TURBO-EQUALIZATION: CONVERGENCE ANALYSIS
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ABSTRACT

We investigate a sub-optimal iterative receiver for joint
equalization and decoding called Turbo-equalizer. We
view the evolution of the error variance of the trans-
mitted symbols through the iterative processing, ob-
taining convergence analysis. This allows us to predict
the asymptotic performance (when the Turbo-equalizer
has converged) but also the trigger point observed in
its performance.

1. INTRODUCTION

In high rate communication, where the transmitted
signal is subject to intersymbol interference (ISI), we
may use equalization to reduce the effect of ISI and
channel coding to correct remaining errors. A con-
ventional equalizer does not make use of the redun-
dancy introduced by the channel coding. Equaliza-
tion and decoding are disjoint which is not optimal
in the sense of the minimization of the error proba-
bility. Since optimal joint equalization and decoding is
an NP-complete problem, we consider a relevant trade-
off between complexity and performance: the Turbo-
equalizer, first proposed in [4] and studied in [7]. Our
goal is to analyze the evolution of the effective error
variance through the iterative processing involved in
the Turbo-equalizer, following the approach described
in [1]. This may allow prediction of the performance of
the Turbo-equalizer, without a need to run the iterative
processing.

2. TURBO-EQUALIZER

Consider the transmitter described in Figure 1. The
discrete channel is characterized by its impulse response
hy. The samples of the received signal can be written
as r, = hxd, +w,, where x stands for the convolution
and w,, is a white gaussian noise.
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Figure 1: Transmitter.

The Turbo-Equalizer is implemented in a modular
pipelined structure with P identical iterations. With
reference to Figure 2, each module consists of the con-
catenation of a Soft Input/Soft Output equalizer, a soft
de-mapper (symbol to bit), a deinterleaver, a Mazimum
a posteriori (MAP) decoder, an interleaver and a soft
re-mapper (bit to symbol). The output of iteration p
together with the channel output is input to iteration
p+ 1. Decoding is carried out by using the MAP algo-
rithm [2]. After deinterleaving, an estimate d2 of the
conditional mean value of the symbols d,, is calculated
as in [4]. In the case of binary modulation (BPSK):
A =Plem=1]y) —Plem =0]y).

r,=hxd, +w,

—1 _
di; - (dn +én equalizer

Yn = Bdu + En

@ Ll rerleaver ! MAP
| compufation | Mmterleaver T o ger

— deinterleaver —

Figure 2: Module p of the Turbo-equalizer.

As shown in Figure 3, the equalizer used here is
the Interference Canceler (IC) proposed in [4]. It con-
sists of two filters P(z) and Q(z) and is fed by both
the channel output, r, and the output of the previ-
ous module, d2~!. Note that the equalizer of the very
first iteration is a Decision Feedback Equalizer (DFE)
that just processes the output of the channel, since d°,
does not exist. Minimization of the mean square error
MSE = E[| y» —dy, |?] over the coefficients of the filters
P and @ under the constraint gy = 0, when @ is fed by
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Figure 3: Equalizer in the module p > 1.

the d,,, yields the filters in the form [4]:
P(z) = aH* (2 "), Q(2) = a(H(2)H* (2™ ) = (0))
where H(z) = >, hiz™%, H*(z7'*) = Y, h} 2,
Y,(0) =3, |hi|? and a = i

o3 (0)+o2 °

stands for conjugation whereas o2 and o2 stand re-
spectively for the transmitted symbol power and ther-
mal noise power. P is the filter matched to the channel
H and @ + av,(0) its autocorrelation. @ is used to
remove the ISI caused by previous and future detected
symbols. We have shown earlier [7] that it results in
complete elimination of ISI, provided that the previous
and future decisions are correct.

*

3. CONVERGENCE ANALYSIS

Note that the Turbo-equalizer presented above gives an
estimate of the transmitted symbol d,, in two places:
the equalizer output y,, and decoder output df. Let us
now split the Turbo-equalizer in two blocks and write
the input and output of each block explicitly as esti-
mates of d,,. This leads to the scheme shown in Figure
2. The errors €,, and &, contain both remaining IST and
noise respectively at the input and output of the equal-
izer. For tractable analysis, we follow the approach de-
scribed in [1] and represent the Turbo iteration as the
evolution of error variances on d,,.

3.1. Model and principle

The Turbo-equalizer is fed by the output of the channel:

rn = hxd, + wy,,

0_2

with normalized thermal noise variance 012”7 N = el
The estimates of d,, are either:
a1 = Cdp + n, 2
with effective normalized error variance o2 y = C;’;g , OT
Yn = Bdp + &n, )
with effective normalized error variance 02 N = B‘;—gi,

where n stands for normalized.

Considering input variances o7, y and o2 y to the
IC block, we compute the output error variance ag’ N-
Under the assumptions that ( = 1 and that w,, and ¢,
are independent,

r
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where I';, is obtained from the autocorrelation of the
autocorrelation v, (n) of the channel h,, where the cen-
tral term is suppressed:

% - ﬁ (Z ’Yh(n)’Yh(—n)*> -1, (1)

which is a measure of the channel dispersion. Note
that the larger the slope of g,2 is, the larger the
output variance is and the toughér the channel is. So
we can define a “tough” channel, when processed by
the Turbo-equalizer, as a channel with large %.

The decoder updates the error variance o2 5 via the
function f:

U?,N =f (Ug,N) .
f may be obtained through simulation, or bounded.
Analytical characterization of f is difficult and we fo-
cus on understanding the Turbo iteration, given f via
simulation over the AWGN channel.

We can now test the Turbo-equalizer convergence
by plotting the output variance of the decoder 057 N
versus the input variance ag’ N (that is to say f) and
the input variance of the equalizer (IC) o2 5 versus the
output variance 0’2’ n for a given thermal noise vari-
ance oy, y (that is to say 9 N). One Turbo iteration

corresponds to the recurrence:
2p+1 _ 2p+1) _ 2p
OeN = (%N ) =fog: (“s,N)'

Fixed points of f o g 2 N and their stability represent

the asymptotic convergence points of the processing.
Given a fixed point z, the condition for stability is:

<1,

(roaz,) @

which depends indeed on o7, .

Note that, when convergence of the Turbo-equalizer
is achieved and under gaussian assumption of the dif-
ferent errors, the variance output of the decoder of the
fixed point can be easily related to the performance in
terms of Bit error rate. So, this allows to predict the
final performance of the Turbo-equalizer. We are now
interested in the analysis of the performance.

3.2. “Easy” channels

Let us consider “easy” channels, i.e. channels with
small dispersion coefficient (1), for instance Porat and
Friedlander’s channel [5] with dispersion 0.73 in Fig-
ure 4. It also corresponds to a channel with the same
minimal distance as the AWGN one. We use here a
64-state recursive systematic code [133,171].
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Figure 4: Tterative process of the Turbo-equalizer (Po-
rat and Friedlander’s channel). Starting the first iter-
ation at the arrow setting.

In practice, we have observed the existence of a sta-
ble fixed point for these “easy” channels. Moreover
simulations show that the Turbo-equalizer tends to the
performance of the coded sequence transmitted over
AWGN channel at high SNR but not at low SNR [7].
This can be easily explained with the convergence anal-
ysis (see Figure 5). Given a noise variance oy, v, the
decoder gives an output error variance plotted by +.
As for the Turbo-equalizer, it tends to the fixed point
x, which leads to an extra variance A for the Turbo-
equalizer at high o2
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Figure 5: Convergence analysis.

3.3. “Tough” channels

In this section, we consider “tough” channels (Proakis
B and C [6, page 616]) such as the coefficient (1) of
which is respectively 0.94 and 2.06. It also corresponds
to channels with smaller minimal distance than the
AWGN one. For these channels, the characteristic of
the decoder during the Turbo simulation differs from
the function f simulated above for an AWGN channel.
In spite of this mis-matched decoding, aiN may be
further used to predict the performance of the Turbo-
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Figure 6: Accuracy of the penalized curve of the de-
coder and the simulated ones.

equalizer (without carrying out the simulation). We
propose to penalize the input variance of the decoder,
02 ~» with the ratio between the minimal distances of
the dispersive and of the AWGN channel, which defines
the channel loss, a:

d2. .
d h 1
Ug,N _ f(o'g,N ;m ispersive channe . where a < 1.

2
min AWGN channel P

~

a

The accuracy of the prediction depends on how the pe-
nalized function matches the simulated ones (see Fig-
ure 6).
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Figure 7: Simulated performance of the Turbo-

equalizer: trigger point at 6 dB with MAP equalizer
at the 1% iteration.

We have shown earlier ([7] and Figure 7) that there
is a trigger point in the iterative process, followed by
a breakdown effect. After the trigger point, the BER
decreases steeply as a function of the decoding step p.
As we run the iterative process and plot the results in
terms of error variances, we observe that the trigger
point corresponds to the limit of convergence to a fixed
point. In the following, we use our analysis in order to
predict this trigger point.



The analysis for the Proakis B channel shows that
there is a limit of the stability of the fixed point that
may be related to the trigger point (1.5 to 2 dB for
simulation to be compared with 3 dB for analysis, see
Figure 8.a). Also shown is the prediction of the trig-
ger point for channel Proakis C. For this channel, note
that the fixed point does not always exist, depending
on o7, n- The limit of existence of this fixed point oc-
curs at 6.5 dB as is shown in Figure 8.b and matches
reasonably well with the trigger point (6 to 10 dB for
simulation, depending on the equalizer of the first it-
eration). Note that when the fixed point doesn’t exist,
the slope of f o 9go2 . is greater than 1 and the output
variance after one iteration is greater than the input
variance. So, before the trigger point, BER increases
as a function of the decoding step p as is shown in
Figure 7.
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a. Proakis B: stability of the fixed point.
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Figure 8: Prediction of the trigger point.

4. CONCLUSION

We analyzed the error variances and the evolution of
these variances through the Turbo-equalizer, obtain-
ing a convergence analysis. Because of mis-matched

decoding during the iterative process, we had to pe-
nalize the decoder with the ratio between the minimal
distances of the dispersive and of the AWGN channel.
This allowed us to predict the trigger point observed in
Turbo-equalizer’s performance without having to run
the complete simulation. Depending on the channel,
the prediction is based on either the limit of existence
of the fixed point or the limit of stability of this point
(if the fixed point exists). Based on this analysis, we
propose a definition of a “tough” channel, when pro-
cessed by the Turbo-equalizer.

The analysis of the Turbo-equalizer, we just pro-
posed, is complete when the distribution of the esti-
mates of the transmitted symbol d, (given d,) is a
white gaussian one. In the tough cases, we observed
on simulation that the noise at the output of the IC is
white but not gaussian (using the D’Agostino’s test [3]
based on third and fourth order statistics). This may
explain why the decoder’s performance is reduced.
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