*+— (—-1)(B+2 — —[24B*+ — —3B
BB(p- 41) (p)(B)(p) B(D)B(B)(D)BB[G
e - (15B-2p)+ NMa
34Bp-4
+ N M'(982 +6Bp —2B-18) (B+4p) NM (9B%* 6Bp) P-4
B B B B
Tablel: Number of accesses between memory layers
Except for the fast caculation of the power Energy Consumption of Data Memory
consumption, these analytical expressions allow for the N
exploration of the whole design space by varying ;L
parameters such as the frame size (N,M), the size of the . Nos

search space (p) and the block size (B). In Fig. 4 the
energy consumption for three code transformations is
presented for varying frame sizes.

Since the introduction of additional memory layers
comes with an area penalty, this parameter should also be
taken into account. In Fig. 5 the effect of the proposed
code transformations on area is illustrated. (Area is
calculated using Mulder’s model [5]).

Energy (mJ)
il S S S (N S S S

K
7,
K

o
o‘.‘gma‘ A% % A B 6 T B 9 4D 4% A2 43 4b 45 4B AT 4B A3 90 2N qaY,83
Transformations

Fig. 3: Data Memory Energy Consumption

HTri4 OTr12 OTr16

3.2. Programmable platfor ms

Programmable platforms (general purpose processors)
are obviously not optimally designed for each agorithm
resulting in larger programs and therefore instruction

memories and in higher number of executed cycles.
Consequently, the power component due to instruction
memory accesses is no longer negligible and has to be
taken into account for the estimation of the total power
consumption [4].

In order to prove the dominant role of instruction
memory in the power consumption, simulations using the
ARMulator have been performed [6]. In Fig. 6 the power
consumption due to instruction memory accesses is
shown as part of the total power consumption for the
origina and the transformed codes. Asit can be observed,
transformation #14 is no longer the most power efficient
transformation. It becomes clear that in the case of
general purpose processors the number of accesses to the
instruction memory as well as the instruction memory size

Energy (mJ]

480*640 576'720 7681024

Frame size

Fig. 4: Data memory energy consumption for three
transformations / several frame sizes (B=16)

each of the applied motion estimation algorithms. In its
general form, each double nested loop containing m

should be efficiently evaluated in order to determine the
best possible code transformation.

Similar to data accesses, the total number of executed
instructions is calculated parametrically, according to the
number and iterations of the nested loops that implement

instructions of the form :
for(i=0; i<ng; i++)
for(j=0; j<ng; j++)
{ #minstructions }
correspondsto :

#instr.= k| +kp [hy +ng [kl +(k2 +m)|__lhl] (0]

assembly instructions. For the ARM processor k=4 and
k,=5. It should be noted that the number of m instructions
within the loop, depends on the branch conditions
imposed by the if statements for deciding whether a pixel
in the reference window lies outside the previous frame or
not. However, the number of times each of the logical
criteriais fulfilled, is explicitly known from the previous
analysis on data and consequently the exact number of
assembly instructions can be obtained.

According to the proposed methodology, starting
from the most inner loop, the number of executed
assembly instructions is calculated and the result is added
to the number of instructions between nested loops (which
in turn can be loops for introducing additional memory
layers or single ingtructions). The final number of
instructions is fed to the next outer loop until the total
number of executed assembly instructions is obtained,
resulting in a limited number of algebraic expressions.
Since the indices of each loop are determined by the
algorithmic parameters M, N, B and p, the total number of
instructions is obtained as a polynomial function of these
parameters. Consequently, the total number of accesses to
the instruction memory, which is equal to the number of
assembly instructions, can be efficiently evaluated
leading to a very fast calculation of the instruction
memory energy consumption.

It should be mentioned that in the results shown in
Fig. 6, the power consumption due to instruction memory
accesses is overestimated. That is because no instruction
caching was taken into account, which for data dominated
applications (where cache misses do not occur frequently)
would result in a smaller number of accesses to the
instruction memory.

Obviousdly, code transformations affect the processor
performance, i.e. the number of cycles required for the
execution of the code. In Fig. 7 the effect of the proposed
code transformations on performance isillustrated.

4. CONCLUSIONS

A novel methodology for the evaluation of power
efficient code transformations, which aim at the reduction
of the data related power consumption for embedded
processors implementing multimedia applications, has
been presented. The transformations achieve power
reduction by moving background memory accesses to
smaller foreground memories. The effect of these
transformations on power, performance and area has been
examined for both general purpose and application
specific platforms. Analytical expressions for the number
of accesses to data and instruction memory are derived,
allowing a fast exploration of the design space by varying
all algorithmic parameters.

REFERENCES

[1] F. Cahoor, S. Wuytack et a., Custom Memory
Management Methodology, Kluwer Academic Publishers,
Boston 1998.

[2] A. Chandrakasan and R. Brodersen, Low Power Digital
CMOS Design, Kluwer, Boston MA, 1995.

[3] V. Bhaskaran, K. Konstantinides, Image and Video
Compression Standards: Algorithms and Architectures, 2™
ed., Kluwer Academic Publishers, Boston 1999.

[4] N. D. Zervas, K. Masselos and C.E. Goutis, “Data-Reuse
Exploration for Low-Power Resdlization of Multimedia
Applications on Embedded Cores’, Proc. of 9" Int. Workshop
on Power and Timing Modeling, Optimization and Smulation
(PATMOS 99), October 1999, pp. 71-80.

[5] JM. Mulder, N.T. Quach, and M.J. Flynn, “An Area Model
for On-Chip Memories and its Application”, |EEE Journal of
Solid-Sate Circuits, vol. SC 26, pp. 98-105, Feb. 1991.

[6] ARM software devel opment toolkit, v2.11, Copyright 1996-7,
Advanced RISC Machines.

Data Memory Area
40— =

Area (mm*2)
3

L AL L T T T T T
ofg. 1 2 3 4 5 6 7 8§ 9 10 1M 12 13 14 15 16 U 18 19 2 2
Transformations

Fig. 5: Area occupied by data memory

Total Energy Consumption

DOinstr_Energy DData_Energy

Energy (mJ)
8
i
L1\

Orgnal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2

Transformations

Fi

g. 6: Instruction memory energy consumption over total
energy consumption

Performance

1,26408

8,0E+07-f

6,0E+07- = p= —

Number of Cycles

2,0E+07-f

oig 1 2 3 4 5 6 7 &8 8 f0 M 12 43 14 15 6 {7 18 19 20 21

transformations

Fig.7: Code Performance for Different Transformations

