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ABSTRACT

In this paper we presenta schemavhich exploresthe parallelism
on JVM. An algorithm, calleddynamic-duplicatiorschedulingis

developedfor solvingthestaticschedulingandcodegeneratiorfor

dataflow graphs(DFG) ontheparallelJVM. Experimentatesults
shaw thattheschedulgroduceddy thealgorithmon parallelJVM

is significantlyimproved comparedvith thetraditonalJVM.

1. INTRODUCTION

Java is an Internetprogramminglanguagethat canrun on a va-
riety of platforms. Its popularityresultsfrom the factthatit is a
machine-independemxecutablecodewith the stack-basedava
Virtual Machine. Basicly, the currentJava Virtual Machineruns
sequentiallyvithoutary parallelprocessingTheoperationis exe-
cutedby "pushing” or "popping” anelementbn the stack.Having
only one operandstackin eachmethodmalkes executionof pro-
gramsslow. If we canuseseveraloperandstacksatthe sametime
in eachmethod,the standardinterpretve implementationof the
JavaVirtual Machinewill beimproved.

Previouswork hasfocusedn efficientcompilationto generate
optimizedstackcode.An algorithmto generateptimal programs
for expressionevaluationis presentedn [3]. Cierniak develops
aresearcttompilerfor Java classfiles [4]. This compilerrecov-
ersa high-level structurefrom the classfile andthenappliesop-
timizationsobtainedby applyingdatatransformationgo improve
the locality of memoryaccessebeforewriting out the optimized
code.Koopman[2] introducedstackschedulingvhich substitutes
loadsof localvariableshy stackcopying andmanipulationinstruc-
tions. Maierhoferimprovesstackschedulingoy addinganinstruc-
tion schedulein [5].

However, realizingparallelismof Java programson the stack-
basedlava Virtual Machinehasrecevedrelatively little attention.
Most of the previous researchdid not take this into account.The
main contrikution of this paperis to explorethe parallelismonthe
stack-basedava Virtual Machine analyzethemodificationof sys-
tem implementationwhich malkes parallelismrealistic,and build
asystemschemedor a parallelJVM. By applyinglist scheduling,
we developstechniquesandan algorithmto schedulecontrol cy-
clesbasedn the manipulatiorof cyclic data-flav graphswith de-
lays on the parallel JVM. Our work provides a generalsolution
to implementparallelismwith multiple stacksandto optimizethe
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Fig. 1. ArchitecturalModel of ParallelJVM

scheduldengthof the DFG by dynamicallyadjustingtheschedule
atcompile-timeandperformglobalreferencindgor local variables.

Therestof this papelis organizedasfollows. Section2 presents
the systemspecificatiorof the parallelJVM. In Section3, we dis-
cussan algorithm to implementparallelismfor the Java Virtual
Machine. Experimentresultsare given in Section4. Section5
givesconclusions.

2. SYSTEM MODEL

2.1. Architecture Model

In the JVM, eachmethodinvocationhasits own private operand
stack,which is usedto passargumentsto methodsandto collect
returnedresults. Whenthereis a methodinvocation,local vari-
ablesareusedto storepartial resultsandstateinformation. When
a methodreturns,ary valuesin its local variablesare discarded.
Methodsdeclarehov mary local variablesthey use. The operand
stackof this methoddoesoperationsy loadingor storingvalues
from local variableswhich allows reentrang andrecursion.

In orderto implementparallelismfor eachmethodin the JVM
to improve speedor every methodcall, we designanarchitecture
model with multiple operandstacksand a sharedlocal variable
table,shawvn in Figurel. In our model, we malke the following
design:

Multiple operand stacks Eachmethodhasmultiple operand
stacksinsteadof one.In thisway, ataskcanbe executedn differ-
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entoperandstacksat the sametime which canimprove the speed
of computation.

"Shared” local variables. We call thes€’shared”becausaill
of operandstackssharelocal variableswhich meanghatthe same
localvariablecanbeloadedinto or storedfrom differentstacks.In
Figurel, local variablea is shareduy stackl, stack2 andstackn.
If alocalvariableis changedn onestackthis stackwill write this
new valueto the local variabletable. Thenall load instructionto
thislocal variablewill fetchthenew value.

Multiple variables for differ ent iterations. In a DFG, be-
causeherearedifferentlengthsof datadependeng we mayneed
differentversionsof a nodein oneiteration. For the sale of sim-
plicity, anodehasdifferentlocal variablegto storeits valuein dif-
ferentiterationperiods. At the endof eachiteration,thesevalues
areupdatedo preparefor the next iteration.

2.2. SystemScheme

Basedon the parallel JVM model, we will shov how to sched-
ule adataflow graph(DFG) in this nev model. In this paper we
useDFG to representatask. BecauseanunloopedDFG is a spe-
cial form of aloopedDFG, the DFGswe discussn this paperare
loopedDFGs.Soour problemis: Givena DFG, produceits static
schedulein the parallel JVM.

Definition 2.1 A data-flow graph (DFG) G = (V,E,d) is a
node-weighte@nd edge-weighteddirectedgraph, whee V' is the
setof nodes,F C V x V is the setof edgsandd is a function
from E to thenonngativeintegers.

We usethe differential equationsolver in [7] as an example of
usingdata-flav graphsto modelwhile loops. The behaioral de-
scriptionis in Figure 2-(a). We assumethat an adderperforms
additions,subtractionsandcomparisons For the DFG in Figure
2-(b), we useboxesto represenaddernodesandcirclesto repre-
sentmultiplier nodes.

Ourschedulingschemehasthreephases:

Prework In this phasethe maintaskis to find the numberof
local variablesneededor eachiteration. As we discussecarlier
agivennodemayneedmorethanonelocal variable. This assign-
mentis finishedbeforethe loop is executed,so all the iterations
have the samevariableallocation.In figure 2-(b), node6, 8, 9, 10
eachhas1 delay so eachof themneeds2 local variablesto store
its currentvalueandthe previousiterationvalue; For othernodes,
eachneedsl localvariableto storeits currentvalue.

Sdeduling Period: This is the core of our systemscheme.
ThisphaseschedulesheDFG andarrangesheorderof eachnode.
For a staticschedulewe just needto find the scheduleof oneit-
eration,thenrepeatedlyfollow this schedulan eachiteration. List
schedulings usedin this phaseo find theorderof nodeexecution.
We proposeanalgorithmto arrangenodesto operandstacks.

Postwork At the endof eachiteration,local variablesareup-
dated. Eachvariableis forwardedto occupy the position of the
previousiteration. If thereis no variableallocatedfor a previous
level, it is discardedandthe positionis left for the comingitera-
tion. Soin Figure2, attheendof 2nd iteration,thelocal variable
for currentnode10 will beputin thelocal variablefor node10 of
1st iteration.

Of thesethreephasesthe schedulingperiod andpostworkare
executedn aloop,while preworkis performedbutsideof theloop.

3. DYNAMIC-DUPLICA TION SCHEDULING

In this section,an algorithm called dynamic-duplicatiorschedul-
ing is providedto producethe staticscheduleon the parallelJVM
modelin the previous section.

Usually memoryaccessewiill take moretime thanotherop-
erations.If we storeandloadeachvariableeverytime,thisprocess
will costalongschedulgime. By stackcopying andmanipulation
of instructionsthe schedulecanbeimproved. Koopmandesigned
mary kinds of stackmanipulationdgn [1]. Most stackprocessors
useastackbuffer to cachehetopmoststackelement$or improved
performancdl]. In analogyto registermachinesaccesdo these
stackelementds fasterthanaccesdo memory[5]. This provides
a basisfor ourimprovement:the machinewill keepcopiesof the
element®nthe stackandreusethesecopieslater, insteadof load-
ing themfrom main memoryevery time. But in earlierresearch,
theuseof duplicationandtheduplicatecelementspositionsin the
stackarelimited becausé is hardto guarante¢heproperworking
of tghestack. In this paper we discusgheseissuesandpresenta
conditionwhich canguarante¢he correctnessf duplication.

Property 3.1 GivenaDFG G = (V, E,d), forv € V, whee Sy
is the sequencef stak elementsfter duplicatingv and S, is the
sequencef stak elementsfter loading v, theduplicationof v is
legal if S1 = Ss.

In orderto guarante¢hata duplicationis legal, we mustcheckthe
sequencef nodesnthestackwhenwewantto copy anode.Each
time we load a node,we will checkto seeif it is alreadyloaded
or computedin the selectedstack. If we find it in the stackand
the duplicationcanbe legal, we malke a copy anddo not needto
loadit from memory A duplicationneedsto be insertedinto the
previously producedschedule.The relatedstoreoperationmight
be affected,sothe scheduleneedgo befurtherchangedBecause
of this, we call this schedulingdynamicduplication

We are also concernwith the position of the duplicatedele-
menton the stack. For simplicity, we usethe top elementasthe
referenceanddefinethefollowing duplicationoperation.

Definition 3.1 In a stadk S, dupk is definedas an opeation to
duplicatean elemento the (top + k)th positionon the stak and
dup.k of nodew is alwaysput next to the loading or computingof
V.



Table 1. An exampleof dynamicduplicationscheduling

c=a+b | () iload.a
(a-) iload_b
(ba-) dup3
(ba()b-) iadd
(cOQb-) istorec
d=e+f | (Ob) iload.e
(e()b-) dupl
(eeb-) iload.f
(feeb-) iadd
(deb-) istored
h=e+g | (eb-) iloadg
(geb-) iadd
(hb-) istoreh
z=b+c | (b-) iload_c
(cb-) iadd
(z-) istore.z

Lemma3.1 Givena DFG G = (V, E,d), dupk of v is legal
if k = m + n, m is the numberof duplicationsinsertedafter
loading or computingu in the previously producedschedule n is
the numberof nodesobtainedby other opemtions. Thesenodes
satisfytwo conditions:

1. They appearbefore v;

2. They are still present.

Proof: Thecomputatiorin the stackalwayspopsthetop elements.
Sowv mustappearasthetop elementwhenit is neededn a com-
putation.Accordingto dynamic-duplicationbeforeduplicatingv,
supposem duplicationsare insertedin the previously produced
schedulafterv onthestack.Sowhenwe insertthe duplicationof
v, theseduplicationsarestill onthe stackandthey will be popped
beforeduplicationof v is popped.Sotheinsertionof duplication
beputbehindall of them.Combinedwith n othernodesthedupli-
caitonmustbeputatk = m + n, andthis guarante¢he sequence
will notbedestrgyed, accordingto definition 3.1, this schedulds
legal. O Tablel givesan
exampleof how to determinek. In ¢ = a + b, we duplicateit at
top + 3 becausave pusha beforewe pushb andaccordingo the
previousstepof dynamicduplication,we know we needto leave a
spacefor the copy of e whichis producedn h = e + g. In order
to simplify theimplementationjn this paper we do not consider
m. Instead,we alwayscopy a nodeat the bottomof the current
stack. In this way, the duplicationmay beillegal. In sucha case,
we cannotmake a copy sowe reloadthis node.

Figure 3 (a) shavs a DFG. For simplicity, thereis only one
operandstack. Figure 3 (b) is its scheduldf thereis no duplica-
tion operation,while Figure 3(c) is the schedulereplacingiload
instructionswith dup.b instructionswhich meangduplicateat bot-
tom. If memoryaccessetake 2 cyclesandotheroperationgake
1 cycle, thelatterwill take 3 fewer cyclesthanthe former. Figure
3(d) shawvs the contentsn the operandstackin which’C’ meansa
constantFurther thealgorithmwill do thefollowing things:

e Because constanthasno predecessoit shouldbe putin
the stackasearly aspossible. Every time whenthereis a
constanin ancestorsthis constanwill bescheduledirst.

e Thealgorithmwill loadancestorsccordingto their finish-
ing positionswhich meanst will loadthe earliestpossible
ancestofirst.

e We do not storeevery nodein eachiterationbecausehey
may not be usedin the later iterations. We just storetwo

iload_b iload_b (-b)

iload_c iload_c (-cb)
H add add (-a)
istore_a dup_b (-aa)
iload_a dup_b (-aaa)
iconst istore_a (-aa)
o ° mult iconst (-Caa)
istore_b mult (-ba)
iload_a istore_b (-a)
iconst iconst (-Ca)
mult mult (-¢)
istore_c istore_c )
(a) (b) (c) (

Fig. 3. A DFG graph& its scheduleX its stackcontents

Algorithm 1 Stackschedulein dynamic-duplication

stackscheduler(yn)
1: fori<+ 1ltondo
2. Orderancestordy their finishing order alwaysput constantst beginning;

3:  /*Decideloador duplicationfor ancestors*/
4:  for all ancestorén finishingorderdo

5: if theancestowr.anis in the stack;then

6: if duplicationis legalthen

7. insertdup;

8: else

9: loadtheancestor;

10: endif

11: else

12: Findfinishingpositionp andfinishing stacks of v.an
13: if v.anis not storedthen

14: if v.anis usedin stacksthen

15: adddup;

16: endif

17: storev.anat stack[s][p+1];

18: endif

19: addload;

20: endif

21: endfor

22: addoperation;

23: stack< stackwith theminimal row;

24:  [* Checkif this stackwill beusedin thelateriteration*/
25: forallv- udo

26: if delay[u]s£ 0then

27: storev;
28: endif
29: endfor

30: endfor

31: returnstack;

kindsof nodes:

1. Nodeswhichwill be usedin otherstacksin the cur-
rentiteration;

2. Nodeswhichwill beusedin thelateriterations.

We adda checkingprocesgo checkthe storeof nodesduring the
iteration. If anodeis neededn alateriteration, it will be stored
immediatelyafter it is computed. If ancestorsare computedon
the differentstackbut not stored,we will insertstoreinstructions
into that stack. The choice of nodeis basedon list scheduling.
We designa stackschedulefAlgorithm1) to choosethe operation
stack.This schedulealwayschooseshe stackwith the minimum
numberof cycle lengthfrom all stacks.

4. EXPERIMENT AL RESULTS

In this section,we presentsomeexperimentalresultson the se-
lected DSP benchmarks. In theseexperiments,we assumethe
function of eachnodeis additionor multiplication. We compare



Table 2. Machinecyclesfor differentalgorithms

cycles
Benchmark non- dynamic-duplication
parallel 2 stacks 3 stacks 4 stacks

Diff.Equation 106 45 575%| 35 67.0%| 35 67.0%
2-stagdIR 142 53 62.7% | 43 69.7% | 32 77.5%
4-stagdIR 230 84 63.5% | 52 77.4% | 43 81.3%
Elliptic filter 314 139 55.7% | 91 71.0% | 88 72.0%
All-pole Lattice || 138 50 63.8% |50 63.8%| 50 63.8%
5th Elliptic 376 159 57.7% | 119 68.4% | 111 70.5%
Voltera 236 115 51.3%| 70 70.3% | 60 74.6%
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Fig. 4. Improvementvs. Numberof operandstacksfor 5th
elliptic filter

thenon-paralleschedulavith the paralleldynamic-duplicatioral-
gorithm.

The DSPfilter benchmarksisedin theseexperimentsnclude
adifferentialequationsolver, a 2-stagdlR filter, anelliptic filter,
an all-pole lattice filter, a 5th order elliptic filter and a volterra
filter.

Table 2 summarizeghe numberof schedulecycles of non-
parallel JVM and the parallel algorithms. Theseschedulesare
computedundertheconditionthatloadsandstorescost3 machine
cycleseachandotheroperationscost1l machinecycle. The per
centagedatarepresentsheimprovementcomparedvith the non-
parallel JVM schedule. For the dynamic-duplicatioralgorithm,
we measureheschedulavhenthereare2, 3 and4 operandstacks.
Fromthistable,we getthefollowing obsenations:

e Thedynamic-duplicatioralgorithmgreatlyimprovesthesched-
uleonatraditionalsequential VM. Thedynamic-duplication

algorithm improves the schedulemore than 60% in each
benchmarkbecausé¢he dynamic-duplicatiordecreasethe
numberof loadsandstoresvhich costmuchexecutiontime.

e Thedgyreeof parallelismdepend®n the propertiesof the
DFG. Figure 4 shaws the relationshipbetweenimprove-
mentsobtainedby dynamic-duplicatiorandthe numberof
operandstacksfor 5th elliptic filter. This figure shaws
that the improvementwill be increasedvhenthe number
of operandstacksis lessthan5, andit is the largestat 5
operandstacks,after that, therewill be no gain whenwe
increasethe numberof operandstacks. This is dueto the
numberof nodesateachlevel in the DFG. Accordingto the
propertiesof the DFG, thenumberof operandstackscanbe
decided.

Table3 shaws the instruction. The instructionshave beenclassi-
fiedin threecatgories:

e Loads/StoresContainsall instructionsaccessingpcal vari-
ables.

Table 3. Instructiondistribution for differentalgorithms

Benchmark non-parallel dynamic-dup

LS dup [ Other | LS dup | Other
Diff.Equation 31 0 13 19 6 13
2-stagdIR 39 0 25 27 3 25
4-stagdIR 63 0 41 37 2 41
Elliptic filter 89 0 47 48 12 47
All-pole Lattice | 39 0 21 11 8 21
5th Elliptic 104 0 64 55 10 64
Voltera 64 0 44 33 1 44
Total 429 0 255 230 42 255
Percentage 65.1% | 0.0% | 34.9% | 43.6% | 8.0% | 48.4%

e Duplication Representall duplicationmanipulations.

e Others Includesotherinstructionssuchasaddition, multi-
plicationandiconst.

In the non-parallelalgorithm, 65.1% instructionsare loads
and stores,while in the dynamic-duplicatioralgorithm,they ac-
countfor only 43.6%. Thereis no duplication manipulationin
non-parallelalgorithm, but the amountis 8.0% in the dynamic-
duplication. The total amountof instructionsdecreasegreatly
Theload andstoreinstructionsdrop from 429 in the non-parallel
JVM to 230 in theparallelJVM, with aslightly increaseof dupli-
cationandno changen otherinstructions.This factcanaccount
for the hugereductionin scheduldength.

5. CONCLUSION

In this paperwe have presente@ schemeo obtainparallelismon

the JVM.The schemencludesreplacingone operandstackwith

multiple operandstacks.All operandstackssharelocal variables.
The valuesof the samenodein differentiterationsare storedinto

differentlocal variables. A schedulingalgorithmis provided to

generatahe staticscheduleof DFG on the parallel JVM. On the
basisof list-schedulingthe dynamic-duplicatioralgorithmusesa
seriesof methodsto reducethe scheduldength. The stackdupli-

cationwhich copiesthestackelementgormsagoodwayto reduce
loadsfrom local variables.
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