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ABSTRACT

In this paper, we presenta schemewhich explorestheparallelism
on JVM. An algorithm,calleddynamic-duplicationschedulingis
developedfor solvingthestaticschedulingandcodegenerationfor
dataflow graphs(DFG)on theparallelJVM. Experimentalresults
show thatthescheduleproducedby thealgorithmonparallelJVM
is significantlyimprovedcomparedwith thetraditonalJVM.

1. INTR ODUCTION

Java is an Internetprogramminglanguagethat canrun on a va-
riety of platforms. Its popularityresultsfrom the fact that it is a
machine-independentexecutablecodewith the stack-basedJava
Virtual Machine. Basicly, the currentJava Virtual Machineruns
sequentiallywithoutany parallelprocessing.Theoperationis exe-
cutedby ”pushing” or ”popping” anelementon thestack.Having
only oneoperandstackin eachmethodmakesexecutionof pro-
gramsslow. If we canuseseveraloperandstacksat thesametime
in eachmethod,the standardinterpretive implementationof the
Java Virtual Machinewill beimproved.

Previousworkhasfocusedonefficientcompilationtogenerate
optimizedstackcode.An algorithmto generateoptimalprograms
for expressionevaluationis presentedin [3]. Cierniak develops
a researchcompilerfor Java classfiles [4]. This compilerrecov-
ersa high-level structurefrom the classfile andthenappliesop-
timizationsobtainedby applyingdatatransformationsto improve
the locality of memoryaccessesbeforewriting out theoptimized
code.Koopman[2] introducedstackschedulingwhich substitutes
loadsof localvariablesby stackcopying andmanipulationinstruc-
tions.Maierhoferimprovesstackschedulingby addinganinstruc-
tion schedulerin [5].

However, realizingparallelismof Java programson thestack-
basedJava Virtual Machinehasreceivedrelatively little attention.
Most of theprevious researchdid not take this into account.The
maincontributionof thispaperis to exploretheparallelismon the
stack-basedJavaVirtual Machine,analyzethemodificationof sys-
tem implementationwhich makesparallelismrealistic,andbuild
a systemschemefor a parallelJVM. By applyinglist scheduling,
we developstechniquesandan algorithmto schedulecontrol cy-
clesbasedon themanipulationof cyclic data-flow graphswith de-
lays on the parallel JVM. Our work provides a generalsolution
to implementparallelismwith multiple stacksandto optimizethe
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Fig. 1. ArchitecturalModelof ParallelJVM

schedulelengthof theDFGby dynamicallyadjustingtheschedule
atcompile-timeandperformglobalreferencingfor localvariables.

Therestof thispaperisorganizedasfollows. Section2presents
thesystemspecificationof theparallelJVM. In Section3, we dis-
cussan algorithm to implementparallelismfor the Java Virtual
Machine. Experimentresultsare given in Section4. Section5
givesconclusions.

2. SYSTEM MODEL

2.1. Ar chitectureModel

In the JVM, eachmethodinvocationhasits own privateoperand
stack,which is usedto passargumentsto methodsandto collect
returnedresults. When thereis a methodinvocation,local vari-
ablesareusedto storepartial resultsandstateinformation.When
a methodreturns,any valuesin its local variablesarediscarded.
Methodsdeclarehow many local variablesthey use.Theoperand
stackof this methoddoesoperationsby loadingor storingvalues
from local variables,whichallows reentrancy andrecursion.

In orderto implementparallelismfor eachmethodin theJVM
to improve speedfor every methodcall, we designanarchitecture
model with multiple operandstacksand a sharedlocal variable
table,shown in Figure1. In our model,we make the following
design:

Multiple operandstacks. Eachmethodhasmultipleoperand
stacksinsteadof one.In thisway, a taskcanbeexecutedin differ-



To solve y’’ + 3xy’ + 3y = 0.

while (x < a) do
      x1 = x + dx;

      
u1 = u − (3 * x * u * dx)
        − (3 * y* dx);
y1 = y + u * dx;
x = x1;     u = u1;     y = y1;

end
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Fig. 2. Thedifferentialequationsolver

entoperandstacksat thesametime which canimprove thespeed
of computation.

”Shared” local variables. We call these”shared”becauseall
of operandstackssharelocal variableswhichmeansthatthesame
localvariablecanbeloadedinto or storedfrom differentstacks.In
Figure1, localvariablea is sharedby stack

�
, stack � andstack� .

If a localvariableis changedin onestack,thisstackwill write this
new valueto the local variabletable. Thenall load instructionto
this local variablewill fetchthenew value.

Multiple variables for differ ent iterations. In a DFG, be-
causetherearedifferentlengthsof datadependency, we mayneed
differentversionsof a nodein oneiteration. For thesake of sim-
plicity, a nodehasdifferentlocal variablesto storeits valuein dif-
ferentiterationperiods.At theendof eachiteration,thesevalues
areupdatedto preparefor thenext iteration.

2.2. SystemScheme

Basedon the parallel JVM model, we will show how to sched-
ule a dataflow graph(DFG) in this new model. In this paper, we
useDFG to representa task. BecauseanunloopedDFG is a spe-
cial form of a loopedDFG,theDFGswe discussin this paperare
loopedDFGs.Soourproblemis: Givena DFG, produceits static
schedulein theparallel JVM.

Definition 2.1 A data-flow graph (DFG) �����	��

��
���� is a
node-weightedandedge-weighteddirectedgraph,where � is the
setof nodes,��������� is the setof edgesand � is a function
from � to thenonnegativeintegers.

We usethe differential equationsolver in [7] as an exampleof
usingdata-flow graphsto modelwhile loops. Thebehavioral de-
scription is in Figure 2-(a). We assumethat an adderperforms
additions,subtractions,andcomparisons.For theDFG in Figure
2-(b), we useboxesto representaddernodesandcirclesto repre-
sentmultiplier nodes.

Ourschedulingschemehasthreephases:
Prework: In this phase,themaintaskis to find thenumberof

local variablesneededfor eachiteration. As we discussedearlier,
a givennodemayneedmorethanonelocal variable.This assign-
ment is finishedbeforethe loop is executed,so all the iterations
have thesamevariableallocation.In figure2-(b),node � , � , � , ���
eachhas1 delay, soeachof themneeds� local variablesto store
its currentvalueandtheprevious iterationvalue;For othernodes,
eachneeds

�
local variableto storeits currentvalue.

SchedulingPeriod: This is the core of our systemscheme.
ThisphaseschedulestheDFGandarrangestheorderof eachnode.
For a staticschedule,we just needto find thescheduleof oneit-
eration,thenrepeatedlyfollow thisschedulein eachiteration.List
schedulingis usedin thisphaseto find theorderof nodeexecution.
We proposeanalgorithmto arrangenodesto operandstacks.

Postwork: At theendof eachiteration,local variablesareup-
dated. Eachvariableis forwardedto occupy the position of the
previous iteration. If thereis no variableallocatedfor a previous
level, it is discardedandthe positionis left for thecomingitera-
tion. So in Figure2, at theendof � nd iteration,the local variable
for currentnode

���
will beput in thelocal variablefor node

���
of���! 

iteration.
Of thesethreephases,theschedulingperiodandpostworkare

executedin aloop,while prework is performedoutsideof theloop.

3. DYNAMIC-DUPLICA TION SCHEDULING

In this section,analgorithmcalleddynamic-duplicationschedul-
ing is providedto producethestaticscheduleon theparallelJVM
modelin theprevioussection.

Usually, memoryaccesseswill take moretime thanotherop-
erations.If westoreandloadeachvariableeverytime,thisprocess
will costa longscheduletime. By stackcopying andmanipulation
of instructions,theschedulecanbeimproved.Koopmandesigned
many kinds of stackmanipulationsin [1]. Most stackprocessors
useastackbuffer tocachethetopmoststackelementsfor improved
performance[1]. In analogyto registermachines,accessto these
stackelementsis fasterthanaccessto memory[5]. This provides
a basisfor our improvement:themachinewill keepcopiesof the
elementson thestackandreusethesecopieslater, insteadof load-
ing themfrom main memoryevery time. But in earlierresearch,
theuseof duplicationandtheduplicatedelements’positionsin the
stackarelimited becauseit is hardto guaranteetheproperworking
of tghestack. In this paper, we discusstheseissuesandpresenta
conditionwhich canguaranteethecorrectnessof duplication.

Property 3.1 Givena DFG �"�#�	��

��
���� , for $&%'� , where (*)
is thesequenceof stack elementsafter duplicating $ and (,+ is the
sequenceof stack elementsafter loading $ , theduplicationof $ is
legal if (*)-�.( + .
In orderto guaranteethataduplicationis legal,wemustcheckthe
sequenceof nodesonthestackwhenwewantto copy anode.Each
time we load a node,we will checkto seeif it is alreadyloaded
or computedin the selectedstack. If we find it in the stackand
the duplicationcanbe legal, we make a copy anddo not needto
load it from memory. A duplicationneedsto be insertedinto the
previously producedschedule.The relatedstoreoperationmight
beaffected,sothescheduleneedsto befurtherchanged.Because
of this , we call thisschedulingdynamicduplication.

We arealsoconcernwith the positionof the duplicatedele-
menton the stack. For simplicity, we usethe top elementasthe
reference,anddefinethefollowing duplicationoperation.

Definition 3.1 In a stack ( , dup k is definedas an operation to
duplicatean elementto the �  0/214365 �  07 positionon thestack and
dup k of node $ is alwaysput next to theloadingor computingof
$ .



Table 1. An exampleof dynamicduplicationscheduling8:9<;>=@? (–) iload a
(a–) iload b
(b a–) dup 3
(b a () b–) iadd
(c () b–) istorecA 9'BC=@D (() b–) iload e
(e () b–) dup 1
(e eb–) iload f
(f ee b–) iadd
(d eb–) istoredE 9'BF=HG (e b–) iload g
(g eb–) iadd
(h b–) istorehI-9'?J=@8 (b–) iload c
(c b–) iadd
(z–) istorez

Lemma 3.1 Given a DFG �K���	��
��H
0��� , dup k of $ is legal
if
5 �ML 3 � , L is the numberof duplicationsinsertedafter

loadingor computing$ in thepreviouslyproducedschedule, � is
the numberof nodesobtainedby other operations. Thesenodes
satisfytwoconditions:

1. They appearbefore $ ;
2. They are still present.

Proof: Thecomputationin thestackalwayspopsthetopelements.
So $ mustappearasthe top elementwhenit is neededin a com-
putation.Accordingto dynamic-duplication,beforeduplicating$ ,
supposeL duplicationsare insertedin the previously produced
scheduleafter $ onthestack.Sowhenweinserttheduplicationof
$ , theseduplicationsarestill on thestackandthey will bepopped
beforeduplicationof $ is popped.So the insertionof duplication
beputbehindall of them.Combinedwith � othernodes,thedupli-
caitonmustbeputat

5 �.L 3 � , andthisguaranteethesequence
will not bedestroyed,accordingto definition3.1, this scheduleis
legal. N Table1 givesan
exampleof how to determine

5
. In OP�RQ 3TS , we duplicateit at U/V1P3XW

becausewe pushQ beforewe push
S

andaccordingto the
previousstepof dynamicduplication,weknow weneedto leavea
spacefor thecopy of Y which is producedin

7 �ZY 36[ . In order
to simplify the implementation,in this paper, we do not consider
L . Instead,we alwayscopy a nodeat the bottomof the current
stack. In this way, theduplicationmaybe illegal. In sucha case,
we cannotmake a copy sowereloadthisnode.

Figure3 (a) shows a DFG. For simplicity, thereis only one
operandstack. Figure3 (b) is its scheduleif thereis no duplica-
tion operation,while Figure3(c) is the schedulereplacingiload
instructionswith dup b instructionswhichmeansduplicateatbot-
tom. If memoryaccessestake 2 cyclesandotheroperationstake
1 cycle, the latterwill take 3 fewer cyclesthantheformer. Figure
3(d)shows thecontentsin theoperandstackin which ’C’ meansa
constant.Further, thealgorithmwill do thefollowing things:

\ Becausea constanthasno predecessor, it shouldbeput in
the stackasearly aspossible.Every time whenthereis a
constantin ancestors,this constantwill bescheduledfirst.

\ Thealgorithmwill loadancestorsaccordingto their finish-
ing positionswhich meansit will loadtheearliestpossible
ancestorfirst.

\ We do not storeevery nodein eachiterationbecausethey
may not be usedin the later iterations. We just storetwo
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Algorithm 1 Stackschedulerin dynamic-duplication
stackscheduler(v,n)
1: for i ] 1 to n do
2: Orderancestorsby their finishingorder, alwaysput constantsatbeginning;
3: /*Decideloador duplicationfor ancestors*/
4: for all ancestorsin finishingorderdo
5: if theancestorv.anis in thestack;then
6: if duplicationis legal then
7: insertdup;
8: else
9: loadtheancestor;
10: end if
11: else
12: Findfinishingpositionp andfinishingstacksof v.an
13: if v.anis not storedthen
14: if v.anis usedin stacks then
15: adddup;
16: end if
17: storev.anatstack[s][p+1];
18: end if
19: addload;
20: end if
21: end for
22: addoperation;
23: stack ] stackwith theminimal row;
24: /* Checkif this stackwill beusedin thelateriteration*/
25: for all v ^_ u do
26: if delay[u] `9 0 then
27: storev;
28: end if
29: end for
30: end for
31: returnstack;

kindsof nodes:

1. Nodeswhich will beusedin otherstacksin thecur-
rentiteration;

2. Nodeswhich will beusedin thelateriterations.

We adda checkingprocessto checkthestoreof nodesduringthe
iteration. If a nodeis neededin a later iteration,it will bestored
immediatelyafter it is computed. If ancestorsare computedon
thedifferentstackbut not stored,we will insertstoreinstructions
into that stack. The choiceof nodeis basedon list scheduling.
We designa stackscheduler(Algorithm1) to choosetheoperation
stack.This scheduleralwayschoosesthestackwith theminimum
numberof cycle lengthfrom all stacks.

4. EXPERIMENT AL RESULTS

In this section,we presentsomeexperimentalresultson the se-
lected DSP benchmarks. In theseexperiments,we assumethe
function of eachnodeis additionor multiplication. We compare



Table 2. Machinecyclesfor differentalgorithms
cycles

Benchmark non- dynamic-duplication
parallel 2 stacks 3 stacks 4 stacks

Diff.Equation 106 45 57.5% 35 67.0% 35 67.0%
2-stageIIR 142 53 62.7% 43 69.7% 32 77.5%
4-stageIIR 230 84 63.5% 52 77.4% 43 81.3%
Elliptic filter 314 139 55.7% 91 71.0% 88 72.0%
All-pole Lattice 138 50 63.8% 50 63.8% 50 63.8%
5th Elliptic 376 159 57.7% 119 68.4% 111 70.5%
Voltera 236 115 51.3% 70 70.3% 60 74.6%
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Fig. 4. Improvementvs. Numberof operandstacksfor acb2d
elliptic filter

thenon-parallelschedulewith theparalleldynamic-duplicational-
gorithm.

TheDSPfilter benchmarksusedin theseexperimentsinclude
a differentialequationsolver, a 2-stageIIR filter, anelliptic filter,
an all-pole lattice filter, a 5th order elliptic filter and a volterra
filter.

Table 2 summarizesthe numberof schedulecycles of non-
parallel JVM and the parallel algorithms. Theseschedulesare
computedundertheconditionthatloadsandstorescost

W
machine

cycleseachandotheroperationscost
�

machinecycle. The per-
centagedatarepresentsthe improvementcomparedwith thenon-
parallel JVM schedule. For the dynamic-duplicationalgorithm,
wemeasuretheschedulewhenthereare � , W and e operandstacks.
Fromthis table,we getthefollowing observations:

\ Thedynamic-duplicationalgorithmgreatlyimprovesthesched-
uleonatraditionalsequentialJVM. Thedynamic-duplication
algorithm improves the schedulemore than � �gf in each
benchmark,becausethedynamic-duplicationdecreasesthe
numberof loadsandstoreswhichcostmuchexecutiontime.

\ Thedegreeof parallelismdependson thepropertiesof the
DFG. Figure 4 shows the relationshipbetweenimprove-
mentsobtainedby dynamic-duplicationandthenumberof
operandstacksfor h  �7 elliptic filter. This figure shows
that the improvementwill be increasedwhen the number
of operandstacksis lessthan h , and it is the largestat h
operandstacks,after that, therewill be no gain whenwe
increasethe numberof operandstacks.This is dueto the
numberof nodesateachlevel in theDFG.Accordingto the
propertiesof theDFG,thenumberof operandstackscanbe
decided.

Table3 shows the instruction. The instructionshave beenclassi-
fied in threecategories:

\ Loads/StoresContainsall instructionsaccessinglocalvari-
ables.

Table 3. Instructiondistribution for differentalgorithms
Benchmark non-parallel dynamic-dup

LS dup Other LS dup Other
Diff.Equation 31 0 13 19 6 13
2-stageIIR 39 0 25 27 3 25
4-stageIIR 63 0 41 37 2 41
Elliptic filter 89 0 47 48 12 47
All-pole Lattice 39 0 21 11 8 21
5th Elliptic 104 0 64 55 10 64
Voltera 64 0 44 33 1 44
Total 429 0 255 230 42 255
Percentage 65.1% 0.0% 34.9% 43.6% 8.0% 48.4%

\ Duplication Representsall duplicationmanipulations.
\ Others Includesotherinstructionssuchasaddition,multi-

plicationandiconst.

In the non-parallelalgorithm, �ihcj ��f instructionsare loads
andstores,while in the dynamic-duplicationalgorithm,they ac-
count for only e W j � f . Thereis no duplicationmanipulationin
non-parallelalgorithm, but the amountis ��j �gf in the dynamic-
duplication. The total amountof instructionsdecreasesgreatly.
The loadandstoreinstructionsdrop from ek�l� in thenon-parallel
JVM to � Wi� in theparallelJVM, with a slightly increaseof dupli-
cationandno changein otherinstructions.This factcanaccount
for thehugereductionin schedulelength.

5. CONCLUSION

In thispaper, wehave presentedaschemeto obtainparallelismon
the JVM.The schemeincludesreplacingoneoperandstackwith
multiple operandstacks.All operandstackssharelocal variables.
Thevaluesof thesamenodein differentiterationsarestoredinto
different local variables. A schedulingalgorithm is provided to
generatethestaticscheduleof DFG on theparallelJVM. On the
basisof list-scheduling,thedynamic-duplicationalgorithmusesa
seriesof methodsto reducetheschedulelength. Thestackdupli-
cationwhichcopiesthestackelementsformsagoodwayto reduce
loadsfrom local variables.
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