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ABSTRACT

We proposefinite-lengthmulti-input multi-outputadaptve
equalizationmethodsfor “smart” antennaarraysusingthe
statisticaltheory of canonicalcorrelations. We shav that
the proposedmethodsare relatedto maximuma/ik elihood
reduced-rankchanneland noise estimationalgorithmsin
unknown spatially correlatednoise,andto severalrecently
proposedadaptve equalizatiorschemes.

1. INTRODUCTION

Multi-input multi-output(MIMO) channelequalizatiorhas
recently attractedmuch attentiondue to recentpopularity
of antennaarraysappliedattherecever[1] andtransmitter
[2]. Adaptive and non-adaptie decision-feedbackDFE)
MIMO equalizershave beenrecentlyproposedn [3] and
[4], respectiely (seealsoreferencegherein). In this pa-
per, we presentmethodsfor finite-lengthMIMO adaptve
spatialand temporalequalizationbasedon canonicalcor

relationanalysis[5], [6]. Thesemethodsare multivariate
extensionsof the adaptve equalizationalgorithmsin [7],

[8], [9], classicafinite-lengthadaptie equalizatiorin [10],

andblind adaptve beamformingmethodswhich usefinite

alphabef{11] andconstantmodulus[12] propertiesof the
receved signal. We show a relationshipbetweenthe pro-
posedmethodsandreduced-ranknultivariatelinearregres-
sionproblemsolvedin [13].

First,in Section2, we briefly review the maximumlik e-
lihood (ML) channeland noiseestimationin [13]. Then,
we describethe proposedadaptive equalizationalgorithm
in Section3, anddiscussts applicationwhentraining data
is available (seeSection4) or not available(i.e. blind sce-
nario,seeSectionb).

2. REDUCED-RANK ML ESTIMATION

We review the ML estimationin [13] for a reduced-rank
channel. As is [13], we model the recevved signal as a
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linear combinationof basisfunctions,which includesvar

iouswirelesschanneimodelsasspecialcasessee[1], [14].

However, unlike [13], wherethe measurementarerealand
basisfunctionsareknown, herewe considerthe measure
mentmodelwith complex dataand parametrichasisfunc-
tions. Theproposegarametridasisfunctionmodelis use-
ful in blind equalizationand symbol detection,i.e. when
trainingdatais not available,seeSection5.

Denoteby y(t) anm x 1 datavectorrecevedby anarray
of m antennast time ¢ andassumehatwe have collected
N temporaldatavectors. Then,we considerthe following
measurememnnodel:

y(t) = Ho(t,n) +e(t), t=1,...,N, (21)
whereH is anm x d channekesponsenatrix of rankr <
min(m,d), ¢(t,n) is a d x 1 vector of basisfunctions,
ande(t) is zero-mearGaussiantemporallywhite andspa-
tially correlatednoisewith unknowvn positive definite co-
varianceX.. The basisfunctions¢(t,n) arechosento de-
scribethe signal of interest,andn is a vectorof unknown
basis-functiorparametersyhichmaybetheunknovn sym-
bols or phasesof the received signalin constant-modulus
scenarig'seeSection5.1.1).

To presenthe ML estimate®f H andy;, it is usefulto
defineY = [y(1) - y(N)], &(n) = [$(1,7) --- SN, )],
R,, = (1/N)-YY* R,, = (1/N) - ®(n)®(n)*, R,, =
R} = (1/N)-Y®(n)*, and

2.2)

whichis theestimatedtross-correlatiobetweerthevectors
R;12y(t) andR;,/?¢(t) or the estimatectoheencema-
trix betweeny(t) and ¢(t,n), see[5, SectionVIl]. Also,
A'/2 denotesa Hermitian squareroot of a Hermitian ma-
trix A, andA~1/2 = (A/2)~1; this notationwill be used
throughouthe paper Note thatf{w andf{w arefunctions
of . To simplify the notation,we omit thesedependen-
ciesthroughouthis paper Considemow the singularvalue



decompositior{SVD) of C’w:

C,, = UAV*, (2.3a)

U = U0*=1,, VV=VV=1I, (2.3b)
-~ K(m) 0, m<d

A = [A e 2.3C

{[A(d),O]T, m>d (&6

Am) = diag{A(1),X(2),...,A(m)},  (2.3d)

where**” denotesa conjugatetransposeand1 > X(l) >

X(2) > ... > A(min(m,d)) > 0. Again, for notational
simplicity we omit the dependencef the above quantities
onm.

We now presentthe ML estimateof the reduced-rank
channelmatrix H. First, we adoptthe following notation:
U(r) andV (r) arethe matricescontainingthefirst r
columnsof U and ¥, respectiely. For the modelin (2.1)
with known 7, the ML estimate®f H andX. are

RPUMAV () Ry, (2.4)
R,, — R20(r)R2(r D (r)* R/, (2.4b)

see[13], [14]. If 5 is unknawn, its ML estimater; is ob-
tainedby maximizingthe concentratedik elihood

11[ 1
ST1-22(0)
see[14, eq.(4.1)] and[13, eq.(35)]. To find the ML esti-
matesof H andX, replacen in (2.4) by 7.

In the following, we proposean alternatve criterion,
which is maximizedfor the sameestimateof n asthe con-
centratedik elihood function (2.5). This criterionis moti-
vatedby the MIMO equalizatiorschemeén Figurel.

3. MIMO ADAPTIVE EQUALIZATION

We analyzethe adaptve MIMO equalizationschemede-
pictedin Figurel. We wish to find anr x m beamform-
ing matrix B andanr x d basis-functiorfiltering matrix
W that minimize the error betweenthe beamformeddata
andfilteredbasisfunctionse(t,n) = By(t) — W (t,n) in
the mean-squarsense.Definethe errormatrixasé(n) =
[e(1,m)---€(N,n)]. In the following, we shov that this
problemis relatedto canonicakorrelationanalysis.

We proposeto estimateB, W, andn by maximizing
the inverseof estimatedgeometricmean-squaree@rror of

e(t,m):

I(m) (2.9)

1
I(n,B,W) = (3.1)
B W) = Ny 2y ey
subjectto the normalizingconstraint
BR,,B* = I,. (3.2)

Y
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Fig. 1. ProposedMIMO adaptve equalizatiorscheme.

Here,| - | denoteshe determinant. The normalizingcon-
straint preventstrivial solution (in which B and W equal
zero),andimposesthe estimatecbeamformedsignals BY
to beuncorrelated. R

It canbeshavnthat,underBR,,B* = I,., all theeigen-
valuesof £(n)-E(n)* /N aresimultaneouslyninimizedfor

Bn) = [bi(n),ba(n)-- b(n)]*

= U(r)*R,\?, (3.3a)
W(n) = [@i(n), @)@ (n)]*

= Bn)R,.R;} = A(n)V(r)*R,,”> (3.3b)

wherel (r) andf/(r) arethematricescontainingthefirst r
columnsof U and ¥/, respectiely (see[15]). Therefore,
B ﬁ(n) andW = W(n) maximize (3.1), yielding
l(n,ﬁ(n),ﬁ/\(n)) = I(n), which is the concentratedik e-
lihood functionin (2.5). Notethatf?(fr;) . I?(n) W(n),
WherefI(n) is the ML estimateof the channelin (2.4a).
A\ISO’ @c(t3 77) A: [:I//\c,l(ta 77)\, 37c,2 (ta 772, s a@\c,r (ta nHT =
B(n)y(t) ande.(t,n) = [¢e,1(t,m), e 2(t,m), - - -

n) G (t, )]
= W(n)o(t,n) canbeviewed asestimateccanonicalco-
ordinatesof thedataandbasisfunctions respectiely, whereas
X(i) arethe estimatecdtanonicalcorrelations see[5]. This
allows for an elegantinterpretationof the proposedequal-
izationschemen thecontext of canonicaktorrelationanaly-
sis,seee.q.[6, ch.A12]. Thefirst estAimatectanonicat:oordi-
nategj.,1(t,n) = b (n)*y(t) andg.1(t,n) = w1 (n) G (t,n)
have thelargestestimatedtorrelationA(1) amongall possi-
blelinearcombination®f y(t) andeg (¢, n). Furthery. » (¢, n)
= ba(n)"y(t) and . »(t,m) = W2(n)*¢(t,n) have the
largestestimatedcorrelation\(2) amongall possiblelinear
combination®f y(t) and¢(t, n) thatareuncorrelatedvith
9.1 (t,n) andg. . (t,m), andsoon.

Forasinglesensowith y(t) = [y(t),y(t—1),... ,y(t—
m + 1)]7, rankr = 1, andbasisfunctionschoserto model
themultipatheffectby uniformly discretizinghetime-delay
spreadi.e.¢(t,n) = [s(t),s(t—1),...,s(t—d+1)]7),the



equalizersn (3.3) becomerow vectors,i.e. E(n) = B(n)*
and W(n) = w(n)*, whereb(n) canbe interpretedas a
feedforwardfilter, which shapeghe channelto the desired
impulseresponsew(n); this is a classicaladaptve equal-
izationschemen [10].

For unknown 7, the maximizationof (2.5) canbe per
formedby iteration,asdescribedn Section5.

4. MIMO EQUALIZATION AND SYMBOL
DETECTION USING TRAINING DATA

If trainingdatais available we canseparat¢heequalization
anddetectiontasksasfollows: usetrainingdatato estimate
B andW [see(3.3)] andthendetecttheunknavn sequence
by applying metric combining(MC) [16, sec.IV.A] to the
equalizedataandbasisfunctions.We show thatthis proce-
dureis equivalentto estimating® and H from the training
datafusing (2.4)] anddetectingthe unknonvn sequenceis-
ing interferencerejectioncombining(IRC) [16, eq.(8)] (see
also[17]).

LetYx = [y« (1) - - -y, (Nx)] bethedatasetcontaining
theknown (or training)sequencejescribedy known basis
functions®x = [¢,(1) - -- P (Nx)]. Further by analogy
with (2.2) and (2.3), defineCrc,, = s> Rucyo Bcil® =
U A VK,WhereRKyy =YY« /NK,RKM =&, P, " /Ny,
andRKw =Y. P« /N Deflnealsothesmgularvaluesof
C’Kw 1>)\()>)\() >}\(m1n(md))20
andAx(r) = diag{ (1), A (2),... «(r)}. Then,from
(3. 3) the estimateof B andW basedon thetralmng data
are B, = Uy (r)* RKyly/Z and Wy = Ay (r)Vie (r)* RKjf,
and the channeland noise estimatedollow from (2 4) as
Hy = Ry, U(r)Ruc(r)Vee(r)* Ricy/” and £ = Rucyy —
R0 (r)A2 (r) Uy (r)* B2 . Notealsothat(1 /Ny )[ By Yi—
Wiy - [BuYa — Wieki]* = I, — A2(7).

Now, applythe beamformerBy to the dataY” contain-
ing the unknawvn sequenca@ndandthe basis-functiorfilter

Wk to the hypothesizedasisfunctions ¢ (¢, n), yielding
/y/:Kc( ) [ch 1( ) ch 2(t) =t 7@\Kc T(t)]TA: BKy(t) and
?l(c(t 77) [¢Kc l(t 77) d)Kc 2(t "7) - 7¢Kc,7‘(t7 n)]T =
Wk o(t,m). To find the unknavn sequence), we usethe
metric combining of the estimatedcanonicalcoordinates

Y (1) anda)Kc(t, n), i.e. minimizethefollowing costfunc-
tion:

r

Cem =) [1-

i=1

2

Z//\Kc,’i(t) - ¢Kc,’i(t7 77) 5

R N
@Y

t=1

see[15]. Interestingly the above costfunctionis equalto
thefollowing IRC costfunction:

Z[y

C(n - Heg(t,m)]" S [y (1) — Hed(tm)),

i.e. C¥¢(n) = CEC(n), see[l5]. If n is the unknown
sequencéo be detectedmaximumlik elihoodsequences-
timation (MLSE) canbe usedto minimize the above cost
functionswith respecto 7, alongthelinesof [16].
Forrank-1channeldi.e.r = 1) andbasisfunctionscho-
sento modelthe multipatheffect by uniformly discretizing
thetime-delayspread(i.e. ¢, (t) = [sk (t),sx(t — 1),...,
sk (t —d+1)]T andsimilarly for ¢(t,n)), theabove equal-
izationanddetectionalgorithmsbecomevery similar those
in [7], [8], [9] (wherethedifferencesarisebecausé¢he nor-
malizing constraintsn [7], [8], [9] differ from (3.2)).

5. BLIND MIMO EQUALIZATION

Two iterative proceduregor blind MIMO equalizationand
symboldetectiorfollowfrom theresultsof Section® and3.

Thefirst iterationis basedon the ML resultsin Section
2: first fix n andcomputeH = H(n) andX = ¥(n) using
(2.4), thenfix H andX and m|n|m|ze the interferencere-
jectioncombiningcostfunction Zt Jly@) — Ho(t,n)]* -
Y1 [y(t) — Hp(t,n)] with respecto 5. Iteratebetween
theabove two stepsaslong asthereis a significantincrease
in (2.5).

An alternatve iteratve methodis basedon (3.1): first
fix n andcomputeB = B( ) andW = W( ) using(3.3),
thenfix B andW andmaximize(3.1) with respecto n; it-
erateaslongasthereis a significantincreasen (3.1). In the
following section,we considerthe full-rank channelwith
r = d co-channesignalswhich allows for furthersimplifi-
cationsof this iteration.

5.1. Full-rank Channel with » = d Co-channel Signals

Considemow animportantspecialcaseof afull-rank chan-
nel with » = d narravbandco-channelsignalss; (¢, n),
sa(t,m), - - -, s-(t,m) impingingonthearray Then,theba-
sisfunctionvectorbecomesp(t, n) = [s1(¢t,m), s2(¢, ),
., 8-(t,m)]T. SinceW in (3.1) reducedo a square(and
generallynon-singular)matrix, we canrecover the signals
®(n) by computingQ = W~ BY, onceB andW arees-
timated. Notethat(z 30)5|mpllf|estoA A ( ), 0], and
V( ) = V, implying thatC,, = U(r )A( W, I//V\(n) =
Ar)V*R,, ", H(n) = R andS(n) = R,, -
RWR 'R*,. Also, (2.5)reducegoi(n) = \R,,|/|Rss —
R;‘¢ yley¢| = |R,,|/|R,, —RW,R 1R*¢| which canbe
viewedasestimatedjeometricsignal-to-noiseatio,se€18].
Define
Q(n) = Bwis(n)Y, (5.1)
W)~ Bln) = [ ()" S(n) ()]
- H(n)* ( )" =[Hm)'R S H ()" H (n)* Ry}
= RVPVA(r)1T(r)* Ry—yl/2 is the (estimated)weighted
leastsquaregWLS) beamformerThus,ﬁ(n) canbeviewed

whereBWLS( )



asanWLS estimateof thebasisfunctionmatrix®(n). Since

Buws(m)H(M) = I,,, Bys(n) is aleft inverseof H(n).
Thesecondterative procedurealescribedn the previous

sectionsimplifiesasfollows: first fix 7 andcomputeQ) =

~

Q(n) using(5.1). Then,fix Q andfind i that maximizes
E(m)| ", whereE(n) = (1/N)-[Q — &(n)]-[2 - B(n)]*.
Iterateaslong asthereis a significantincreasean (3.1) be-
tweenconsecutie steps.

A sub-optimalsecondstepmay beto simply project(2
ontofinite alphabeto demodulatehe unknovn symbolsn;
thiswould effectively minimizethediagonakentriesof Z(n)
andthereforeits trace,but not necessariljthe determinant
(for r = d = 1 thisis optimal,seethefollowing section).

5.1.1. SingleSouce

In the caseof a singlesourcewe haver = d = 1 andthe
basisfunction matrix degenerateso a row vector®(n) =
[S(lan)a 8(2777)7 R 73(/]\\[7 77)] Then'Ry¢ = ?ycﬁ = (1/N)
Yosy y(@)s(t,m)* andRy, =y = (1/N)-,, [s(t, )],
andthe concentratedik elihood functionin (2.5) becomes
Un) =7,,/ (7 —T.,R;'T,,). After themonotonidrans-
formation1 — 1/1(n), theconcentratedik elihoodfunction
further simplifiesto I () = 7%, R, '#,,/7,,. This con-
centratedik elihood function can be maximizedusing the
iterative procedurdrom the previous section. For fixed 7,
thefirst stepconsistof computing[see(5.1)]

W(t) = Bt m) = (Fou /7, RTy0) - 71, By (1), (5.2)

fort = 1,2,...,N. Then,in the secondstep, fix w(t)
andminimizeZ(n) = (1/N) - X~ [w(t) — s(t,n)|? with
respecto 7). If n containsunknovn symbolsandeachtime
shapshotorrespondto adifferentsymbol,eachtermin the
aboresummatiorcanbe minimizedseparatelyye canview
the secondstepas projectiononto finite alphabet. In this
casetheaboveiterationis identicalto therecentlyproposed
decoupledweightediterative leastsquareswith projection
(DW-ILSP)[11].

In the casewhenthe signals(t, n) is modeledonly by
usinga constanimodulusproperty we canchoose®(n) =
[exp[79(1)], exp[j9(2)], ... , exp[j9(IN)]] andthus
n = [9(1),9(2),... ,9(N)]T. Notethatherer,, = 1, and
the first stepof theiterationconsistsof computingw(t) =
G(t,m) = 7R, \y(t) /7 R\ F,, fort = 1,2,... N,
Then,in thesecondstepfix w(t),t = 1,2,... , N andcom-
puten] = [Zw(1), Zw(2),..., /w(N)]T, which minimizes
E(n) = (1/N)- 1L, |w(t) —exp[d(#)]?, yielding E(7) =
(1/N)- 7 [w(t) = exp[DO]]* = (1/N) - 3L Jw(®) -
w(t)/|w(®)||?, which is an estimatednean-squaed ampli-
tude fluctuationof the beamformes outputw(t). The ob-
tainedalgorithmis identical to the least-squags constant
modulusalgorithm (LSCMA) in [12].
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