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ABSTRACT 

 
Deblocking and deringing are two video post-processing 
techniques largely used to remove coding artifacts and improve 
the visual quality when rendering low bit rate coded video.  The 
algorithms used to achieve these tasks are computationally 
intensive and usually require high speed processors to be able to 
run in real time. Efficient implementations of signal adaptive 
filters for video post-processing  can be obtained using  the 
specialized features of the parallel BOPS® DSP cores. The 
performance achieved  by deblocking and deringing CIF and 
SDTV size video sequences on the MANTA™ prototype chip 
are illustrated. It is  shown that such complex tasks may be 
executed at low clock rates using the BOPS ManArray™ 
technology. 
 

1. INTRODUCTION 
 

In low bit rate coded video the quantization of DCT coefficients 
produces annoying artifacts in the decoded sequence. The 
blocking effect,  which is the grid noise  along block boundaries 
mainly visible in smooth areas, with low motion, and the ringing 
noise which shows along object borders, are such well-known 
artifacts. Signal adaptive filters are an efficient method to 
remove these artifacts, while preserving details which belong to 
the image. Traditionally, deblocking filters try to remove the 
unwanted boundaries between adjacent blocks by low-pass 
filtering applied to pixels on both sides of the block borders. 
However, this type of filtering may introduce undesirable 
blurring effects when applied to pixels which belong to real 
image edges. For this reason low-pass filtering is replaced with 
other types of filtering when local features indicate that a real  
edge is present. One method used  to remove the ringing noise 
along object borders is to detect the edges in each frame, and 
apply a smoothing filter along these edges.  The decision 
between edge and non-edge block borders relies on the 
assumption that real borders have a higher amplitude than edges 
produced by the quantization of DCT coefficients. 

 Signal adaptive filters for deblocking and deringing are 
included  in  the informative Annex F of the  MPEG4 
standard[1].  A deblocking filter similar to that in the standard is 
implemented on BOPS’ parallel architecture. For deringing  an 
original method is used, consisting of a 9-tap low-pass filter 
applied to an adaptive processing window. The filter window is 
initialized with  the values in a 3x3 mask centered on the 
position whose output is computed.  Then all values that are very 
different from the central one are replaced  with the central 
value. In this way the proposed filter varies between 3x3 low-
pass and identity, depending on how much the central value 
differs from its surrounding ones. The experiments performed 
over a  group of low bit rate coded sequences show that the 

proposed filter achieves better visual quality than the result from 
the deringing filter in [1]. 

 
 

2. THE BOPS DSP CORES 
 
BOPS®, Inc. develops and licenses high performance scalable 
and reusable digital signal processor (DSP) Intellectual Property 
(IP) cores  enabling the shortest time from product concept to 
high-volume production of System-on-Chip (SOC) products for 
the Internet, multimedia and wireless communication markets. 
 The BOPS ManArray™ technology provides several 
levels of parallelism:  
 
• the data level parallelism, which consists of the 

simultaneous processing of more than one  value by an 
execution unit, 

•  the instruction level parallelism, which enables the 
simultaneous execution of 5 different instructions contained 
in a Very Long Instruction Word (VLIW)  by the  different 
execution units, 

• the array level parallelism, which  consists in  the use of 
multiple processing elements (PEs) in the architecture, to 
obtain a linearly scalable performance  by  sharing the data  
to be processed between these PEs, 

• the functional  level parallelism, which  relies on the 
powerful DMA engine that allows data communication and 
transfers between the DSP local memories and the SDRAM 
memory to take place   simultaneous with the compute 
operations, thereby providing zero-latency transfers. 
 
The building blocks of the BOPS cores are the Sequence 

Processor (SP), which achieves most of the control and decision 
functions, and the Processing Element (PE), which acts as a 
‘slave’ resource to the SP and executes the tasks in parallel, in 
SIMD mode [2],[3].  Multiple core sizes may be obtained by 
combining the main building blocks  and connecting them by an 
original Cluster Switch (CS) [2],  as  shown in Fig.2.   

Each building block contains five execution units which can 
process independently and simultaneously 32 or 64-bit data. 
These are: the multiply-accumulate unit (MAC), the arithmetic-
logic unit (ALU), a data select unit (DSU), a load unit (LOAD) 
and a store unit (STORE). The 5 instructions executed in parallel 
are stored in VLIW Instruction memory (VIM). Each VIM 
address contains five 32-bit instruction slots. Using Load VLIW 
(LV) the programmer can load individual instruction slots with 
32-bit simplex instructions. The execute VLIW (XV) instruction 
triggers the execution of a VLIW at a specific VIM address, and 
the five instructions are executed in parallel.  

Each block (PE or SP) has thirty-two 32-bit computation 
registers,  which  enable   data   types  of  8, 16, 32 or   64 bits.  



Execution units are capable of operating on data from one 
register or a pair of registers at a time. These 32 or 64 bits  may 
be configured differently, as   one    64-bit value, two 32-bit 
values, four 16-bit values, or eight 8-bit values and operations 
are performed in parallel on individual data for each type. The 
term used to refer to this data level parallelism is packed data. 
Special multiplication instructions are designed to enable fast 
computation for the linear filters. Such is the two-cycle sum2p 
instruction, which  calculates the sum of two products as 
illustrated in Fig. 3. Using packed data 2 or 4 such operations 
may be performed simultaneously. Special instructions for the 
computation of local features  and fast decisions and data 
selections needed in signal adaptive filtering are: the absolute 
difference instruction absdif in the ALU, which may calculate in 
one cycle the absolute differences for  eight pairs of 8-bit data, 
and the copy selective instruction copys in the DSU which 
enables the selection of data using arithmetic flags set previously 
by comparisons. 

  The MANTA prototype chip is a proof-of-concept 
prototype SOC containing a standard implementation of a 2x2 
fixed point and floating point core.  The data memory on each 
PE is 16kBytes. Two 32 bit DMA lanes enable the simultaneous 
transfer of 8 bytes between SDRAM and the on-chip memories. 
MANTA operating in the 2x2 fixed point mode provides a 
platform for running the real time code described in this paper. 
 

3. THE DEBLOCKING FILTER 
 
3.1.  Filter description 
 
The deblocking filter implemented on the MANTA chip is 
similar to that in MPEG4[1]. Filtering is performed on both 
horizontal and vertical block borders. An 8-pixel decision 
window, perpendicular to the border, including equal number of 
pixels on both border sides is used  to calculate local features 
and select the filter type and coefficients. The absolute 
differences between  pairs of neighboring pixels are used  as 
features. The feature values are compared against thresholds set 
as in [1], based on the quantization parameter (QP). High values 
of the absolute differences  indicate the presence of a real image 
edge which needs to be preserved. When the indicate a smooth 
region, with no edges, a 7-tap low pass filter  is used for 
calculating six values, three on each side of the border, for 
‘strong smoothing’. When an edge region is detected, but no 
abrupt change happens between the two neighboring   pixels   on 
each  side  of the   border  a  ‘weak filter’ is  applied, affecting  

 
 
Fig. 2. The 1x1, 1x2, 2x2 and 2x4 BOPS cores building blocks 
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Fig.3 Building block  of the sum2p instruction 
 

only  two border pixels (one for each block). No filtering is 
performed when a high absolute difference between the two 
pixels on block borders indicate the presence of an edge on that 
border. 
 
3.2.  Deblocking filter implementation on MANTA 
 
The frame is divided into rectangular slices, which are separately 
processed by the four PEs working in parallel. The horizontal 
and vertical deblocking are achieved in two subsequent passes  
through the filtering procedure. In the first pass, data is filtered 
for vertical deblocking and stored as transposed w.r.t. the 
original order. In the second pass, the data is again filtered for 
vertical deblocking on the transposed order, which is equivalent 
to horizontal deblocking on the original order. The result is again 
stored as transposed w.r.t the input, yielding the original order. 
Instead of selecting a different procedure for each of the three 
different filtering cases, a decision index is used to select 
different sets of coefficients from a table.  A set containing six 
groups of 7 coefficients is loaded from the table and six output 
values, one for each group of coefficients, are calculated for 
every window perpendicular on block borders. The identity is 
implemented by several of these coefficients: the full set for the  
‘no filter’ decision   and  four of the values for the ‘weak filter’. 
According to experiments performed on video sequences  of 704 
x 480 pixels at 30 frames/s encoded at  384kbits/s using MPEG2,  
85% of decisions indicate ‘strong filter’, 13% ‘weak filter’ 
and 2% ‘no filter’. The identity is then used in less than 10% of 
the output values. Packed data (8 x 8 bits or 4 x 16 bits data in 64 
bits register pair) is used for the computation. Filtering is 
achieved using sum2p instructions. The normalization is 
achieved using shifts to the right. The sequential implementation 
of the deblocking takes 106 cycles for calculating the decision 
index and the six output values. By optimizing the code using 
VLIWs the computation time is reduced by a factor of 2.65, to 
40 cycles.  
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 Fig. 1. The PE building block of BOPS cores 
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The design enables the data transfer between the 

SDRAM memory and a PE memory buffer (Buffer_Transfer) to 
take place while the computation is performed using two other 
buffers (Buffer_Proc and Buffer_Intermed). PE data memory is 
divided into three data buffers. Two of them are alternately used 
for loading input data, and storing the result. The third buffer, 
denoted Buffer_Interm, is used for storing the intermediate 
filtering result after the first pass through the deblocking filter. 
One DMA channel is used for DMA output and input transfers, 
the data transfer time taking less than the actual processing. First 
the filtered data is transferred from Buffer_Transfer to SDRAM, 
then the buffer is filled with new data from the SDRAM. The 
only ‘wait’ states for the DMA to complete correspond to the 
first DMA transfer from SDRAM  and the last DMA transfer to 
SDRAM.  The data transferred from SDRAM into each PE 
memory include the rectangular slice and the additional 

boundary rows and columns needed in the computation. In the 
first pass, the bordering data needed for the second pass is also 
filtered. The program flow is shown in Fig. 4. 
 

4. THE DERINGING FILTER 
 
4.1.  Description 
 
An original adaptive filter is proposed and implemented for 
deringing. It relies on the assumption that the filtering masks 
must always include only pixels which are on the same side of 
an edge that needs to be preserved. Otherwise, undesired 
blurring of image details occurs. In addition, the procedure 
targets the ease of implementation on parallel processors, which  
does   not allow the use of data dependent jumps or calls. 
Experimentally, for the tested data, the visual quality obtained 
using this deringing filter on very low bit rate sequences is better  
than  that obtained by MPEG4 filter[1]  and the filter in [4].  
 For each pixel of the image a 3x3 mask (v0-v8) is 
processed. Initially, the mask  includes  the pixel to be computed 
(denoted v4) and its 8 neighbors from the original image. The 
processing mask and filter coefficients are shown in Fig.5. The 
absolute difference between the pixel and each of its 8 neighbors 
is compared with a threshold which is equal to QP. If the 
difference is higher than the threshold, the corresponding 
neighbor value is replaced in the processing mask by the central 
value. In this case it is assumed that the neighbor does not 
belong to the same side of an image edge as the central pixel. 
Finally, a low pass filter is applied to the values in the processing 
mask to yield the  result. By replacing the values in the 
processing mask,  the filter varies between a low pass filter 
(when no value is replaced, because no image edge is present in 
the mask) to the identity (when all differences are larger than the 
threshold and all values are replaced by the central one).  
 
4.2.  Deringing filter implementation on MANTA 
 
The image is divided into rectangular slices, which are 
separately processed by the 4  PEs. Data transfer between local 
PE data memories and the SDRAM is performed in the 
background of the computation, as in the deblocking filter case.  
Input slices contain, for each PE,  the additional bordering rows 
and columns needed in the computation. This approach increases 
the amount of transfer but removes data dependencies between 
the PEs. It works well in such situations when the computation 
takes longer than the data transfer. The filtering is achieved in a 
single pass. Eight output values are calculated on each PE in one 
pass through the computation loop. Packed data (8 x 8 bits or 4 x 
16 bits data in 64 bits register pair) is used. In the decision part, 
where the values of the input vector v are selected, the 
implementation takes advantage of the absdif and copys 

 

First pass, vertical deblocking from 
Buffer_Proc to  Buffer_Intermed 

Second pass, horizontal deblocking, 
from Buffer_Intermed to Buffer_Proc 

Wait for the end of the DMA 
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Fig.4.  The program flow for  deblocking filtering   
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Fig.5. The processing mask and filter coefficients for the 
deringing filter  



instructions which may be performed on packed 8 x 8 bit data. 
Additions, multiplies by 2  and shifts for division are used in the 
computation and the output is calculated as in  the equation: 

The code is optimized using VLIWs. The computation takes 96 
cycles in the sequential implementation and only 36 in the 

optimized one, the VLIW efficiency factor being 2.67. 
 

5. PERFORMANCE OF THE IMPLEMENTATION 
 
5.1. Theoretical lower bounds for the computation cycles  
 
On each PE, the deblocking filter loop takes 40 cycles to 
calculate six output values in each group of eight pixels 
perpendicular on block borders. For one frame having horizontal 
and vertical dimensions H and V, the loop runs  V*(H/8-1) for 
vertical deblocking and H*(V/8-1) for horizontal deblocking of 
luminance. This makes a theoretical lower bound of (V*H/4-V-
H)*40 cycles, without including the initializations. The 
deringing filter loop takes 36 cycles for calculating eight output 
values. For one frame having horizontal and vertical dimensions 
H and V, the loop runs V*H/8 times for the deringing of 
luminance. The frame is divided and processed on four PEs and 
the performance scales linearly with the number of PEs. If FPS 
denotes the frame rate, the theoretical lower bounds of the 
computation cycles  for filtering the luminance on four PEs are: 
Deblocking: ((V*H/4-V-H)*40*FPS)/4 cycles/s  
Deringing: ((V*H/8)*36*FPS)/4 cycles/s  

These figures  include only the loop computation 
cycles, and do not add the cycles needed for setting up the loops 
and computing the parameters for the  DMA transfers. 
 
5.2. Experimental performance 
 
Deblocking and deringing  were applied  to the  luminance 
component, on 4:2:0 video frames, at two different sizes. The 
cycle counts shown in Table 1 were obtained on the MANTA 
chip. MANTA does not have byte multiplies and it only allows 
word aligned (1 word = 32 bits) access to data memory. One 
frame from the sequence Susi (704x480 pixels, 30 frames/s) 
decoded from an MPEG2 video stream  at 384 kbits/s is 
displayed before and after deblocking and deringing in Fig. 6 
and Fig.7. 
    

6. CONCLUSIONS 
 
The implementation of deblocking and deringing algorithms on 
BOPS parallel DSP cores is presented. A new type of deringing  

 
Table 1.  Cycle counts for deblocking and deringing filters 
running on MANTA. 
 
filter is proposed and implemented to preserve real image edges  
while smoothing out the inside of objects. The main features of 
the architecture used in the implementation are the multiple 
levels of parallelism (data level, instruction level and system 
level parallelism), the powerful instruction set, the scalability of 
the architecture and the strong DMA engine which enables data 
transfers to happen with almost zero overhead. The experimental 
performance illustrates that such complex tasks may be 
developed and performed in real time, at low clock rates. 
MANTA running at 100 MHz (100 Mcycles/s) may achieve both  
these filtering tasks using only half of its computational 
bandwidth. 
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 Frame size Cycles/ 
Frame 

Cycles/s for 
30 frames/s 

Deblocking 704 x 480 
352 x 240 

1,200,000 
300,000 

36 Mcycles/s 
9 Mcycles/s 

Deringing  704 x 480 
352 x 240 

600,000 
150,000 

18 Mcycles/s 
4.5Mcycles/s 

 

Fig.7.  Frame from Fig. 6 after deblocking and deringing  

 

Fig.6.  Frame from sequence Susi (704x480 pixels) at 384 
kbits/s with noticeable artifacts 

 

)/16vvvv2*)vvvv2*2)(((vy 862075314 +++++++++=


