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ABSTRACT

Recent work suggests that the performance of convention-

al Gaussian-based adaptive methods can degrade severe-

ly in correlated non-Gaussian interference. We have ad-

dressed this problem by developing a new generalized like-

lihood ratio test (GLRT) for detecting a signal in unknown,

strong non-Gaussian low rank interference plus white Gaus-

sian noise which does not need detailed knowledge of the

non-Gaussian distribution. The optimality of the proposed

GLRT detector is established using perturbation expansion-

s of the test statistic to show that it is closely related to the

UMPI test for this problem. Computer simulations indi-

cate that the new detector signi�cantly outperforms stan-

dard adaptive methods in non-Gaussian interference and is

robust.

1. INTRODUCTION

Non-Gaussian disturbances have been observed in diverse
applications such as radar, sonar, digital communications,
and radio astronomy. Signal detection in unknown colored
noise backgrounds has traditionally been accomplished us-
ing adaptive methods based on the Gaussian model, whether
or not the noise is actually Gaussian distributed. Howev-
er, recent work has shown that the performance of adap-
tive detectors based on the Gaussian model can degrade
severely when operating in correlated non-Gaussian noise
backgrounds [1]. As an example, we computer simulated
the invariant matched subspace detector (MSD) of Scharf
et. al. [2] in noise consisting of a strong, highly corre-
lated rank-2 compound-Gaussian component embedded in
white Gaussian noise noise. Two versions were considered:
the optimum MSD that knows the true interference sub-
space and, motivated by the Principal Component Inverse
(PCI) method [3], an adaptive MSD (ASD) that uses an
estimate of the interference subspace obtained from signal-
free training data. As a reference, we also evaluated the
ASD using pure Gaussian noise that had the same nominal
covariance matrix as in the non-Gaussian case. The results
for all three cases are plotted in �gure 1. As clearly seen,
the performance of the ASD degrades substantially in the
non-Gaussian noise, whereas, the adaptive detector in pure
Gaussian noise has performance close to that of the opti-
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Figure 1: Experimentally measured ROC curves com-
paring the performance of the detectors at a signal-to-
interference ratio of -5 dB.

mum MSD. The e�ect of non-Gaussian interference on the
PCI and subspace methods is further discussed in [4].

The underlying problem of designing detectors for non-
Gaussian clutter is that in most applications there exists
no single family of multivariate non-Gaussian pdfs that ac-
curately characterizes the clutter in all scenarios and envi-
ronments. We now propose an alternative approach. In-
stead of trying to model the detailed non-Gaussian statis-
tical characteristics of the noise components, we treat their
waveforms as unknown (unknown parameters), but deter-
ministic. Then the detection problem can be
re-formulated as a composite hypothesis testing problem
[5]. The advantage is that this detection problem is often
easier to solve than the original non-Gaussian problem.

More precisely, we model the received complex-valued
m�1 noise plus signal space-time data snapshot at time tk
as a superposition

zk =

rnX
j=1

akjbj

| {z }
subspace interference

+ ck s|{z}
signal

+ nk|{z}
background white noise

(1)
of a strong subspace non-Gaussian interference component



and a background white Gaussian noise component nk, and
possibly a signal component. The akj and ck are the noise
and signal expansion coeÆcients respectively and the bj
and s are the noise and signal basis vectors respectively.
The non-Gaussianity of the noise is modeled as arising from
the expansion coeÆcients akj rather than the basis vectors
bj . For convenience, a rank-1 signal is assumed.

For the case of known bj , but unknown akj with un-
known multivariate pdf and unknown white noise variance,
it is reasonable to seek a test which is invariant to these
parameters. Ideally, we desire a uniformly most powerful
invariant (UMPI) test [5] (the UMPI test maximizes the
probability of detection regardless of the parameter values
while keeping the false alarm rate less than or equal to some
speci�ed value). Scharf et. al. [2] showed that for data of
the form (1) with known interference and signal subspaces,
the UMPI test, referred to as the matched subspace detec-
tor (MSD), is (in simpli�ed form)

kPP?
B
S z k

2
F

kP?
BS z k

2
F

H1

>
�
H0

� (2)

where � is some threshold. The matrix PP?
B
S is the projec-

tion operator onto the part of the signal that remains after
the subspace interference has been nulled and P?

BS is the
projection operator that nulls out both the subspace inter-
ference and signal component. Mathematically, PP?

B
S and

P?
BS are given by

PP?
B
S = P?

B S(SHP?
B S)�1SHP?

B (3)

and
P?
BS = I � [BjS]([BjS]H [BjS])�1[BjS]H (4)

where B = [b1;b2; : : : ;brn ] and S = s. The matrix [BjS]
is obtained by concatenating B and S columnwise) respec-
tively, and

P?
B = I �B(BHB)�1BH (5)

Test (2) is maximally invariant to scalings of the data
and rotations in the column space of B. Hence it is CFAR
with respect to the background noise level. It is emphasized
since (2) is UMPI, no other CFAR test can perform better.

Although test (2) is optimum, it is diÆcult to realize be-
cause the interference subspace B is seldom known before-
hand in practice. One approach is to use the methodology of
the PCI method [3] and estimate the unknown interference
subspace from a set of signal-free training data. However,
as the previous and upcoming numerical examples indicate,
this approach may not be optimum when the low rank noise
is non-Gaussian.

The approach we take is to treat B, akj and the white

noise variance as unknown, but deterministic, and derive

the GLRT (the GLRT is obtained by replacing the un-

known parameters in the likelihood-ratio test by their ML

estimates). Our motivation is that in certain instances, the

GLRT can actually be UMPI and often leads to a reason-

able or good test [2].

2. NEW GLRT DETECTOR

A secondary data set of K signal-free data vectors is as-
sumed available for training, stacked column-wise into a
m � K matrix X. Detection of the signal is to be per-
formed on a primary data set, consisting of a single data
snapshot, denoted as Y . Under the null hypotheses H0 and
signal present hypotheses H1, the observed data matrices
Z = [XjY ] are modeled as

H0 : Z = BA + N (noise only) (6)

H1 : Z = BA+ [0jSc] +N (signal + noise) (7)

where B is a m � rn matrix whose columns generate the
low rank interference space, A is a rn�K+1 matrix whose
elements contain the low rank interference expansion co-
eÆcients, S is a n x 1 signal replica, and c is the signal
amplitude. The elements of matrix N are modeled as IID
complex Gaussian random variables with zero-mean and
variance �2. S is assumed known, but A, B, c, and �2 are
assumed to be unknown, but deterministic.

A GLRT statistic for the hypothesis testing problem of
(6) and (7) is then

y �

max

B1; A1; c; �
2
1 (�2

1)
�mK e

� 1

�2

1

kZ�B1A1�[0jSc]k2
F

max

B0; A0; �2
0 (�2

0)
�mK e

� 1

�2

0

kZ�B0A0k
2

F

(8)

which simpli�es to the ratio of �tting errors

y �
minB0; A kZ �B0Z0k

2
F

minB1; B1; c kZ �B1A1 � [0jSc]k2F
(9)

The numerator of (9) is the square-error in �tting the ma-
trix Z by a rank rn matrix and can be easily evaluated using
the SVD of Z. Similarly, the denominator of (9) is the error
in jointly �tting Z by a rank rn matrix and the linear part
[0jSc]. However, it can not be directly evaluated using the
SVD of Z.

To numerically evaluate the denominator, we propose a

criss-cross regression-like method. The idea is to linearize

the minimization by holding, say B, constant and then min-

imizing with respect to only A and c. This is a standard

linear least-squares �tting problem and is easy to solve. The

procedure is then repeated, this time replacing A with its

estimate from the previous step and now minimizing with

respect to B and the c. These steps are repeated until con-

vergence.

3. RELATIONSHIP TO UMPI DETECTOR

We now establish the connection of the proposed GLRT to
the UMPI matched subspace detector of Scharf et al. [2]
by deriving a simple approximation to the test statistic.
First, in order to make the comparison, we need to extend
the single data vector optimum MSD (2) to the multiple
data vector case of (6) and (7). This is simple to do and
by substitution (by concatenating all the columns of Z into



one vector), we obtain the optimum MSD test statistic for
the multiple data vector case:

yMSD � 1 �
kPS0 z

0 k2F
kP?

S0
z0 k2F

(10)

where z0 = vec(P?
B Z), S0 = [ vec(P?

B [0jS]),

PS0 = S0(S0
H
S0)�1S0, and P?

S0 = I � PS0 .
We now use a �rst-order perturbation expansion for the

SVD of a data matrix [6] to obtain an approximation to the
GLRT test statistic (9) which can be related to the UMPI
MSD (10). In the analysis, both Sc and N are regarded
as perturbations and weak relative to BA. The speci�c
derivation details are shown in appendix A. The �nal ap-
proximation for the GLRT statistic derived in appendix A
is

y � 1 �
kPS00 z

00 k2F
kP?

S00
z00 k2F

(11)

where z00 = vec(P?
B ZP

?
A ), S00 = vec(P?

B [0jS]P?
A ), PS00 =

S00(S00
H
S00)�1S00, P?

S00 = I � PS00 , and
P?
A = I �AH(AAH)�1A.
The only di�erence between the UMPI MSD (10) and

the new GLRT (11) is the post multiplication of the data
matrix Z by P?

A . Thus to �rst-order, the new GLRT is
approximately equivalent to the optimum MSD. By inspec-
tion, it is seen that (11) is invariant with respect to common
scalings of the columns of the data matrix Z, and thus the
background noise level. Thus, the new GLRT is at least
approximately CFAR with respect to the background noise
level.

When the interference is strong and signal weak, the

loss in performance of the GLRT comes from the additional

nulling due to the post-multiplication of the data matrix Z

by P?
A . This loss can be interpreted as arising from having

to estimate the interference subspace and is a function of

the orthogonality of the interference matrix row space to

the row space of the signal matrix [0jSc]

4. NUMERICAL EXAMPLES

We now present some numerical examples where a 20 ele-
ment array is used to detect a weak monochromatic signal
embedded in strong, highly correlated, but heavy tailed,
rank-2 compound-Gaussian clutter plus white complex Gaus-
sian noise. The rank-2 compound-Gaussian component was
modeled as the scattering arising from two independent, u-
nit variance Rayleigh distributed discrete re
ectors excited
by a monochromatic signal pulse located �1=2 DFT bin in
wavenumber space symmetrically about broadside modu-
lated by the square-root of a Gamma random variable with
a shape parameter of .1. The white noise variance, �2 was
set to :1.

A total of 24 signal-free data snapshots were used for
the secondary or training data set. The primary data set
for detection consisted of a single data snapshot. The signal
direction of arrival was chosen to be broadside to the array.
The signal power to interference ratio (SIR) is de�ned as

10log10�
2. 15000 independent trials with and without a

signal injected were performed, computer simulating the
new GLRT, optimumMSD, ASD, and Kelly's CFAR GLRT
[7] receivers. For comparison, an analogous pure Gaussian
noise case with the same nominal covariance matrix was also
simulated. Note that the ASD was implemented by using
the 24 snapshot signal-free secondary data set to estimate
the rank-2 interference subspace via a SVD and plugging
the estimated noise subspace into (2).

Figures 2 and 3 show the empirically measured proba-

bility of detection (pd) curves obtained for a probability of

false alarm (pfa) of .005 for the non-Gaussian and Gaussian

cases respectively for all four detectors. From the pd curves

in �gure 2, it can be seen that the new GLRT has nearly the

same performance as the optimum MSD and signi�cantly

outperforms the ASD and Kelly's GLRT when the inter-

ference is compound-Gaussian. However, it is interesting

to observe that for the pure Gaussian case (�gure 3), both

the new GLRT and the ASD perform nearly as well as the

optimum MSD.

4.1. Insensitivity to Rank Mismatch

An important question is the sensitivity of the detector to

subspace model order or rank errors. The detector needs

knowledge of the subspace model order of the interference.

Since this information is usually not available, it must be

estimated from the data. Thus the assumed rank or order

may be erroneous and it is important to examine the sen-

sitivity of the detector to incorrect rank. Using the same

rank-2 interference example as before, we evaluated the new

GLRT performance for assumed ranks varied between 1-5

on the basis of ROC curves measured from 2000 simula-

tions and plotted them in �gure 4. When the rank was

underdetermined, that is, set to 1, the detector probability

of detection was greatly reduced. This behavior is expect-

ed since we are allowing strong coherent interference to be

treated as white noise. As the rank was over-determined

between 3-5, the detector performance only degraded slow-

ly as the rank was increased and appeared to be relatively

insensitive to rank over-determination.

5. CONCLUSION

We have derived a new GLRT detector and shown its rela-

tionship to the UMPI MSD. Our perturbation analysis and

numerical examples suggest that the new GLRT is likely to

be much more robust in low rank non-Gaussian clutter than

ad hoc or conventional adaptive detectors. Finally, further

work needs to done in analyzing the detectors performance

in regards to signal and rank mismatch and higher-order

e�ects due to the non-Gaussianity of the interference.

APPENDIX A: PERTURBATION ANALYSIS
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Figure 2: Experimentally measured probability of detec-
tion in non-Gaussian interference as a function of SIR for a
pfa of .005 based on 15000 trials.
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Figure 3: Experimentally measured probability of detec-
tion in Gaussian interference as a function of SIR for a pfa
of .005 based on 15000 trials.
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Figure 4: Experimentally measured ROC curves for the
new GLRT detector when incorrect ranks are assumed for
the subspace interference component.

We start with the numerator of (9). Recall that the nu-
merator is the square-error in �tting a rank rn matrix to
Z. Letting Z = AB + N , where N is some perturbation
and using the �rst-order subspace perturbation expansion
derived in [6] for the error in approximating a matrix by a
matrix of lower rank, we obtain

min
B;A

kZ �BAk2F � dnum = kP?
B ZP?

A k
2
F (12)

where P?
A = I �AH(AAH)�1A.

We now approximate the denominator. If the denomi-
nator of (9) is solved with respect to only B1 and A1 (hold-
ing c �xed), it is equivalent to �nding the rank rn approx-
imation to Z � [0jSc]. Treating [0jSc] as a perturbation
(weak signal and noise case) initially and applying (12), we
can approximate the denominator as

dden � min
c
kP?

B ZP?
A � cP?

B [0jS]P?
A k

2
F (13)

The minimization of (13) is a standard linear least-squares
problem and the residual �tting error is

dden � kP?
S00z

00k2F (14)

where z00 = vec(P?
B ZP

?
A ), P?

S00 = I � PS00 ,

PS00 = S00(S00
H
S00)�1S00, and S00 = [ vec(P?

B [0jS]P?
A ) ].

The operator vec(�) takes a matrix and converts it to a
vector representation by stacking the columns. Finally, re-
placing the exact quantities in (9) by their above approx-
imations (12) and (14), and after some simpli�cation, we
obtain

y � 1 +
kPS00 z

00 k2F
kP?

S00
z00 k2F

=
dnum
dden (15)
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