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ABSTRACT observation vector can be modeled as [1], [2]

The stochastic Craer‘Rao bound (CRB) plays an important role _
in array processing because several high-resolution direction-of- y(t) = A)z(t) +e(t) @
arrival (DOA) estimation methods are known to achieve this bound \yhereg = 01,05, ... .0,
asymptotically. In this paper, we study the stochastic CRB on [£1(t), z2(t), ... ,zn(£)] is then x 1 vector of random sig-
DOA estimation accuracy in the general case of arbitrary unknown waveforms,A(8) = [a(61),...,a(8,)] is them x n di-
noise field parametrized by a vector of unknowns. We derive exX- (action matrix,e(t) = [e1(t), e2(t). .. ,em(t)]” is them x 1
plicit closed-form expressions for the CRB and examine its prop- yactor of sensor noisey(8) is the steering vector, and)? de-
erties theoretically and by representative numerical examples. notes the transpose. Assume the noise and signal veetrs

and z(t) to be temporally white zero-mean Gaussian processes

1. INTRODUCTION with the unknown covariance matricé3 = E£{e(t)e*(t)} and

P = &{x(t)z"(t)}, respectively, wheré-)* denotes the conju-
Deterministic and stochastic CRB’s play an important role in array gate transpose. Hence, the random array observations satisfy the
processing because the performances of numerous high-resolutiostochastic modey(t) ~ A (0, R) (for example, see [3]), where
DOA estimation methods are known to be comparable to these
bounds under certain mild conditions [1]. Moreover, the stochas- R=¢&{y(t)y"(t)} = APA" + Q 2
tic CRB can be achieved asymptotically (at a large number of sam-
ples) by several methods, such as stochastic maximum likelihoodis them x m array data covariance matrix.

1" is then x 1 DOA vector,z(t) =

(ML) [2], MODE [1], and WSF [2]. Let us consider the following general model [4]

The deterministic CRB on DOA estimation was derived in [3]
for the uniform white noise case. Recently, these results were ex- Q=0Q(o) 3
tended to the general case of an arbitrary unknown noise field [4].

The derivation of the stochastic CRB represents a more chal-wheree = [o1,... ,0,]" is the vector of unknown coefficients

lenging task (even in the simplest case of uniform white noise). which are used to parameterize the noise covariance matrix. Thus,
Such a derivation has been found in an indirect form (i.e., using the the (n> 4+ n-+p) x 1 vector of unknown real parameters can be writ-
asymptotic covariance matrix of the ML estimator) some ten years tenase = [0, p”, o7 |7, wherep is then? x 1 vector made from
ago by several authors [1], [2]. Although recently this derivation the upper triangle P, i.e. from{P;;} and{Re{P; }, Im{P;};
has been extended to a few particular colored noise models [5],l > i}.
closed-form expressions for the general unknown noise model [4]
remain an open problem. Several attempts to obtain the stochastic
CRB directly has been made, but such a derivation has been found
only recently, both for the uniform and nonuniform white noise
cases [6], [7].

In this paper, we derive closed-form expressions for the sto-
chastic CRB in the most general case of an arbitrary unknown

3. THE STOCHASTIC CRB

Under the previous assumptions, the Fisher information matrix
(FIM) for the parameter vectax is given by

noise field. Our derivation extends the proof presented in [6]. We FIM;, = N tr <§R R_I;l—RR_1> 4
analyze the properties of the obtained bound, discuss several prac- i Xk

tically important special cases, and present a numerical compari-__ . = 5 .

son of the stochastic and deterministic bounds for several relevant® &% = L,... ,n’ +n+p, whereN is the number of snapshots.

Since in most applications boghando are nuisance parameters,
we will be interested only in the x n 8-block CRB(80) of the
full (n® +n +p) x (n? + n + p) CRB matrixFIM ~*.

2. ARRAY SIGNAL MODEL We will make relatively frequent use of the following well-
known identities

white and colored noise models.

Let an array ofn sensors receive the signals emitteddiyarrow-
band far-field sources with the DOA®):, ... ,0.}. Them x 1 tr(XY) = vec(X*) vec(Y) (5)
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(ZT ® X) vec(Y)  (6)
(WY)®(XZ) )



which hold for any conformable matricé§, Y, Z andW. Here,
® denotes the Kronecker product, argt(-) is the operator stack-

ing the columns of a matrix on top of each other. Using (4) along

with (5) and (6) yields

1 _ dr * T 1 dr

NFIM N (daT> (R ©R ) (daT> ®
wherer = vec(R) = (A° ® A)vec(P) + vec(Q), and(-)°
denotes the complex conjugate. Using the partition

_T1/1 —1y dr | dr dr
(R or ) [ |2 ] eeal @

we rewrite (8) as

%FIM = { g ] G, A (10)

Applying a standard result on the inversion of partitioned matrices,

we obtain from (10) that

_ 1 * 1L -1
CRB(9) = + (6'IAG) (11)
wherella = A(A*A)~'A* andIlz = I-TIa. Note that the
existence of A*A) ! is guaranteed by the existenceRiM .
Furthermore, let us partitioA as

. . or | 0
A=(R"aRr ) {# %—TT]é[V|U] 12)

As the range ofA is the same as the range [af , II3; U, it
follows that

Ois =My —OLU [U*H%,U] ums (13)
From (11) and (13) we obtain that
CRB(0) = % (F—MT ‘M*)™" (14)
where
F=GNUyG, M=GNyU, T=U'IyU (15

To proceed further we need to evaluate the derivatives of
with respect to{ar. }. First, we considedr/d@”. Letp, denote

thekth column of P, i.e. P = [p,,p,, ... ,p,]. Hence,
dR - x
- =drp A" + Ap,d; (16)
dby,

whered, = da(0:)/df,. Therefore, thekth column of G is

given by

g, = vec <R_1/237RR_1/2> L vec(Zr+ Z7) (A7)
k

Z, = R'?Ap,d;R™"/* (18)

Next considetir /dp” . The key observation here is thai:(P) =

J p, wheredJ is a constant nonsingular matrix. To check this, we

note thatvec(P) is a permuted version of the vectpP,4, ...,
P,. Py, Pls,... Py 1, T 1t can be readily ver-

:L—l,n]

ified thatJ is a correspondingly permuted version of the block-

diagonal matrix whose first diagonal blocks are equal to 1 and

the remaining diagonal blocks are given yi _ZZ (see [6],
[7]). Using this observation along with (7) and (12) yields
v=((r"a%) e (R 4))J
From (11) and (13), we notice that tl@ER B(6) depends on
V only viaIly. SinceJ is nonsingular, we obtain from (19) that

(20)

(19)

Iy =Wip-1/2 aye0(r-1124)
Hence, the explicit form off in (19) is immaterial. This is an
important observation which will simplify the derivation of the
CRB(6).

Using the well-known identityW @ Z) ' =W gz}
(which holds true for any square nonsingular matrid®s and
Z), we obtain from (7) that for any matrice¥ andY with full
column-rank

Oxey)y =0y +Mx @I -IIx @ My (21)
From (17), (20) and (21), we get
Mg, =vee (Mg 112520+ Zillg12,)  (22)

where the obvious properlﬂ;,l/zAZk = O is exploited. Fur-
thermore, we can show that

R—1/2H;_1/2AR—1/2 _ Q_l/QﬂﬁQ_l/z (23)

whereA = Q712 A,

Finally, introduceQ), = dR/doy, = dQ/doy, k=1,... ,p.
We have now all ingredients to obta@RB(8). Now, let us de-
rive explicit expressions for the matric#s M, andT'. First, we
considerF'. Using (15) along with (5), (17), and (22) gives

Fir=2Re {tr (ZiH;,I,ZAzz) } (24)
Inserting (18) into (24) and then using (23) yields
Fi=2Re{(d: Q7 °1I5Q 7" di)(p; A" R™* 4p,)} (25)

Next, we consider the matrikZ. Making use of (15) along
with (5), (6), (12), (18), (22), and (23), we have

M, = 2Re {tr (Q;R’lApidZQ’I”HjQ’l/Z)} (26)

At last, we consider the matri¥. Using (15) along with (5),
(6), (12), (20), (21), and (23), it readily follows that

T;r = 2Re {tr (Q;Qfl/QHJijl/zQ;R,l)}
= w(QQ ' I5Q Q1 i Q) (27)

From (25)-(27) we obtain the following closed-form expressions
for the DOA-related block of CRB:
1

CRB(9) = + (F - MT_IMT)A

F = 2Re { (D'mb) o (PA*R_IAP>T}

My = 2Re{d;TI5Q, R " Ap,} (28)

Tip = e {or (Q5QR )} — o (Qu15Q,1TS)



where D =[di,ds,...,d,], R=Q Y?RQ~'Y? D=
Q '’D, Q, = Q '/*Q,Q /*, and® denotes the Schur-

Hadamard product. It can be readily checked that the last term _CRBDET

in the fourth equation of (28) is real-valued.

The expressions (28) can be reformulated in a more explicit
matrix form. Let us introduce the following auxiliary” x n and
m? x p matrices@ = [vec(eie] ), vec(ezel), ... , vec(enel))
andP = [vec(Q,), vec(Q,), . .. ,vec(Q,)], respectively, where
the vectore; contains one in thé&h position and zeros elsewhere.

Using these matrices and the properties (5) and (6), we can rewrite

M andT as
M =2re{Q" (D'}) o (PTA"R ") P}
T = 2Re {’P* (R’T® Hﬁ)P} -P" ((Hﬁ)T@@ IT;

)P

4. DISCUSSION

Let us now compare the stochastic and asymptotic determin-
istic CRB’s in the general case. The latter bound is given by
Borr(0) = 7 (Re{(D'II3D) ® PT})~". The follow-
ing inequality can be proven

1
>
CRB(0) > N

F~' > CRBprr(0) (32)
where the second part of (32) is derived in [1], and the first part fol-
lows from (28) together with the fact that the matAd T ' M7T

is nonnegative definite.

From (32) we may expect that in the colored and nonuniform
noise cases there may be a more essential difference between the
deterministic and stochastic CRB'’s compared to the uniform white
noise case, because the inequalitRB(#) > CRBprr(0) is
“strengthened” by the additional termaMT~'MT. This con-
jecture will be verified in the next section by several numerical
examples.

4.1. The Nonuniform White Noise Case

Equation (11) gives a nice geometrical interpretation of the stochas-

tic CRB. This interpretation is similar to that of the deterministic In this caseR is modeled as a diagonal matéX(o) = diag{o1,
bound [8]. From (11) it follows that any extra parameters added o>, ... , 0., }, which implies thap = m andQ; = e;el. ltcan
to o increase the dimension of the subspac&d> and, therefore, be proven that (28) can be transformed to

increase the stochastic CRB as well. This means that extra nui-

sance parameters can only reduce the potential DOA estimation

performance.

Equation (10) determines necessary conditions for existence

of the CRB. As a matter of fact, from (10) it follows that the FIM
is nonsingular if then® x (n®> + n + p) matrix [G, A] is full
column-rank. Hence, the necessary condition is

1

CRB(9) = + (F - HK_IHT)A (33)

with H = 2Re{(D"TI{)0 (R ' AP)"}andK = 2Re{IT} 0

Ry - II; © (IT5)". Note that these expressions are identical
to the results derived in [7], yet the matdK in [7] is written in the

(29) equivalentformk = R o R '— (IR )7 o (4R ).

p<m’—n’—n

For example, consider the case where there is qoiori infor- 4.2. The Uniform White Noise Case
mation about the noise covariance matrix. Using its Hermitian | this case, we have only one noise nuisance parameter 1),

structure, however, it can be parametrized by means of m’ and the vector becomes a scalag,. The model (3) can be sim-

real parameters. Apparently, in this case (29) is not satisfied and,p”ﬂed asQ(o) = oI and M becomes the x 1 vectorm. We
therefore, such a straightforward parameterization of the noise co-gasily obtain thatn = 0 and (28) simplifies to (30).

variance matrix leads to a singular FIM.

Let us compare the derived expressions to the well-known re-
sults for the stochastic CRB in the uniform noise case. In this
case,@ = oI, whereo is the noise variance. The uniform bound
is given by [1], [2]

7
2N

Consider the situation when the noise is uniform and spatially
white, but modeled using the general model (3) witl» 1 noise

CRBy(6)= (Re{(D*HjD)@ (PA*R_IAP)T})_I (30)

parameters. Comparing (30) with (28) under these conditions, we

have+ F~'|q=,r = CRBy(6). Furthermore, according to (15),
T~! is nonnegative definite, and henfe— MT~'M7T < F.
Therefore, we obtain that

CRB(0) > CRBy ()

Q=clI

(1)

We stress that this result is quite different from that in the deter-
ministic case [1], [3] wher€RB(0)|g=-r = CRBu(0) [7]. To

explain this difference, note that in the stochastic case the noise

5. NUMERICAL EXAMPLES

We assume a uniform linear array (ULA) @i = 10 sensors
spaced a half wavelength apart and two equi-powered uncorrelated
sources with the DOAS; = 7° andf, = 13°. N = 100 is taken.

Our first two examples correspond to the following colored
noise field models [9], [10]:

@l = oexp{-(i—k)C}
QL. = oew{-li—kc}

respectively, wherg is the noise “color” parameter ansl =
[,¢]". In both examplesSNR = 10log,,(ss/0) = 0 dB.
Fig. 1 shows the deterministic and stochastic CRB’s ve(sios
the first and second examples. The deterministic CRB is averaged
over 100 simulation runs.

In the third example, we model the sensor noise as a white
nonuniform process with the diagonal covariance matrix [7]

(34)
(35)

Q = diag{oc + 01,0+ 2,... ,0 +0m} (36)

and signal parameters are not decoupled as in the deterministic

case. In fact, the inequality (31) verifies the so-calpedsimony
principle.

where{4; };~, are independently drawn from the uniform random
generator in the intervgl, 8] and the “initial” SNR (which is
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Fig. 1. The CRB’s versug. First and second examples.
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Fig. 2. The CRB’s versugl/o. Third example.

equal to10log,,(os/0)) is= —10 dB. Fig. 2 displays the de-
terministic and stochastic CRB’s versus the paramgter. Both
curves are averaged over 100 simulation runs.

In the fourth example, we model the noise as an AR process

[4], so thatQ = o(C1C; — C2C3)™', where the triangular

Toeplitz matricesC'; and C» are parametrized by the AR coef-
,anm—1}, M is the order of the AR model, and
,an—1)7 (for more details, see [4]). We assume
thatSNR = —5 dB and varyM so that the AR coefficients cor-

ficients {a.,. ..
o =|o,a1,...

responding to théth model order are given by thex 1 subvec-
tor composed of the firstelements of the vectdi, —0.88, 0.84,
—0.86,0.85, —0.88,0.84, —0.85, 0.83, —0.82]7. Fig. 3 shows
the stochastic and averaged deterministic CRB'’s velgus

From Figs. 1-3, we see that both in the colored and nonuni-
form white noise cases, the stochastic bound can visibly exceed the
deterministic one. In certain cases (for example, see Fig. 2), the

4 T T T
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Fig. 3. The CRB's versus the order of AR model. Fourth example.
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difference between the stochastic and deterministic bounds may
be dramatic. This, along with the well-known fact that the de- [10]

terministic bound is too optimistic and nonachievable, verifies the
importance of the derived expressions for array processing appli-

cations.
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