
A 333-MHz dual-MAC DSP Architecture for Next-Generation Wireless Applications

Ravi K. Kolagotla, Jose Fridman, Marc M. Hoffman, William C. Anderson, Bradley C. Aldrich,
David B. Witt, Michael S. Allen, Randy R. Dunton, and Lawrence A. Booth, Jr.

Analog Devices / Intel Joint DSP Development Center, 1501 S. Mopac Exp., Austin, TX 78746, USA

Abstract - We introduce the first DSP core developed at the
Analog Devices and Intel Joint DSP Development Center. The
16-bit fixed-point core combines some of the best features of tra-
ditional DSPs and micro-controllers and compares favorably
with dual-MAC DSPs on DSP specific benchmarks and with
micro-controllers on micro-controller specific benchmarks. In
addition, the core supports a rich set of alignment independent
packed byte instructions to enable an efficient implementation
of 3G algorithms in next-generation wireless applications. The
deep and fully interlocked pipeline allows the core to run at 333-
MHz in the 0.18-um TSMC process.

I. INTRODUCTION

The convergence of voice and video in next-generation
wireless applications requires a processor that can efficiently
implement advanced 3G algorithms. The Frio core is a dual-
MAC modified Harvard architecture based processor that has
been designed to have good performance on both voice and
video algorithms. In addition, some of the best features of
micro-controllers have been incorporated into the Frio core
to allow it to replace both a DSP and a micro-controller on
low cost wireless handheld applications.

The DSP features of the Frio core include one instruction
port and two separate data ports to a unified 4GB memory
space, two 16-bit single-cycle throughput multipliers, two
40-bit split data ALUs, two 32-bit pointer ALUs with support
for circular and bit-reversed addressing, two loop counters
that allow nested zero overhead looping, and hardware sup-
port for on-the-fly saturation and clipping.

The micro-controller features of the Frio core include arbi-
trary bit manipulation, mixed 16-bit and 32-bit instruction
encoding for code density, memory protection, stack pointers
and scratch SRAM for context switching, flexible power
management, and an extensible nested and prioritized inter-
rupt controller for real-time control.

The multimedia features of the Frio core include four aux-
iliary 8-bit data ALUs, and a rich set of alignment indepen-
dent packed byte operation instructions. These instructions
enable the acceleration of fundamental operations associated
with video and imaging based applications such as are found
in 3G wireless algorithms.

Execution time predictability is achieved with lockable
caches that can be configured as SRAM, static branch predic-
tion and data-independent instruction execution.

The architecture of the Frio core is introduced in section II.
Section III describes the details of the first implementation of

the Frio core, and section IV summarizes the performance of
the Frio core on DSP specific benchmarks as well as image,
video and micro-controller specific benchmarks.

II. ARCHITECTURE

The Frio core is a modified Harvard architecture based
processor. Instructions and data reside in separate L1 memo-
ries, but share a common L2 memory. All addresses are 32-
bit allowing the Frio core to address a unified 4GB address
space. Figure 1 shows the major units in the Frio core. The
execution unit contains an eight entry 32-bit data register file,
two 16x16-bit multipliers, two 40-bit split ALUs, one 40-bit
shifter, four 8-bit video ALUs and two 40-bit split accumula-
tors. Keeping the accumulators separate from the data regis-
ters allows for efficient load/store architecture to co-exist
with the accumulator based design of traditional DSPs.

The data address generator contains two 32-bit address
ALUs and an address register file. The address register file
consists of six 32-bit general-purpose pointer registers and
four 32-bit circular buffer addressing registers. The four cir-
cular buffer addressing registers have associated base, length
and modifier registers, all of which are 32-bit wide. The
address register file also includes a frame pointer to point to
the current procedure’s activation record and separate user
and kernel stack pointer registers. The sequencer includes
two zero overhead hardware loop buffers.

L1 Data Memory
L1 Instruction

Memory

Sequencer

System Bus Interface

Data
RF

Accm

Addr
RF

D
A

0

D
A

1

LD
0

LD
1

S
D ID
B

IA
B

DF F

Shifter ALU ALU

Video Mult Mult

ALU

ALU

Debug and
Emulation

F D

Fig. 1. Block diagram showing major subsystems

A. Instruction Set

The instruction set for the Frio core has two types of
instructions: those used primarily for DSP-oriented computa-
tion, and those used for micro-controller and general tasks.
Specific Frio instructions are tuned for their corresponding
task, but in general instructions can be inter-mixed with no
restrictions.

Generally, DSP instructions read two 32-bit operands from
the data register file, compute results, and either store these
results back to the data register file or accumulate in the two
internal accumulators. Each MAC unit is capable of comput-
ing a 16x16 bit signed or unsigned integer or fractional multi-
plications. Each ALU unit is capable of a 32-bit operation on
two 32-bit inputs, a 16-bit operation on two 16-bit inputs, or
two 16-bit operations on a pair of packed 16-bit inputs.

The micro-controller specific instructions provide the
essential instructions needed to perform basic processor con-
trol and arithmetic operations. This set of operations includes
load/store, arithmetic, logical, bit manipulation, branching,
and decision making functionality. Conditional register move
instructions are provided to allow efficient implementation of
short if-then-else statements.

The load/store instructions support the following address-
ing modes: auto-increment, auto-decrement, indirect, circu-
lar, bit-reversed, indexed with immediate offset, post-modify
with non-unity stride, pre-decrement store on stack pointer.

Each DSP instruction may be issued by itself, or in parallel
with two load or one load and one store instruction.

B. Memory Architecture

The Frio core contains an L1 instruction memory and a
separate banked dual-ported L1 data memory as shown in
Figure 2. This allows two data load operations or one load
operation and one store operation to occur in parallel with an
instruction fetch. Both the L1 instruction and L1 data memo-
ries may be configured as either caches or as SRAM. Caches

support ease of use and relieve the programmer from explic-
itly managing data movement into and out of the L1 memo-
ries. This allows code to be ported to the Frio core quickly,
with no performance optimization required for the memory
organization, without having to understand and program the
system DMA controller.

The L1 instruction memory can be configured as either
16KB SRAM or as 16KB of lockable 4-way set-associative
instruction cache. The Instruction Address Bus (IAB) is 32-
bits wide and the Instruction Data Bus (IDB) is 64-bits wide.
Misses in the L1 instruction memory are sent to the system
bus interface using the F port. An external bus master, DMA
for example, can use the D port to access the L1 instruction
memory when it is configured as SRAM.

The L1 data memory consists of two 16KB superbanks
and a separate 4KB of SRAM for scratchpad use. Each of the
16KB superbanks can be configured as either 16KB SRAM
or as 16KB of 2-way set associative data cache. The data
address busses (DA0 and DA1) are 32-bits wide. The load
data busses (LD0 and LD1) and the store data bus (SD) are
32-bits wide. Misses in the L1 data memory are sent to the
system bus interface using the two F ports. An external bus
master, DMA for example, can use the D port to access the
superbanks in the L1 data memory when they are configured
as SRAM.

The memory management unit in the Frio core supports
both protection and selective caching of memory. In general
the memory is divided up into regions in which the memory
management rules apply. The Frio core supports four differ-
ent page sizes: 1KB, 4KB, 1MB, and 4MB. Each page is
described by a set of cacheability and protection properties.
These properties are stored locally for the most active regions
in memory in Cacheability Protection Lookaside Buffers
(CPLBs). Each of the three major buses (IAB, DA0 and
DA1) have memory management.

C. Operating Modes

The Frio core has five modes: user, supervisor, emulation,
idle and reset. The user, supervisor and emulation modes pro-
vide basic protection for system and emulation resources.
Application-level code has restricted access to system
resources. The system acts on behalf of the user through sys-
tem calls whenever application-level code requires access to
system resources. System resources include protected regis-
ters and protected instructions.

The Frio core is in supervisor mode when it is handling an
interrupt at some level, or a software exception. The Frio
core enters emulation mode as a result of an emulator event
such as a watchpoint match or an external emulation request.

In the emulator mode, the Frio core fetches instructions
from a JTAG scannable emulation instruction register. These
instructions bypass the memory system and are directly fed
to the instruction decoder.

L1 Data Memory
L1 Instruction
Memory

System Bus Interface

D
A

0

D
A

1

LD
0

LD
1

S
D

ID
B

IA
B

DF FF D

16KB
cache/
SRAM

16KB
cache/
SRAM

16KB
cache/
SRAM

Buffer Buffer Buffer

4K
B

 S
R

A
M

Fig. 2. Block diagram of L1 memories

D. Interrupt System

The interrupt system on the Frio core is nested and priori-
tized and on an interrupt the processor state is saved on the
kernel stack. The interrupt system consists of five basic types
of events: emulation, reset, non-maskable interrupt, excep-
tions and general-purpose interrupts. Each basic event has an
associated register to hold the return address, as well as an
associated return-from-event instruction. The Frio core pro-
cesses all interrupts and exceptions in the supervisor mode.
The emulation event is processed in the emulation mode.

A higher priority event preempts a lower priority event. In
addition, general-purpose interrupts can be configured to be
self-nesting at the same priority level. This allows an external
interrupt controller to extend the number of available inter-
rupt inputs.

Reset is treated as an event and is lower priority than emu-
lation. Upon exit from reset, the Frio core starts execution
from the reset service vector in the supervisor mode. A return
from interrupt instruction is used to exit the reset service rou-
tine and start execution in the user operating mode.

E. Debug Features

The debug features of the Frio core include watchpoint,
trace, performance monitor and cycle counters. The watch-
point unit consists of six instruction address watchpoints and
two data address watchpoints. The six instruction address
watchpoints may be combined in pairs to create three instruc-
tion address range watchpoints. The two data address watch-
points may be combined to create a data address range
watchpoint. Each of the watchpoints and watchpoint ranges
is also associated with a 16-bit event counter. The trace
buffer consists of a 16-element FIFO that records discontinu-
ities in program flow. Discontinuities due to hardware loops
are not recorded in the trace buffer. The trace buffer also has
a compression feature that can be used to compress one or
two levels of software loops. The performance monitor unit
contains two 32-bit special purpose counters and registers to
count the number of cycles or occurrences of an event of
interest. There is also a 64-bit free running cycle counter that
can be used for code profiling purposes.

III. IMPLEMENTATION

The first implementation of the Frio core uses an eight
stage pipeline. The pipeline is fully interlocked with smart
interlocking. This allows for the minimum number of stalls
to be inserted to maintain program correctness. Table 1

describes the operations performed during each stage and
Figure 3 shows the arrangement of the stages.

This arrangement of pipeline stages allows for the results
of load instructions to be forwarded to the execution units
without stalls. Both data accumulation using the data ALUs
and pointer updates using the address ALUs are single cycle
operations. This allows the Frio core to achieve a very effi-
cient cycle count on critical inner loops.

Alignment independent byte operation is provided with
control signals forwarded from the address ALUs to MUXes
in the data register file.

The deep pipeline allows the Frio core to run at 333-MHz
in the TSMC 0.18-um process.

IV. PERFORMANCE BENCHMARKS

The balanced execution and data memory bandwidth of
the Frio core allows for efficient implementation of most
DSP inner loop kernels. Figure 4 shows a code segment for a
Finite Impulse Response (FIR) filter. Software pipelining and
loop unrolling techniques are used to effectively adapt the
algorithm to the computational pipeline [1]. It consists of two
nested loops: a 2 instruction inner loop (LP1STR, LP1END),
and a 7 instruction outer loop (LP0STR, LP0END). Each line
of the inner loop has two MAC instructions. The operands
for the MAC instructions come from registers R0 and R1,
and are accessed as 16-bit register halves: R0.H (high) and
R0.L (low). The load instructions use pointers I0 in post-dec-
rement mode (R0.H=W[I0--]) to fetch a single 16-bit delay
line input, and I3 in post-increment mode (R1=[I3++]) to

Table 1: Description of pipeline stages

Name Description

IF1 Instruction Fetch 1 Start L1 instruction memory access

IF2 Instruction Fetch 2 Finish L1 instruction memory access and
align instruction

DEC Decode Start instruction decode and read Pointer RF

AC Address Calculation Data addresses and branch target address

EX1 Execution Stage 1 Read Data RF, start access of L1 data memory

EX2 Execution Stage 2 Finish accesses of L1 data memory and start
execution of dual cycle instructions

EX3 Execution Stage 3 Execution of single cycle instructions

WB Writeback Write architectural states to Data and Pointer
register files and process events

IF1 IF2 DEC AC EX1 EX3 W BEX2

Multiplier

PRF Access

Instruction Fetch

Data Fetch

Decode

Address ALU

WritebackData ALUDRF Access

Fig. 3. Pipeline diagram

fetch a pair of 16-bit coefficients. The inner loop is executed
O(T/2) times and the outer loop is executed O(N/2) times for
an effective cycle count of O(NT/2).

Note that the Frio core has no load to use latencies
between load and compute instructions. This reduces the
need for loop unrolling to only one iteration, improves code
size, and allows simple assembly programming.

Table 2 summarizes the performance of the Frio core on
the kernels of typical DSP benchmarks.

In addition to the DSP kernels, the Frio core was designed
to allow efficient implementations of typical image and video
processing applications such as are found in next-generation
wireless applications. Table 3 summarizes the performance
of the Frio core on the kernels of typical image and video

processing benchmarks.

V. SUMMARY

We presented a new dual-MAC DSP core that combines
some of the best features of traditional DSPs and micro-con-
trollers. In addition, the rich set of multimedia instructions
make the core ideally suited for implementing 3G algorithms
in next-generation wireless applications.

ACKNOWLEDGMENTS

We would like to thank the large group of past and present Intel and Ana-
log Devices employees who have contributed to the development of the Frio
core, only some of whom are listed here: L. Basto, B. Bayerdorffer,
B. Bonner, D. Borland, L. Bunimovich, K. Chalmers, D. Coleman,
J. DeLargy, J. Dickol, T. Dinh, D. Gantala, M. Gill, R. Gopal, W. Hooper,
R. Inoue, R. Jackson, S. Kannan, R. Kaul, C. Marler, J. Mason, S. Menon,
J. Monaco, G. Overkamp, R. Peri, M. Perry, L. Phan, J. Reed, J. Revilla,
C. Roth, E. Silvera, R. Singh, A. Sustaita, and T. Tomazin.

We also thank everyone who helped make this project a success.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, “Computer Architecture: A Quanti-
tative Approach,” Second Edition, Morgan Kaufmann Publishers, 1996.

Table 2: Performance on DSP Algorithms

Algorithm Cycle Count

N sample T tap real FIR Filter NT/2

N sample T tap complex FIR Filter 2NT

N sample T tap real LMS Adaptive Filter 3NT/2

N sample T tap complex LMS Adaptive Filter 5NT/2

N sample B stage Biquad IIR Filter 5NB/2

N sample L section Lattice Analysis Filter 2NL

N sample L section Lattice Synthesis Filter 2NL

N sample T tap Convolution NT/2

N sample Maximum or Minimum with or without Index N/2

N dimensional Vector Dot Product N/2

N dimensional Vector Sum N

N dimensional Weighted Vector Sum N

N dimensional Sum of Squares N/2

N dimensional Weighted Sum of Squares N

N dimensional Euclidean Distance N

N dimensional Weighted Euclidean Distance 3N/2

Complex FFT Butterfly 3

256-point complex FFT (including bit-reversal) 3176

Viterbi for GSM (16 states, 378 soft decision symbols) 6357

I0=delay_line_pointer; I1=input_pointer; I2=output_pointer; I3=coefficient_pointer;
P0=N/2; P1=T/2-1; R0 = [I1++] || R1 = [I3++]; [I0++M0] = R0;
 LSETUP (LP0STR, LP0END) LC0=P0 ;
LP0STR: LSETUP (LP1STR, LP1END) LC1=P1 ;
 A1 = R0.H*R1.L , A0 = R0.L*R1.L || R0.H = W[I0--] ;
LP1STR: A1 += R0.L*R1.H , A0 += R0.H*R1.H || R0.L = W[I0--] || R1 = [I3++] ;
LP1END: A1 += R0.H*R1.L , A0 += R0.L*R1.L || R0.H = W[I0--] ;
 R2.H = (A1 += R0.L*R1.H), R2.L = (A0 += R0.H*R1.H) || R0 = [I1++] || R1 = [I3++] ;
 [I0++M0] = R0 ;
LP0END: [I2++] = R2 ;

Fig. 4. FIR Filter implementation on the Frio core

Table 3: Performance on Image and Video Algorithms

Algorithm Cycle Count

8x8 Discrete Cosine Transform (DCT) 284

8x8 Inverse Discrete Cosine Transform (IDCT) 404

NxN Sum of Absolute Differences (SAD), N=8,16 N2/4 + 2

NxN Sum of Squared Differences (SSD), N=8,16 3N2/4

NxN ZigZag Scan (Classical), N=8 N2 + 4

NxN ZigZag Scan (Vertical), N=8 N2 + 8

NxN ZigZag Scan (Horizontal), N=8 N2/2 + 11

NxN Motion Compensation (1/2X), N=8 3N2/8

NxN Motion Compensation (1/2Y), N=8 N2/4

NxN Motion Compensation (1/2XY), N=8 3N2/4

NxN Motion Compensation (Integer), N=8 N2/4

Image Convolution with 3x3 Kernel (per pixel) 5

RGB24-YCrCb 4:4:4 Color Space Conversion (per group) 12

