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ABSTRACT

We proposefinite-lengthmulti-input multi-outputadaptive
equalizationmethodsfor “smart” antennaarraysusingthe
statisticaltheory of canonicalcorrelations. We show that
the proposedmethodsare relatedto maximumlikelihood
reduced-rankchanneland noise estimationalgorithmsin
unknown spatiallycorrelatednoise,andto several recently
proposedadaptiveequalizationschemes.

1. INTRODUCTION

Multi-input multi-output(MIMO) channelequalizationhas
recentlyattractedmuch attentiondue to recentpopularity
of antennaarraysappliedat thereceiver [1] andtransmitter
[2]. Adaptive and non-adaptive decision-feedback(DFE)
MIMO equalizershave beenrecentlyproposedin [3] and
[4], respectively (seealso referencestherein). In this pa-
per, we presentmethodsfor finite-lengthMIMO adaptive
spatialand temporalequalizationbasedon canonicalcor-
relation analysis[5], [6]. Thesemethodsaremultivariate
extensionsof the adaptive equalizationalgorithmsin [7],
[8], [9], classicalfinite-lengthadaptiveequalizationin [10],
andblind adaptive beamformingmethodswhich usefinite
alphabet[11] andconstantmodulus[12] propertiesof the
received signal. We show a relationshipbetweenthe pro-
posedmethodsandreduced-rankmultivariatelinearregres-
sionproblemsolvedin [13].

First, in Section2, webriefly review themaximumlike-
lihood (ML) channelandnoiseestimationin [13]. Then,
we describethe proposedadaptive equalizationalgorithm
in Section3, anddiscussits applicationwhentrainingdata
is available(seeSection4) or not available(i.e. blind sce-
nario,seeSection5).

2. REDUCED-RANK ML ESTIMATION

We review the ML estimationin [13] for a reduced-rank
channel. As is [13], we model the received signal as a
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linear combinationof basisfunctions,which includesvar-
iouswirelesschannelmodelsasspecialcases,see[1], [14].
However, unlike [13], wherethemeasurementsarerealand
basisfunctionsareknown, herewe considerthe measure-
mentmodelwith complex dataandparametricbasisfunc-
tions.Theproposedparametricbasisfunctionmodelis use-
ful in blind equalizationand symbol detection,i.e. when
trainingdatais not available,seeSection5.

Denoteby ������� an 	�

� datavectorreceivedby anarray
of 	 antennasat time � andassumethatwe have collected�

temporaldatavectors.Then,we considerthe following
measurementmodel:

������������������������� �!������� �"�#�$�&%'%'%(� � � (2.1)

where � is an 	)
+* channelresponsematrix of rank ,.-/1032 ��	4��*5� , �6��������� is a * 
7� vector of basisfunctions,
and �!����� is zero-meanGaussian,temporallywhite andspa-
tially correlatednoisewith unknown positive definite co-
variance8 . The basisfunctions �9�������"� arechosento de-
scribethe signalof interest,and � is a vectorof unknown
basis-functionparameters,whichmaybetheunknownsym-
bols or phasesof the received signal in constant-modulus
scenario(seeSection5.1.1).

To presenttheML estimatesof � and 8 , it is usefulto
define:;�#< �����=�?>&>'>@��� � �BA , C����"���D< �6���$�����?>'>&>E��� � ���"�FA ,GH�I�I �J���LK � �M>N:O:1P , GH�Q�Q �R�@�SK � ��>TC����"��C������EP , GH9IEQ �GH PQUI �;�@�SK � �V>=:WC����M�EP , andGX I�Q � GHWY!Z�[E\I�I GH I�Q GH Y(Z�[E\Q�Q � (2.2)

whichis theestimatedcross-correlationbetweenthevectorsGH Y(Z�[E\I�I ������� and
GH Y!Z�[E\Q�Q �6����� or theestimatedcoherencema-

trix between������� and ���������"� , see[5, SectionVII]. Also,] Z�[E\
denotesa Hermitiansquareroot of a Hermitianma-

trix
]

, and
] Y(Z�[E\ �^� ] Z�[�\ � Y!Z ; this notationwill be used

throughoutthepaper. Note that
GH9IEQ

and
GH�Q�Q

arefunctions
of � . To simplify the notation,we omit thesedependen-
ciesthroughoutthis paper. Considernow thesingularvalue



decomposition(SVD) of
GX I�Q

:GX IUQ � G_ G` Ga P � (2.3a)G_ P G_ � G_ G_ P ��bdce� Ga P Ga � Ga Ga P ��b'fT� (2.3b)G` � g < G` ��	h����iNAj�k	mln*< G` ��*5����iNApo��m	mqn* � (2.3c)G` ��	r�s� t 0puNvxw G y �@�=�d� G y �{zT���'%&%'%!� G y ��	r��|T� (2.3d)

where“ P ” denotesa conjugatetransposeand �h} G y ���=�1}G y �jz$�r}~%&%'%�} G y � /1032 ��	4��*5���r}�i . Again, for notational
simplicity we omit the dependenceof the above quantities
on � .

We now presentthe ML estimateof the reduced-rank
channelmatrix � . First, we adoptthe following notation:G_ ��,N� and

Ga ��,N� arethematricescontainingthefirst ,
columnsof

G_
and
Ga

, respectively. For the model in (2.1)
with known � , theML estimatesof � and 8 areG�����"��� GH Z�[E\I�I G_ ��,S� G` ��,N� Ga ��,N� P GH Y!Z�[E\Q�Q � (2.4a)G8����"��� GH9I�I�� GHOZ�[E\I�I G_ ��,N� G` \ ��,N� G_ ��,N� P GHOZ�[�\I@I � (2.4b)

see[13], [14]. If � is unknown, its ML estimate
G� is ob-

tainedby maximizingtheconcentratedlikelihood� ���"�M������� Z �� � G y \ ���@� � (2.5)

see[14, eq. (4.1)] and[13, eq. (35)]. To find the ML esti-
matesof � and 8 , replace� in (2.4)by

G� .
In the following, we proposean alternative criterion,

which is maximizedfor thesameestimateof � asthecon-
centratedlikelihoodfunction (2.5). This criterion is moti-
vatedby theMIMO equalizationschemein Figure1.

3. MIMO ADAPTIVE EQUALIZATION

We analyzethe adaptive MIMO equalizationschemede-
picted in Figure1. We wish to find an ,�
�	 beamform-
ing matrix � andan ,h
�* basis-functionfiltering matrix�

that minimize the error betweenthe beamformeddata
andfilteredbasisfunctions�����������M���O������� ��� �6�������"� in
themean-squaresense.Definethe errormatrix as �����M���< �����$�����?>&>'>E��� � �����BA . In the following, we show that this
problemis relatedto canonicalcorrelationanalysis.

We proposeto estimate� ,
�

, and � by maximizing
the inverseof estimatedgeometricmean-squarederror of����������� : � �������.� � �M� �� ���LK � �V>'��������>'�����M� P � (3.1)

subjectto thenormalizingconstraint� GH�I�I � P ��b � % (3.2)

� � �: ��
� �
�C����"�

� /�uS����� �
� � �LK(�� �����"�">d�����M�EP&K � �� �
�

������M�

Fig. 1. ProposedMIMO adaptiveequalizationscheme.

Here,
� > � denotesthe determinant.The normalizingcon-

straint preventstrivial solution (in which � and
�

equal
zero),andimposesthe estimatedbeamformedsignals � :
to beuncorrelated.

It canbeshown that,under� GH9I�I � P ��b � , all theeigen-
valuesof ��������>��������EP=K � aresimultaneouslyminimizedforG�.������� < G ¡ Z ���"��� G ¡ \ ���M�?>'>&> G ¡ � ���M�BA P� G_ ��,S� P GH Y!Z�[E\I�I � (3.3a)¢� �����£� < G¤ Z ���"��� G¤ \ ���"�?>'>&> G¤ � ���"�FA P� G�.����� GH9IEQ GHWY!ZQ�Q � G` ��,N� Ga ��,N� P GH Y!Z�[E\Q�Q � (3.3b)

where
G_ ��,N� and

Ga ��,S� arethematricescontainingthefirst ,
columnsof

G_
and
Ga

, respectively (see[15]). Therefore,�¥� G�����"� and
� � ¢ � ���"� maximize (3.1), yielding� ����� G�.�����d� ¢� ���M���O� � ���V� , which is the concentratedlike-

lihood function in (2.5). Note that
G�.���"��> G�����M�
� ¢� ���"� ,

where
G�����"� is the ML estimateof the channelin (2.4a).

Also,
G�§¦U���������¨�©< Gª ¦ � Z �������"��� Gª ¦ � \ �������M���'%&%'%(� Gª ¦ � � �������"�FA«o;�G�����"�B������� and

G��¦��������"�M�D< G¬ ¦ � Z �������"��� G¬ ¦ � \ ���������d�'%&%'%(� G¬ ¦ � � ���������BApo� ¢� �������9�������"� canbeviewedasestimatedcanonicalco-
ordinatesof thedataandbasisfunctions,respectively, whereasG y ���@� aretheestimatedcanonicalcorrelations, see[5]. This
allows for an elegantinterpretationof the proposedequal-
izationschemein thecontext of canonicalcorrelationanaly-
sis,seee.g.[6, ch.12]. Thefirst estimatedcanonicalcoordi-
nates

Gª ¦ � Z ���������M� G ¡ Z ���M�EP�������� and
G¬ ¦ � Z �������"�M� G¤ Z ���M� P �����������

havethelargestestimatedcorrelation
G y �@�L� amongall possi-

blelinearcombinationsof ������� and ���������"� . Further,
Gª ¦ � \ ���������� G ¡ \ ���"��Pd������� and

G¬ ¦ � \ �������"��� G¤ \ ���"��P=����������� have the
largestestimatedcorrelation

G y �jz$� amongall possiblelinear
combinationsof ������� and ���������"� thatareuncorrelatedwithGª ¦ � Z �������M� and

G¬ ¦ � Z �������"� , andsoon.
Forasinglesensorwith ���������#< ª ������� ª ��� � �=�d�'%'%&%(� ª ��� �	­���=�BApo , rank ,O�D� , andbasisfunctionschosento model

themultipatheffectbyuniformlydiscretizingthetime-delay
spread(i.e. �6���������M�;< ®¯�������E®¯��� � �=�d�'%'%&%(�E®¯��� � *x���L�FA o ), the



equalizersin (3.3)becomerow vectors,i.e.
G�.���M�°� G ¡ �����EP

and
¢ � ���"�±� G¤ ���"��P , where

G ¡ ���"� canbe interpretedasa
feedforwardfilter, which shapesthechannelto the desired
impulseresponse

G¤ ���"� ; this is a classicaladaptive equal-
izationschemein [10].

For unknown � , the maximizationof (2.5) canbe per-
formedby iteration,asdescribedin Section5.

4. MIMO EQUALIZATION AND SYMBOL
DETECTION USING TRAINING DATA

If trainingdatais available,wecanseparatetheequalization
anddetectiontasksasfollows: usetrainingdatato estimate� and

�
[see(3.3)] andthendetecttheunknown sequence

by applyingmetric combining(MC) [16, sec.IV.A] to the
equalizeddataandbasisfunctions.Weshow thatthisproce-
dureis equivalentto estimating8 and � from thetraining
data[using (2.4)] anddetectingtheunknown sequenceus-
ing interferencerejectioncombining(IRC) [16, eq.(8)] (see
also[17]).

Let :³²¨�D< � ² ���=�?>&>'>@� ² � � ²x�FA bethedatasetcontaining
theknown (or training)sequence,describedby known basis
functions C ² �)< � ² �@�L�?>'>&>�� ² � � ² �BA . Further, by analogy

with (2.2) and(2.3), define
GX ² I�Q � GH Y(Z�[E\² I@I GH ² I�Q GH Y(Z�[E\² Q�Q �G_ ² G` ² Ga P² , where

GH ² I�I ��:x²³:x² P K � ² , GH ² QUQ ��C�²?C�² P K � ² ,
and
GH ² I�Q ��:x²?C�² P K � ² . DefinealsothesingularvaluesofGX ² I�Q : �r} G y ² �@�L�W} G y ² �{zT�W}´%'%&%"} G y ² � /10�2 ��	��E*¯�E�W}µi

and
G` ² ��,S�9�¶t 0puNvxw G y ² �@�L��� G y ² �jz$�d�'%'%&%(� G y ² ��,S��| . Then,from

(3.3), theestimatesof � and
�

basedon the trainingdata
are
G�
²�� G_ ²���,S�EP GH Y(Z�[�\² I�I and

¢� ²�� G` ²���,N� Ga ²���,N��P GH Y(Z�[E\² Q�Q ,
and the channeland noiseestimatesfollow from (2.4) asG� ² � GH Z�[E\² I�I G_ ² ��,N� G` ² ��,N� Ga ² ��,N��P GH Y(Z�[E\² Q�Q and

G8 ² � GH ² I�I9�GH Z�[E\² I�I G_ ²���,N� G` \² ��,N� G_ ²V��,S�EP GH Z�[E\² I�I . Notealsothat �@�LK � ²x�'< G�9²³:x² �¢ � ² C ² A³>¯< G� ² : ² � ¢� ² C ² A P ��b � �
G` \² ��,N� .

Now, apply thebeamformer
G� ² to the data : contain-

ing theunknown sequenceandandthebasis-functionfilter¢ � ² to the hypothesizedbasisfunctions ���������"� , yieldingG� ² ¦������
�£< Gª ² ¦ � Z ������� Gª ² ¦ � \ �������&%'%&%!� Gª ² ¦ � � �����FA«o·�
G�9²�������� andG� ² ¦������������¸< G¬ ² ¦ � Z �������"��� G¬ ² ¦ � \ �������"���'%&%'%!� G¬ ² ¦ � � �������"�FA«o­�¢� ²?���������"� . To find the unknown sequence� , we usethe

metric combining of the estimatedcanonicalcoordinatesG� ² ¦������ and
G� ² ¦��������"� , i.e.minimizethefollowing costfunc-

tion:X�¹!º² ¦����"�M� �» ��� Z <¼� � G y \² ���@�FA Y(Z�½» ¾ � Z ��� Gª ² ¦ � � ����� � G¬ ² ¦ � � �������"� ��� \ �
see[15]. Interestingly, the above cost function is equalto
thefollowing IRC costfunction:

X6¿ÁÀ º² ���"�$� ½» ¾ � Z < ������� � G� ² �6���������BA P G8 Y(Z² < ������� � G� ² �9�������"�FAF�

i.e.
X ¹!º² ¦ ���M��� X ¿ÁÀ º² ���"� , see[15]. If � is the unknown

sequenceto bedetected,maximumlikelihoodsequencees-
timation (MLSE) canbe usedto minimize the above cost
functionswith respectto � , alongthelinesof [16].

For rank-1channels(i.e. ,Â�D� ) andbasisfunctionscho-
sento modelthemultipatheffect by uniformly discretizing
thetime-delayspread(i.e. � ² �������#< ® ² �����d�E® ² ��� � �=�d�'%&%'%(�® ² ��� � *°� �=�FA«o andsimilarly for ���������"� ), theaboveequal-
izationanddetectionalgorithmsbecomevery similar those
in [7], [8], [9] (wherethedifferencesarisebecausethenor-
malizingconstraintsin [7], [8], [9] differ from (3.2)).

5. BLIND MIMO EQUALIZATION

Two iterative proceduresfor blind MIMO equalizationand
symboldetectionfollowfrom theresultsof Sections2 and3.

Thefirst iterationis basedon theML resultsin Section
2: first fix � andcompute�Ã� G�����"� and 8n� G8����"� using
(2.4), thenfix � and 8 andminimize the interferencere-
jectioncombiningcostfunction Ä ½¾ � Z < �Å����� � �������������BA�P�>8 Y(Z >T< ������� � ���9�������M�BA with respectto � . Iteratebetween
theabovetwo stepsaslongasthereis a significantincrease
in (2.5).

An alternative iterative methodis basedon (3.1): first
fix � andcompute�­� G�.���"� and

� � ¢ � ���"� using(3.3),
thenfix � and

�
andmaximize(3.1)with respectto � ; it-

erateaslongasthereis asignificantincreasein (3.1). In the
following section,we considerthe full-rank channelwith,O��* co-channelsignals,whichallows for furthersimplifi-
cationsof this iteration.

5.1. Full-rank Channel with ,O��* Co-channel Signals

Considernow animportantspecialcaseof a full-rank chan-
nel with ,#�Æ* narrowbandco-channelsignals ® Z �������"� ,® \ �������"���&%'%'%(�U® � ��������� impingingonthearray. Then,theba-
sisfunctionvectorbecomes�����������M�;< ® Z �������"���U® \ ���������d�%'%&%!�E® � �������"�FA«o . Since

�
in (3.1) reducesto a square(and

generallynon-singular)matrix, we canrecover the signalsC����M� by computingÇ¶� � Y!Z �W: , once � and
�

arees-
timated.Note that (2.3c)simplifiesto

G` �£< G` ��,N�d��iSA«o , andGa ��,N�±� Ga , implying that
GX IEQ � G_ ��,N� G` ��,N� Ga P , ¢� ���"���G` ��,N� Ga P GH Y!Z�[E\Q�Q ,

G� ���"�·� GH I�Q GH Y(ZQ�Q
, and

G8������n� GH I�I �GH�I�Q GH Y(ZQ�Q GH PI�Q . Also, (2.5) reducesto
� �����M� � GH�Q�Q � K � GH�Q�Q��GH PI�Q GH Y(ZI�I GH�I�Q � � � GH9I�I � K � GH9I@IÅ� GH�I�Q GH Y(ZQ�Q GH PI�Q � , which canbe

viewedasestimatedgeometricsignal-to-noiseratio,see[18].
Define GÇ6���"��� G�
È"ÉdÊS������:�� (5.1)

where
G� È"ÉdÊ �����T� ¢� ����� Y(Z G�.�������D< G� ���"��P G8����"� Y!Z G�������BA Y!Z> G� ���"��P G8����"� Y(Z �D< G�����M��P GH Y(ZI�I G�����"�FA Y(Z G�����"��P GH Y(ZI@I� GH Z�[E\Q�Q Ga G` ��,N� Y(Z G_ ��,N��P GH Y(Z�[�\I�I is the (estimated)weighted

leastsquares(WLS)beamformer. Thus,
GÇ6���"� canbeviewed



asanWLSestimateof thebasisfunctionmatrix C������ . SinceG�
È"ÉdÊS����� G�����"����b � ,
G�
È"ÉdÊS����� is a left inverseof

G������� .
Theseconditerativeproceduredescribedin theprevious

sectionsimplifiesasfollows: first fix � andcomputeÇË�GÇ6���"� using (5.1). Then,fix Ç andfind � that maximizes� Ì ���M� � Y(Z , where
Ì ���M�M�;�@�LK � �x>d< Ç � C����"�BAN>d< Ç � C����"�BA�P .

Iterateaslong asthereis a significantincreasein (3.1) be-
tweenconsecutivesteps.

A sub-optimalsecondstepmaybe to simply project Ç
ontofinite alphabetto demodulatetheunknown symbols� ;
thiswouldeffectivelyminimizethediagonalentriesof

Ì ���"�
andthereforeits trace,but not necessarilythe determinant
(for ,Â��*W�D� this is optimal,seethefollowing section).

5.1.1. SingleSource

In thecaseof a singlesource,we have ,¨�µ*+�´� andthe
basisfunction matrix degeneratesto a row vector C������ �< ®¯���$���"���U®¯�{z����V�d�'%'%&%!�E®¯� � ���"�FA . Then,

GH I�Q � G Í I�Q �;�@�SK � �d>Ä ½¾ � Z ��������®¯���������EP and
GH�Q�Q � G , Q�Q �D�@�LK � ��>ÎÄ ½¾ � Z � ®T�������"� � \ ,

andthe concentratedlikelihood function in (2.5) becomes� �����M� G, Q�Q K�� G, Q�Q � G Í PI�Q GH Y(ZI�I G Í I�Q � . After themonotonictrans-
formation � � �LK � ���§� , theconcentratedlikelihoodfunction
further simplifies to

� Z �����r� GÍ PIEQ GH Y!ZI�I G Í IEQ K G , Q�Q . This con-
centratedlikelihood function canbe maximizedusing the
iterative procedurefrom the previoussection.For fixed � ,
thefirst stepconsistsof computing[see(5.1)]Ï ������� GÏ �������"�M�D� G, QdQ K G Í PI�Q GH Y(ZI�I G Í I�Q ��> G Í PI�Q GH Y(ZI�I �Å�����d� (5.2)

for ���Ð�$�Ez��'%&%'%(� � . Then, in the secondstep,fix Ï �����
andminimize

Ì ���M�M�D���LK � �§> Ä ½¾ � Z � Ï ����� � ®¯��������� � \ with
respectto � . If � containsunknown symbolsandeachtime
snapshotcorrespondsto adifferentsymbol,eachtermin the
abovesummationcanbeminimizedseparately;wecanview
the secondstepasprojectiononto finite alphabet. In this
case,theaboveiterationis identicalto therecentlyproposed
decoupledweightediterative leastsquareswith projection
(DW-ILSP) [11].

In the casewhenthe signal ®¯�������"� is modeledonly by
usinga constantmodulusproperty, we canchooseC��������< Ñ ��Ò < ÓTÔ"�@�L�FAF��Ñ �5Ò < ÓTÔ"�{zT�FAF�'%'%&%!��Ñ ��Ò < ÓTÔ"� � �BA3A andthus���µ< Ô"�@�=�d��Ô"�{zT���&%'%'%���Ô"� � �BA o . Notethathere

G, Q�Q �D� , and
the first stepof the iterationconsistsof computingÏ �����6�GÏ ���������.� GÍ PI�Q GH Y(ZI�I �������EK G Í PIEQ GH Y!ZI�I G Í I�Q for �¨�Õ�T�Ez��'%'%&%?� � .
Then,in thesecondstep,fix Ï �������E�"�D�$�Uz��&%'%'%?� � andcom-
pute

G���R<pÖ Ï �@�L���LÖ Ï �{zT���&%'%'%(�SÖ Ï � � �FA«o , which minimizesÌ ���M�M�;�@�LK � �T> Ä ½¾ � Z � Ï ����� � Ñ ��Ò < Ô"�����BA � \ , yielding
Ì � G�"�M��@�SK � �?> Ä ½¾ � Z � Ï ����� � Ñ ��Ò < GÔ������FA � \ �D���LK � �?> Ä ½¾ � Z � Ï ����� �Ï �����EK � Ï ����� ��� \ , which is an estimatedmean-squaredampli-

tudefluctuationof the beamformer’s output Ï ����� . The ob-
tainedalgorithm is identical to the least-squaresconstant
modulusalgorithm(LSCMA) in [12].
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