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ABSTRACT

The stochastic Cram´er-Rao bound (CRB) plays an important role
in array processing because several high-resolution direction-of-
arrival (DOA) estimation methods are known to achieve this bound
asymptotically. In this paper, we study the stochastic CRB on
DOA estimation accuracy in the general case of arbitrary unknown
noise field parametrized by a vector of unknowns. We derive ex-
plicit closed-form expressions for the CRB and examine its prop-
erties theoretically and by representative numerical examples.

1. INTRODUCTION

Deterministic and stochastic CRB’s play an important role in array
processing because the performances of numerous high-resolution
DOA estimation methods are known to be comparable to these
bounds under certain mild conditions [1]. Moreover, the stochas-
tic CRB can be achieved asymptotically (at a large number of sam-
ples) by several methods, such as stochastic maximum likelihood
(ML) [2], MODE [1], and WSF [2].

The deterministic CRB on DOA estimation was derived in [3]
for the uniform white noise case. Recently, these results were ex-
tended to the general case of an arbitrary unknown noise field [4].

The derivation of the stochastic CRB represents a more chal-
lenging task (even in the simplest case of uniform white noise).
Such a derivation has been found in an indirect form (i.e., using the
asymptotic covariance matrix of the ML estimator) some ten years
ago by several authors [1], [2]. Although recently this derivation
has been extended to a few particular colored noise models [5],
closed-form expressions for the general unknown noise model [4]
remain an open problem. Several attempts to obtain the stochastic
CRB directly has been made, but such a derivation has been found
only recently, both for the uniform and nonuniform white noise
cases [6], [7].

In this paper, we derive closed-form expressions for the sto-
chastic CRB in the most general case of an arbitrary unknown
noise field. Our derivation extends the proof presented in [6]. We
analyze the properties of the obtained bound, discuss several prac-
tically important special cases, and present a numerical compari-
son of the stochastic and deterministic bounds for several relevant
white and colored noise models.

2. ARRAY SIGNAL MODEL

Let an array ofm sensors receive the signals emitted byn narrow-
band far-field sources with the DOA’sf�1; : : : ; �ng. Them � 1
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observation vector can be modeled as [1], [2]

y(t) = A(�)x(t) + e(t) (1)

where� = [�1; �2; : : : ; �n]
T is then � 1 DOA vector,x(t) =

[x1(t); x2(t); : : : ; xn(t)]
T is the n � 1 vector of random sig-

nal waveforms,A(�) = [a(�1); : : : ;a(�n)] is them � n di-
rection matrix,e(t) = [e1(t); e2(t) : : : ; em(t)]T is them � 1
vector of sensor noise,a(�) is the steering vector, and(�)T de-
notes the transpose. Assume the noise and signal vectorse(t)
andx(t) to be temporally white zero-mean Gaussian processes
with the unknown covariance matricesQ = Efe(t)e�(t)g and
P = Efx(t)x�(t)g, respectively, where(�)� denotes the conju-
gate transpose. Hence, the random array observations satisfy the
stochastic modely(t) � N (0;R) (for example, see [3]), where

R = Efy(t)y�(t)g = APA�
+Q (2)

is them�m array data covariance matrix.
Let us consider the following general model [4]

Q = Q(�) (3)

where� = [�1; : : : ; �p]
T is the vector of unknown coefficients

which are used to parameterize the noise covariance matrix. Thus,
the(n2+n+p)�1 vector of unknown real parameters can be writ-
ten as� = [�T ;�T ;�T ]T , where� is then2�1 vector made from
the upper triangle ofP , i.e. fromfP iig andfRefP ilg; ImfP ilg;
l > ig.

3. THE STOCHASTIC CRB

Under the previous assumptions, the Fisher information matrix
(FIM) for the parameter vector� is given by

FIMi;k = N tr

�
dR

d�i
R
�1 dR

d�k
R
�1

�
(4)

for i; k = 1; : : : ; n2+n+p, whereN is the number of snapshots.
Since in most applications both� and� are nuisance parameters,
we will be interested only in then � n �-block CRB(�) of the
full (n2 + n+ p)� (n2 + n+ p) CRB matrixFIM�1.

We will make relatively frequent use of the following well-
known identities

tr(XY ) = vec (X
�
)
�
vec (Y ) (5)

vec(XY Z) =
�
Z
T 
X

�
vec(Y ) (6)

(W 
X)(Y 
Z) = (WY )
 (XZ) (7)



which hold for any conformable matricesX;Y ,Z andW . Here,

 denotes the Kronecker product, andvec(�) is the operator stack-
ing the columns of a matrix on top of each other. Using (4) along
with (5) and (6) yields

1

N
FIM =

�
dr

d�T

�� �
R
�T 
R�1

��
dr

d�T

�
(8)

wherer = vec(R) = (Ac 
 A)vec(P ) + vec(Q), and (�)c

denotes the complex conjugate. Using the partition

�
R
�T=2 
R�1=2

�� dr

d�T

��� dr

d�T
;

dr

d�T

�
, [G j�] (9)

we rewrite (8) as

1

N
FIM =

�
G�

�
�

�
[G ; �] (10)

Applying a standard result on the inversion of partitioned matrices,
we obtain from (10) that

CRB(�) =
1

N

�
G
�
�
?

�G
��1

(11)

where�� =�(��
�)�1�� and�?

� = I���. Note that the
existence of(��

�)�1 is guaranteed by the existence ofFIM�1.
Furthermore, let us partition� as

�=
�
R
�T=2
R�1=2

�� @r

@�T

��� @r

@�T

�
, [V jU ] (12)

As the range of� is the same as the range of
�
V ;�?

V U
�
, it

follows that

�
?

� = �
?

V ��?

V U
h
U
�
�
?

V U
i�1

U
�
�
?

V (13)

From (11) and (13) we obtain that

CRB(�) =
1

N

�
F �MT

�1
M

�
��1

(14)

where

F = G
�
�
?

VG ; M = G
�
�
?

V U ; T = U
�
�
?

V U (15)

To proceed further we need to evaluate the derivatives ofr

with respect tof�kg. First, we considerdr=d�T . Let pk denote
thekth column ofP , i.e.P = [p1;p2; : : : ;pn]. Hence,

dR

d�k
= dkp

�

kA
�
+Apkd

�

k (16)

wheredk = da(�k)=d�k. Therefore, thekth column ofG is
given by

gk = vec

�
R
�1=2 dR

d�k
R
�1=2

�
, vec(Zk +Z

�

k) (17)

Zk = R
�1=2

Apkd
�

kR
�1=2 (18)

Next considerdr=d�T . The key observation here is thatvec(P ) =
J�, whereJ is a constant nonsingular matrix. To check this, we
note thatvec(P ) is a permuted version of the vector[P 11; : : : ;
P nn;P 12;P

�
12; : : : ;P n�1;n;P

�
n�1;n]

T . It can be readily ver-
ified thatJ is a correspondingly permuted version of the block-
diagonal matrix whose firstn diagonal blocks are equal to 1 and

the remaining diagonal blocks are given by

�
1 i
1 �i

�
(see [6],

[7]). Using this observation along with (7) and (12) yields

V =
��
R
�T=2

A
c
�


�
R
�1=2

A
��
J (19)

From (11) and (13), we notice that theCRB(�) depends on
V only via�?

V . SinceJ is nonsingular, we obtain from (19) that

�
?

V = �
?

(R�1=2A)c
(R�1=2A)
(20)

Hence, the explicit form ofJ in (19) is immaterial. This is an
important observation which will simplify the derivation of the
CRB(�).

Using the well-known identity(W 
Z)
�1

=W�1 
Z�1

(which holds true for any square nonsingular matricesW and
Z), we obtain from (7) that for any matricesX andY with full
column-rank

�
?

(X
Y ) = I 
�
?

Y +�
?

X 
 I ��?

X 
�?

Y (21)

From (17), (20) and (21), we get

�
?

V gk = vec
�
�
?

R�1=2A
Z
�

k +Zk�
?

R�1=2A

�
(22)

where the obvious property�?

R�1=2A
Zk = O is exploited. Fur-

thermore, we can show that

R
�1=2

�
?

R�1=2A
R
�1=2

= Q
�1=2

�
?
~AQ

�1=2 (23)

where ~A = Q�1=2A.
Finally, introduceQ

0

k = dR=d�k = dQ=d�k, k = 1; : : : ; p.
We have now all ingredients to obtainCRB(�). Now, let us de-
rive explicit expressions for the matricesF ,M , andT . First, we
considerF . Using (15) along with (5), (17), and (22) gives

F i;k = 2Re
n
tr
�
Zi�

?

R�1=2A
Z
�

k

�o
(24)

Inserting (18) into (24) and then using (23) yields

F i;k = 2Re
n�
d
�

iQ
�1=2

�
?
~AQ

�1=2
dk

��
p
�

kA
�
R
�1
Api

�o
(25)

Next, we consider the matrixM . Making use of (15) along
with (5), (6), (12), (18), (22), and (23), we have

M i;k = 2Re
n
tr
�
Q

0

kR
�1
Apid

�

iQ
�1=2

�
?
~AQ

�1=2
�o

(26)

At last, we consider the matrixT . Using (15) along with (5),
(6), (12), (20), (21), and (23), it readily follows that

T i;k = 2Re
n
tr
�
Q

0

iQ
�1=2

�
?
~AQ

�1=2
Q

0

kR
�1
�o

= tr
�
Q

0

iQ
�1=2

�
?
~AQ

�1=2
Q

0

kQ
�1=2

�
?
~AQ

�1=2
�

(27)

From (25)-(27) we obtain the following closed-form expressions
for the DOA-related block of CRB:

CRB(�) =
1

N

�
F �MT

�1
M

T
��1

F = 2Re

��
~D
�
�
?
~A
~D
�
�
�
P ~A

� ~R
�1 ~AP

�T�

M i;k = 2Re
n
~d
�
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?
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~Q
0

k
~R
�1 ~Api

o
(28)

T i;k = 2Re
n
tr
�
~Q
0

i�
?
~A
~Q
0

k
~R
�1
�o

� tr
�
~Q
0

i�
?
~A
~Q
0

k�
?
~A

�



where D = [d1;d2; : : : ;dn], ~R = Q�1=2RQ�1=2, ~D =

Q�1=2D, ~Q
0

k = Q�1=2Q
0

kQ
�1=2, and� denotes the Schur-

Hadamard product. It can be readily checked that the last term
in the fourth equation of (28) is real-valued.

The expressions (28) can be reformulated in a more explicit
matrix form. Let us introduce the following auxiliaryn2 � n and
m2 � p matricesQ= [vec(e1e

T
1 ); vec(e2e

T
2 ); : : : ; vec(ene

T
n )]

andP = [vec( ~Q
0

1); vec(
~Q
0

2); : : : ; vec(
~Q
0

p)], respectively, where
the vectorei contains one in theith position and zeros elsewhere.
Using these matrices and the properties (5) and (6), we can rewrite
M andT as

M = 2Re
n
Q

T
�
~D
�

�
?
~A

�


�
P
T ~A

T ~R
�T

�
P
c
o

T = 2Re
n
P
�
�
~R
�T


�?
~A

�
P

o
�P�

�
(�

?
~A
)
T
�?

~A

�
P

4. DISCUSSION

Equation (11) gives a nice geometrical interpretation of the stochas-
tic CRB. This interpretation is similar to that of the deterministic
bound [8]. From (11) it follows that any extra parameters added
to� increase the dimension of the subspace<�> and, therefore,
increase the stochastic CRB as well. This means that extra nui-
sance parameters can only reduce the potential DOA estimation
performance.

Equation (10) determines necessary conditions for existence
of the CRB. As a matter of fact, from (10) it follows that the FIM
is nonsingular if them2 � (n2 + n + p) matrix [G;�] is full
column-rank. Hence, the necessary condition is

p � m
2 � n

2 � n (29)

For example, consider the case where there is noa priori infor-
mation about the noise covariance matrix. Using its Hermitian
structure, however, it can be parametrized by means ofp = m2

real parameters. Apparently, in this case (29) is not satisfied and,
therefore, such a straightforward parameterization of the noise co-
variance matrix leads to a singular FIM.

Let us compare the derived expressions to the well-known re-
sults for the stochastic CRB in the uniform noise case. In this
case,Q = �I, where� is the noise variance. The uniform bound
is given by [1], [2]

CRBU(�)=
�

2N

�
Re

n
(D

�
�
?

AD)�
�
PA

�
R
�1
AP

�To��1
(30)

Consider the situation when the noise is uniform and spatially
white, but modeled using the general model (3) withp > 1 noise
parameters. Comparing (30) with (28) under these conditions, we
have 1

N
F�1jQ=�I = CRBU(�). Furthermore, according to (15),

T�1 is nonnegative definite, and henceF �MT�1MT � F .
Therefore, we obtain that

CRB(�)
���
Q=�I

� CRBU(�) (31)

We stress that this result is quite different from that in the deter-
ministic case [1], [3] whereCRB(�)jQ=�I = CRBU(�) [7]. To
explain this difference, note that in the stochastic case the noise
and signal parameters are not decoupled as in the deterministic
case. In fact, the inequality (31) verifies the so-calledparsimony
principle.

Let us now compare the stochastic and asymptotic determin-
istic CRB’s in the general case. The latter bound is given by
CRBDET(�) = 1

2N
(Ref( ~D

�

�
?
~A
~D) � P T g)�1. The follow-

ing inequality can be proven

CRB(�) �
1

N
F
�1 � CRBDET(�) (32)

where the second part of (32) is derived in [1], and the first part fol-
lows from (28) together with the fact that the matrixMT�1MT

is nonnegative definite.
From (32) we may expect that in the colored and nonuniform

noise cases there may be a more essential difference between the
deterministic and stochastic CRB’s compared to the uniform white
noise case, because the inequalityCRB(�) � CRBDET(�) is
“strengthened” by the additional term�MT�1MT . This con-
jecture will be verified in the next section by several numerical
examples.

4.1. The Nonuniform White Noise Case

In this caseQ is modeled as a diagonal matrixQ(�) = diagf�1;

�2; : : : ; �mg, which implies thatp = m andQ
0

i = eie
T
i . It can

be proven that (28) can be transformed to

CRB(�) =
1

N

�
F �HK�1

H
T
��1

(33)

withH = 2Ref( ~D
�

�
?
~A
)�( ~R

�1 ~AP )T g andK = 2Ref�?
~A
�

~R
�T
g��?

~A
� (�?

~A
)T . Note that these expressions are identical

to the results derived in [7], yet the matrixK in [7] is written in the

equivalent formK = ~R
�T

� ~R
�1
� (� ~A

~R
�1

)T � (� ~A
~R
�1

).

4.2. The Uniform White Noise Case

In this case, we have only one noise nuisance parameter (p = 1),
and the vector� becomes a scalar,�. The model (3) can be sim-
plified asQ(�) = �I andM becomes then � 1 vectorm. We
easily obtain thatm = 0 and (28) simplifies to (30).

5. NUMERICAL EXAMPLES

We assume a uniform linear array (ULA) ofm = 10 sensors
spaced a half wavelength apart and two equi-powered uncorrelated
sources with the DOA’s�1 = 7Æ and�2 = 13Æ. N = 100 is taken.

Our first two examples correspond to the following colored
noise field models [9], [10]:

[Q]i;k = � expf�(i� k)
2
�g (34)

[Q]i;k = � expf�ji� kj�g (35)

respectively, where� is the noise “color” parameter and� =
[�; �]T . In both examples,SNR = 10 log10(�S=�) = 0 dB.
Fig. 1 shows the deterministic and stochastic CRB’s versus� for
the first and second examples. The deterministic CRB is averaged
over 100 simulation runs.

In the third example, we model the sensor noise as a white
nonuniform process with the diagonal covariance matrix [7]

Q = diagf� + Æ1; � + Æ2; : : : ; � + Æmg (36)

wherefÆigmi=1 are independently drawn from the uniform random
generator in the interval[0; �] and the “initial” SNR (which is
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equal to10 log10(�S=�)) is = �10 dB. Fig. 2 displays the de-
terministic and stochastic CRB’s versus the parameter�=�. Both
curves are averaged over 100 simulation runs.

In the fourth example, we model the noise as an AR process
[4], so thatQ = �(C1C

�
1 � C2C

�
2)
�1, where the triangular

Toeplitz matricesC1 andC2 are parametrized by the AR coef-
ficientsfa1; : : : ; aM�1g, M is the order of the AR model, and
� = [�; a1; : : : ; aM�1]

T (for more details, see [4]). We assume
thatSNR = �5 dB and varyM so that the AR coefficients cor-
responding to theith model order are given by thei � 1 subvec-
tor composed of the firsti elements of the vector[1;�0:88; 0:84;
�0:86; 0:85;�0:88; 0:84;�0:85; 0:83;�0:82]T . Fig. 3 shows
the stochastic and averaged deterministic CRB’s versusM .

From Figs. 1-3, we see that both in the colored and nonuni-
form white noise cases, the stochastic bound can visibly exceed the
deterministic one. In certain cases (for example, see Fig. 2), the
difference between the stochastic and deterministic bounds may
be dramatic. This, along with the well-known fact that the de-
terministic bound is too optimistic and nonachievable, verifies the
importance of the derived expressions for array processing appli-
cations.
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