
EFFICIENT IMPLEMENTATION OF VIDEO POST-PROCESSING
ALGORITHMS ON THE BOPS PARALLEL ARCHITECTURE

Doina Petrescu

BOPS Inc., 6340 Quadrangle Dr. Suite 210, Chapel Hill, NC 27514

ABSTRACT

Deblocking and deringing are two video post-processing
techniques largely used to remove coding artifacts and improve
the visual quality when rendering low bit rate coded video. The
algorithms used to achieve these tasks are computationally
intensive and usually require high speed processors to be able to
run in real time. Efficient implementations of signal adaptive
filters for video post-processing can be obtained using the
specialized features of the parallel BOPS® DSP cores. The
performance achieved by deblocking and deringing CIF and
SDTV size video sequences on the MANTA™ prototype chip
are illustrated. It is shown that such complex tasks may be
executed at low clock rates using the BOPS ManArray™
technology.

1. INTRODUCTION

In low bit rate coded video the quantization of DCT coefficients
produces annoying artifacts in the decoded sequence. The
blocking effect, which is the grid noise along block boundaries
mainly visible in smooth areas, with low motion, and the ringing
noise which shows along object borders, are such well-known
artifacts. Signal adaptive filters are an efficient method to
remove these artifacts, while preserving details which belong to
the image. Traditionally, deblocking filters try to remove the
unwanted boundaries between adjacent blocks by low-pass
filtering applied to pixels on both sides of the block borders.
However, this type of filtering may introduce undesirable
blurring effects when applied to pixels which belong to real
image edges. For this reason low-pass filtering is replaced with
other types of filtering when local features indicate that a real
edge is present. One method used to remove the ringing noise
along object borders is to detect the edges in each frame, and
apply a smoothing filter along these edges. The decision
between edge and non-edge block borders relies on the
assumption that real borders have a higher amplitude than edges
produced by the quantization of DCT coefficients.

 Signal adaptive filters for deblocking and deringing are
included in the informative Annex F of the MPEG4
standard[1]. A deblocking filter similar to that in the standard is
implemented on BOPS’ parallel architecture. For deringing an
original method is used, consisting of a 9-tap low-pass filter
applied to an adaptive processing window. The filter window is
initialized with the values in a 3x3 mask centered on the
position whose output is computed. Then all values that are very
different from the central one are replaced with the central
value. In this way the proposed filter varies between 3x3 low-
pass and identity, depending on how much the central value
differs from its surrounding ones. The experiments performed
over a group of low bit rate coded sequences show that the

proposed filter achieves better visual quality than the result from
the deringing filter in [1].

2. THE BOPS DSP CORES

BOPS®, Inc. develops and licenses high performance scalable
and reusable digital signal processor (DSP) Intellectual Property
(IP) cores enabling the shortest time from product concept to
high-volume production of System-on-Chip (SOC) products for
the Internet, multimedia and wireless communication markets.
 The BOPS ManArray™ technology provides several
levels of parallelism:

• the data level parallelism, which consists of the

simultaneous processing of more than one value by an
execution unit,

• the instruction level parallelism, which enables the
simultaneous execution of 5 different instructions contained
in a Very Long Instruction Word (VLIW) by the different
execution units,

• the array level parallelism, which consists in the use of
multiple processing elements (PEs) in the architecture, to
obtain a linearly scalable performance by sharing the data
to be processed between these PEs,

• the functional level parallelism, which relies on the
powerful DMA engine that allows data communication and
transfers between the DSP local memories and the SDRAM
memory to take place simultaneous with the compute
operations, thereby providing zero-latency transfers.

The building blocks of the BOPS cores are the Sequence

Processor (SP), which achieves most of the control and decision
functions, and the Processing Element (PE), which acts as a
‘slave’ resource to the SP and executes the tasks in parallel, in
SIMD mode [2],[3]. Multiple core sizes may be obtained by
combining the main building blocks and connecting them by an
original Cluster Switch (CS) [2], as shown in Fig.2.

Each building block contains five execution units which can
process independently and simultaneously 32 or 64-bit data.
These are: the multiply-accumulate unit (MAC), the arithmetic-
logic unit (ALU), a data select unit (DSU), a load unit (LOAD)
and a store unit (STORE). The 5 instructions executed in parallel
are stored in VLIW Instruction memory (VIM). Each VIM
address contains five 32-bit instruction slots. Using Load VLIW
(LV) the programmer can load individual instruction slots with
32-bit simplex instructions. The execute VLIW (XV) instruction
triggers the execution of a VLIW at a specific VIM address, and
the five instructions are executed in parallel.

Each block (PE or SP) has thirty-two 32-bit computation
registers, which enable data types of 8, 16, 32 or 64 bits.

Execution units are capable of operating on data from one
register or a pair of registers at a time. These 32 or 64 bits may
be configured differently, as one 64-bit value, two 32-bit
values, four 16-bit values, or eight 8-bit values and operations
are performed in parallel on individual data for each type. The
term used to refer to this data level parallelism is packed data.
Special multiplication instructions are designed to enable fast
computation for the linear filters. Such is the two-cycle sum2p
instruction, which calculates the sum of two products as
illustrated in Fig. 3. Using packed data 2 or 4 such operations
may be performed simultaneously. Special instructions for the
computation of local features and fast decisions and data
selections needed in signal adaptive filtering are: the absolute
difference instruction absdif in the ALU, which may calculate in
one cycle the absolute differences for eight pairs of 8-bit data,
and the copy selective instruction copys in the DSU which
enables the selection of data using arithmetic flags set previously
by comparisons.

 The MANTA prototype chip is a proof-of-concept
prototype SOC containing a standard implementation of a 2x2
fixed point and floating point core. The data memory on each
PE is 16kBytes. Two 32 bit DMA lanes enable the simultaneous
transfer of 8 bytes between SDRAM and the on-chip memories.
MANTA operating in the 2x2 fixed point mode provides a
platform for running the real time code described in this paper.

3. THE DEBLOCKING FILTER

3.1. Filter description

The deblocking filter implemented on the MANTA chip is
similar to that in MPEG4[1]. Filtering is performed on both
horizontal and vertical block borders. An 8-pixel decision
window, perpendicular to the border, including equal number of
pixels on both border sides is used to calculate local features
and select the filter type and coefficients. The absolute
differences between pairs of neighboring pixels are used as
features. The feature values are compared against thresholds set
as in [1], based on the quantization parameter (QP). High values
of the absolute differences indicate the presence of a real image
edge which needs to be preserved. When the indicate a smooth
region, with no edges, a 7-tap low pass filter is used for
calculating six values, three on each side of the border, for
‘strong smoothing’. When an edge region is detected, but no
abrupt change happens between the two neighboring pixels on
each side of the border a ‘weak filter’ is applied, affecting

Fig. 2. The 1x1, 1x2, 2x2 and 2x4 BOPS cores building blocks

Rx

Ry

Rt

X X

+

Fig.3 Building block of the sum2p instruction

only two border pixels (one for each block). No filtering is
performed when a high absolute difference between the two
pixels on block borders indicate the presence of an edge on that
border.

3.2. Deblocking filter implementation on MANTA

The frame is divided into rectangular slices, which are separately
processed by the four PEs working in parallel. The horizontal
and vertical deblocking are achieved in two subsequent passes
through the filtering procedure. In the first pass, data is filtered
for vertical deblocking and stored as transposed w.r.t. the
original order. In the second pass, the data is again filtered for
vertical deblocking on the transposed order, which is equivalent
to horizontal deblocking on the original order. The result is again
stored as transposed w.r.t the input, yielding the original order.
Instead of selecting a different procedure for each of the three
different filtering cases, a decision index is used to select
different sets of coefficients from a table. A set containing six
groups of 7 coefficients is loaded from the table and six output
values, one for each group of coefficients, are calculated for
every window perpendicular on block borders. The identity is
implemented by several of these coefficients: the full set for the
‘no filter’ decision and four of the values for the ‘weak filter’.
According to experiments performed on video sequences of 704
x 480 pixels at 30 frames/s encoded at 384kbits/s using MPEG2,
85% of decisions indicate ‘strong filter’, 13% ‘weak filter’
and 2% ‘no filter’. The identity is then used in less than 10% of
the output values. Packed data (8 x 8 bits or 4 x 16 bits data in 64
bits register pair) is used for the computation. Filtering is
achieved using sum2p instructions. The normalization is
achieved using shifts to the right. The sequential implementation
of the deblocking takes 106 cycles for calculating the decision
index and the six output values. By optimizing the code using
VLIWs the computation time is reduced by a factor of 2.65, to
40 cycles.

C
lu

st
er

 S
w

it
ch

 In
te

rc
o

n
n

ec
t

R
eg

is
te

r
F

ile

STORE

LOAD

DSU

MAC

ALU

E
xe

cu
ti

o
n

U

n
it

s
VIM

(VLIW Instruction
Memory)

Data
Memory

C
lu

st
er

 S
w

it
ch

 In
te

rc
o

n
n

ec
t

R
eg

is
te

r
F

ile

STORE

LOAD

DSU

MAC

ALU

E
xe

cu
ti

o
n

U

n
it

s
VIM

(VLIW Instruction
Memory)

Data
Memory

 Fig. 1. The PE building block of BOPS cores

1x1

SP/P
E SP/P

E

CS
PE

1x2
CS

CS

2x4

SP/P
E

CS

PE

2x2

PE

PE1x1

SP/P
E SP/P

E

CS
PE

SP/P
E

CS
PE

1x2
CS

CS

CSCS

CSCS

2x4

SP/P
E

CS

PE

2x2

PE

PE

SP/P
E

CS

PE

2x2

PE

PE

SP/P
E

CS

PE

SP/P
E

CS

PE

2x2

PE

PE

The design enables the data transfer between the

SDRAM memory and a PE memory buffer (Buffer_Transfer) to
take place while the computation is performed using two other
buffers (Buffer_Proc and Buffer_Intermed). PE data memory is
divided into three data buffers. Two of them are alternately used
for loading input data, and storing the result. The third buffer,
denoted Buffer_Interm, is used for storing the intermediate
filtering result after the first pass through the deblocking filter.
One DMA channel is used for DMA output and input transfers,
the data transfer time taking less than the actual processing. First
the filtered data is transferred from Buffer_Transfer to SDRAM,
then the buffer is filled with new data from the SDRAM. The
only ‘wait’ states for the DMA to complete correspond to the
first DMA transfer from SDRAM and the last DMA transfer to
SDRAM. The data transferred from SDRAM into each PE
memory include the rectangular slice and the additional

boundary rows and columns needed in the computation. In the
first pass, the bordering data needed for the second pass is also
filtered. The program flow is shown in Fig. 4.

4. THE DERINGING FILTER

4.1. Description

An original adaptive filter is proposed and implemented for
deringing. It relies on the assumption that the filtering masks
must always include only pixels which are on the same side of
an edge that needs to be preserved. Otherwise, undesired
blurring of image details occurs. In addition, the procedure
targets the ease of implementation on parallel processors, which
does not allow the use of data dependent jumps or calls.
Experimentally, for the tested data, the visual quality obtained
using this deringing filter on very low bit rate sequences is better
than that obtained by MPEG4 filter[1] and the filter in [4].
 For each pixel of the image a 3x3 mask (v0-v8) is
processed. Initially, the mask includes the pixel to be computed
(denoted v4) and its 8 neighbors from the original image. The
processing mask and filter coefficients are shown in Fig.5. The
absolute difference between the pixel and each of its 8 neighbors
is compared with a threshold which is equal to QP. If the
difference is higher than the threshold, the corresponding
neighbor value is replaced in the processing mask by the central
value. In this case it is assumed that the neighbor does not
belong to the same side of an image edge as the central pixel.
Finally, a low pass filter is applied to the values in the processing
mask to yield the result. By replacing the values in the
processing mask, the filter varies between a low pass filter
(when no value is replaced, because no image edge is present in
the mask) to the identity (when all differences are larger than the
threshold and all values are replaced by the central one).

4.2. Deringing filter implementation on MANTA

The image is divided into rectangular slices, which are
separately processed by the 4 PEs. Data transfer between local
PE data memories and the SDRAM is performed in the
background of the computation, as in the deblocking filter case.
Input slices contain, for each PE, the additional bordering rows
and columns needed in the computation. This approach increases
the amount of transfer but removes data dependencies between
the PEs. It works well in such situations when the computation
takes longer than the data transfer. The filtering is achieved in a
single pass. Eight output values are calculated on each PE in one
pass through the computation loop. Packed data (8 x 8 bits or 4 x
16 bits data in 64 bits register pair) is used. In the decision part,
where the values of the input vector v are selected, the
implementation takes advantage of the absdif and copys

First pass, vertical deblocking from
Buffer_Proc to Buffer_Intermed

Second pass, horizontal deblocking,
from Buffer_Intermed to Buffer_Proc

Wait for the end of the DMA

Swap Buffer_Transfer and Buffer_Proc

 Start DMA (output followed by input)
for Buffer_Transfer

More data to process ?

Wai t the end of the last
DMA transfer to SDRAM

NO YES

Fig.4. The program flow for deblocking filtering

Initializations and load VLIW memory

DMA input first slice in Buffer 1
Buffer_Proc = Buffer1

Start DMA input for second slice in
Buffer2; Buffer_Transfer=Buffer2

v4

v6 v7 v8

v0 v1 v2

v5 v3

 1 2 1

 2 4 2

 1 2 1

Fig.5. The processing mask and filter coefficients for the
deringing filter

instructions which may be performed on packed 8 x 8 bit data.
Additions, multiplies by 2 and shifts for division are used in the
computation and the output is calculated as in the equation:

The code is optimized using VLIWs. The computation takes 96
cycles in the sequential implementation and only 36 in the

optimized one, the VLIW efficiency factor being 2.67.

5. PERFORMANCE OF THE IMPLEMENTATION

5.1. Theoretical lower bounds for the computation cycles

On each PE, the deblocking filter loop takes 40 cycles to
calculate six output values in each group of eight pixels
perpendicular on block borders. For one frame having horizontal
and vertical dimensions H and V, the loop runs V*(H/8-1) for
vertical deblocking and H*(V/8-1) for horizontal deblocking of
luminance. This makes a theoretical lower bound of (V*H/4-V-
H)*40 cycles, without including the initializations. The
deringing filter loop takes 36 cycles for calculating eight output
values. For one frame having horizontal and vertical dimensions
H and V, the loop runs V*H/8 times for the deringing of
luminance. The frame is divided and processed on four PEs and
the performance scales linearly with the number of PEs. If FPS
denotes the frame rate, the theoretical lower bounds of the
computation cycles for filtering the luminance on four PEs are:
Deblocking: ((V*H/4-V-H)*40*FPS)/4 cycles/s
Deringing: ((V*H/8)*36*FPS)/4 cycles/s

These figures include only the loop computation
cycles, and do not add the cycles needed for setting up the loops
and computing the parameters for the DMA transfers.

5.2. Experimental performance

Deblocking and deringing were applied to the luminance
component, on 4:2:0 video frames, at two different sizes. The
cycle counts shown in Table 1 were obtained on the MANTA
chip. MANTA does not have byte multiplies and it only allows
word aligned (1 word = 32 bits) access to data memory. One
frame from the sequence Susi (704x480 pixels, 30 frames/s)
decoded from an MPEG2 video stream at 384 kbits/s is
displayed before and after deblocking and deringing in Fig. 6
and Fig.7.

6. CONCLUSIONS

The implementation of deblocking and deringing algorithms on
BOPS parallel DSP cores is presented. A new type of deringing

Table 1. Cycle counts for deblocking and deringing filters
running on MANTA.

filter is proposed and implemented to preserve real image edges
while smoothing out the inside of objects. The main features of
the architecture used in the implementation are the multiple
levels of parallelism (data level, instruction level and system
level parallelism), the powerful instruction set, the scalability of
the architecture and the strong DMA engine which enables data
transfers to happen with almost zero overhead. The experimental
performance illustrates that such complex tasks may be
developed and performed in real time, at low clock rates.
MANTA running at 100 MHz (100 Mcycles/s) may achieve both
these filtering tasks using only half of its computational
bandwidth.

7. REFERENCES

1. ISO/IEC 14496-2:1999 Information Technology – Coding
of audio-visual objects – Part 2: Visual, Annex F,
“Deblocking Filter”, pp.290-292, “Deringing Filter” ,
pp.292-293.

2. Gerald G. Pechanek, Stamatis Vassiliadis and Nikos P.
Pitsianis, "ManArray Interconnection Network: An
Introduction," Proceedings of EuroPar ’99 Parallel
Processing, Aug. 31-Sept. 3, 1999, Toulouse, France,
Lecture Notes In Computer Science Vol 1685, pp 761-765.

3. Gerald G. Pechanek, Charles Kurak and Bruce Schulman,
"Design of MPEG-2 Function with Embedded ManArray
Cores," Proceedings of DesignCon 2000, Jan. 31- Feb. 3,
2000.

4. H.W.Park and Y.L.Lee, “A Postprocessing Method for
Reducing Quantization Effects in Low Bit-Rate Moving
Picture Coding”, IEEE Transactions on Circuits and
Systems for Video Technology, Vol.9, No.1, Feb.1999,
pp.161-171.

5. S.D.Kim, J.Yi, H.M.Kim and J.B.Ra, “A Deblocking Filter
with Two Separate Modes in Block-Based Video Coding”,
IEEE Transactions on Circuits and Systems for Video
Technology, Vol.9, No.1, Feb.1999, pp.156-160.

 Frame size Cycles/
Frame

Cycles/s for
30 frames/s

Deblocking 704 x 480
352 x 240

1,200,000
300,000

36 Mcycles/s
9 Mcycles/s

Deringing 704 x 480
352 x 240

600,000
150,000

18 Mcycles/s
4.5Mcycles/s

Fig.7. Frame from Fig. 6 after deblocking and deringing

Fig.6. Frame from sequence Susi (704x480 pixels) at 384
kbits/s with noticeable artifacts

)/16vvvv2*)vvvv2*2)(((vy 862075314 +++++++++=

