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ABSTRACT

We investigate a sub-optimal iterative receiver for joint
equalization and decoding called Turbo-equalizer. We
view the evolution of the error variance of the trans-
mitted symbols through the iterative processing, ob-
taining convergence analysis. This allows us to predict
the asymptotic performance (when the Turbo-equalizer
has converged) but also the trigger point observed in
its performance.

1. INTRODUCTION

In high rate communication, where the transmitted
signal is subject to intersymbol interference (ISI), we
may use equalization to reduce the e�ect of ISI and
channel coding to correct remaining errors. A con-
ventional equalizer does not make use of the redun-
dancy introduced by the channel coding. Equaliza-
tion and decoding are disjoint which is not optimal
in the sense of the minimization of the error proba-
bility. Since optimal joint equalization and decoding is
an NP-complete problem, we consider a relevant trade-
o� between complexity and performance: the Turbo-
equalizer, �rst proposed in [4] and studied in [7]. Our
goal is to analyze the evolution of the e�ective error
variance through the iterative processing involved in
the Turbo-equalizer, following the approach described
in [1]. This may allow prediction of the performance of
the Turbo-equalizer, without a need to run the iterative
processing.

2. TURBO-EQUALIZER

Consider the transmitter described in Figure 1. The
discrete channel is characterized by its impulse response
hn. The samples of the received signal can be written
as rn = h?dn+wn, where ? stands for the convolution
and wn is a white gaussian noise.
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Figure 1: Transmitter.

The Turbo-Equalizer is implemented in a modular
pipelined structure with P identical iterations. With
reference to Figure 2, each module consists of the con-
catenation of a Soft Input/Soft Output equalizer, a soft
de-mapper (symbol to bit), a deinterleaver, aMaximum
a posteriori (MAP) decoder, an interleaver and a soft
re-mapper (bit to symbol). The output of iteration p

together with the channel output is input to iteration
p+1. Decoding is carried out by using the MAP algo-
rithm [2]. After deinterleaving, an estimate dpn of the
conditional mean value of the symbols dn is calculated
as in [4]. In the case of binary modulation (BPSK):
dpn = P(cm = 1 j y)�P(cm = 0 j y).
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Figure 2: Module p of the Turbo-equalizer.

As shown in Figure 3, the equalizer used here is
the Interference Canceler (IC) proposed in [4]. It con-
sists of two �lters P (z) and Q(z) and is fed by both
the channel output, rn and the output of the previ-
ous module, dp�1n . Note that the equalizer of the very
�rst iteration is a Decision Feedback Equalizer (DFE)
that just processes the output of the channel, since d0n
does not exist. Minimization of the mean square error
MSE = E[j yn�dn j

2] over the coeÆcients of the �lters
P and Q under the constraint q0 = 0, when Q is fed by
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Figure 3: Equalizer in the module p > 1.

the dn, yields the �lters in the form [4]:
P (z) = �H�(z�1�), Q(z) = �(H(z)H�(z�1�)� 
h(0))

where H(z) =
P

i hiz
�i, H�(z�1�) =

P
i h

�

i z
i,


h(0) =
P

i jhij
2 and � =

�2d
�2
d

h(0)+�2w

.
� stands for conjugation whereas �2d and �2w stand re-
spectively for the transmitted symbol power and ther-
mal noise power. P is the �lter matched to the channel
H and Q + �
h(0) its autocorrelation. Q is used to
remove the ISI caused by previous and future detected
symbols. We have shown earlier [7] that it results in
complete elimination of ISI, provided that the previous
and future decisions are correct.

3. CONVERGENCE ANALYSIS

Note that the Turbo-equalizer presented above gives an
estimate of the transmitted symbol dn in two places:
the equalizer output yn and decoder output dpn. Let us
now split the Turbo-equalizer in two blocks and write
the input and output of each block explicitly as esti-
mates of dn. This leads to the scheme shown in Figure
2. The errors "n and �n contain both remaining ISI and
noise respectively at the input and output of the equal-
izer. For tractable analysis, we follow the approach de-
scribed in [1] and represent the Turbo iteration as the
evolution of error variances on dn.

3.1. Model and principle

The Turbo-equalizer is fed by the output of the channel:
rn = h ? dn + wn;

with normalized thermal noise variance �2w;N =
�2w


h(0)�2d
:

The estimates of dn are either:
dp�1n = �dn + "n;

with e�ective normalized error variance �2";N =
�2"
�2�2

d

; or

yn = �dn + �n;

with e�ective normalized error variance �2�;N =
�2�

�2�2
d

;

where N stands for normalized.

Considering input variances �2w;N and �2";N to the

IC block, we compute the output error variance �2�;N .
Under the assumptions that � = 1 and that wn and "n
are independent,

�2�;N = g�2
w;N

�
�2";N

�
= �2w;N +

�h

h(0)2

�2";N ;

where �h is obtained from the autocorrelation of the
autocorrelation 
h(n) of the channel hn where the cen-
tral term is suppressed:

�h

h(0)2

=
1


h(0)2

 X
n


h(n)
h(�n)
�

!
� 1; (1)

which is a measure of the channel dispersion. Note
that the larger the slope of g�2

w;N
is, the larger the

output variance is and the tougher the channel is. So
we can de�ne a \tough" channel, when processed by
the Turbo-equalizer, as a channel with large �h


h(0)2
.

The decoder updates the error variance �2";N via the
function f :

�2";N = f
�
�2�;N

�
:

f may be obtained through simulation, or bounded.
Analytical characterization of f is diÆcult and we fo-
cus on understanding the Turbo iteration, given f via
simulation over the AWGN channel.

We can now test the Turbo-equalizer convergence
by plotting the output variance of the decoder �2";N
versus the input variance �2�;N (that is to say f) and

the input variance of the equalizer (IC) �2";N versus the

output variance �2�;N for a given thermal noise vari-

ance �2w;N (that is to say g�1
�2
w;N

). One Turbo iteration

corresponds to the recurrence:

�
2 p+1
";N = f

�
�
2 p+1
�;N

�
= f Æ g�2

w;N

�
�
2 p
";N

�
:

Fixed points of f Æ g�2
w;N

and their stability represent

the asymptotic convergence points of the processing.
Given a �xed point x, the condition for stability is:�����f Æ g�2w;N�0 (x)

���� < 1;

which depends indeed on �2w;N .
Note that, when convergence of the Turbo-equalizer

is achieved and under gaussian assumption of the dif-
ferent errors, the variance output of the decoder of the
�xed point can be easily related to the performance in
terms of Bit error rate. So, this allows to predict the
�nal performance of the Turbo-equalizer. We are now
interested in the analysis of the performance.

3.2. \Easy" channels

Let us consider \easy" channels, i.e. channels with
small dispersion coeÆcient (1), for instance Porat and
Friedlander's channel [5] with dispersion 0:73 in Fig-
ure 4. It also corresponds to a channel with the same
minimal distance as the AWGN one. We use here a
64-state recursive systematic code [133,171].
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Figure 4: Iterative process of the Turbo-equalizer (Po-
rat and Friedlander's channel). Starting the �rst iter-
ation at the arrow setting.

In practice, we have observed the existence of a sta-
ble �xed point for these \easy" channels. Moreover
simulations show that the Turbo-equalizer tends to the
performance of the coded sequence transmitted over
AWGN channel at high SNR but not at low SNR [7].
This can be easily explained with the convergence anal-
ysis (see Figure 5). Given a noise variance �2w;N , the
decoder gives an output error variance plotted by +.
As for the Turbo-equalizer, it tends to the �xed point
�, which leads to an extra variance � for the Turbo-
equalizer at high �2w .
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Figure 5: Convergence analysis.

3.3. \Tough" channels

In this section, we consider \tough" channels (Proakis
B and C [6, page 616]) such as the coeÆcient (1) of
which is respectively 0:94 and 2:06. It also corresponds
to channels with smaller minimal distance than the
AWGN one. For these channels, the characteristic of
the decoder during the Turbo simulation di�ers from
the function f simulated above for an AWGN channel.
In spite of this mis-matched decoding, �2";N may be
further used to predict the performance of the Turbo-
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Figure 6: Accuracy of the penalized curve of the de-
coder and the simulated ones.

equalizer (without carrying out the simulation). We
propose to penalize the input variance of the decoder,
�2�;N , with the ratio between the minimal distances of
the dispersive and of the AWGN channel, which de�nes
the channel loss, a:

�2";N = f

 
�2�;N

d2min dispersive channel

d2min AWGN channel| {z }
a

!
; where a � 1:

The accuracy of the prediction depends on how the pe-
nalized function matches the simulated ones (see Fig-
ure 6).
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Figure 7: Simulated performance of the Turbo-
equalizer: trigger point at 6 dB with MAP equalizer
at the 1st iteration.

We have shown earlier ([7] and Figure 7) that there
is a trigger point in the iterative process, followed by
a breakdown e�ect. After the trigger point, the BER
decreases steeply as a function of the decoding step p.
As we run the iterative process and plot the results in
terms of error variances, we observe that the trigger
point corresponds to the limit of convergence to a �xed
point. In the following, we use our analysis in order to
predict this trigger point.



The analysis for the Proakis B channel shows that
there is a limit of the stability of the �xed point that
may be related to the trigger point (1.5 to 2 dB for
simulation to be compared with 3 dB for analysis, see
Figure 8.a). Also shown is the prediction of the trig-
ger point for channel Proakis C. For this channel, note
that the �xed point does not always exist, depending
on �2w;N . The limit of existence of this �xed point oc-
curs at 6.5 dB as is shown in Figure 8.b and matches
reasonably well with the trigger point (6 to 10 dB for
simulation, depending on the equalizer of the �rst it-
eration). Note that when the �xed point doesn't exist,
the slope of f Æ g�2

w;N
is greater than 1 and the output

variance after one iteration is greater than the input
variance. So, before the trigger point, BER increases
as a function of the decoding step p as is shown in
Figure 7.
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a. Proakis B: stability of the �xed point.
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Figure 8: Prediction of the trigger point.

4. CONCLUSION

We analyzed the error variances and the evolution of
these variances through the Turbo-equalizer, obtain-
ing a convergence analysis. Because of mis-matched

decoding during the iterative process, we had to pe-
nalize the decoder with the ratio between the minimal
distances of the dispersive and of the AWGN channel.
This allowed us to predict the trigger point observed in
Turbo-equalizer's performance without having to run
the complete simulation. Depending on the channel,
the prediction is based on either the limit of existence
of the �xed point or the limit of stability of this point
(if the �xed point exists). Based on this analysis, we
propose a de�nition of a \tough" channel, when pro-
cessed by the Turbo-equalizer.

The analysis of the Turbo-equalizer, we just pro-
posed, is complete when the distribution of the esti-
mates of the transmitted symbol dn (given dn) is a
white gaussian one. In the tough cases, we observed
on simulation that the noise at the output of the IC is
white but not gaussian (using the D'Agostino's test [3]
based on third and fourth order statistics). This may
explain why the decoder's performance is reduced.

5. REFERENCES

[1] P.D. Alexander, A.J. Grant, \Iterative channel
and information sequence estimation in CDMA,"
ISSSTA'00, New Jersey, USA, Sept. 2000.

[2] L.R. Bahl, et al. \Optimal decoding of linear codes
for minimizing symbol error rate," IEEE Trans.
Inf. Th., pp. 284-287, March 1974.

[3] R.B. D'Agostino, et al. \Test for departures from
normality. Empirical results for the distributions of
b2 and

p
(b1)," Biometrika, pp. 613-622, 1973.

[4] A. Glavieux, et al. \Turbo-equalization over a fre-
quency selective channel," Int. Symp. on Turbo-
codes, Brest, France, pp. 96-102, 1997.

[5] B. Porat, B. Friedlander, \Blind equalization of
digital communications channels using high order
moments," IEEE Trans. of Sig. Proc., pp. 522-526,
Feb. 1991.

[6] J.G. Proakis, Digital Communications (3rd edi-
tion), McGraw-Hill, 1995.

[7] A. Roumy, I. Fijalkow, D. Pirez, \Joint equalization
and decoding: why choose the iterative solution?,"
IEEE VTC, pp. 2989-2993, Amsterdam, Sept. 1999.


