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ABSTRACT

A subbanddecompositionbasedlosslessimagecompres-
sionalgorithmbasedon adaptive is described.Thedecom-
positionis achieved by a two-channeladaptive filter bank.
The resultingcoefficients are lossy codedfirst, and th en
the residualerror betweenthe lossy and error free coeffi-
cientsarecompressed.Thelocationsandthemagnitudesof
the nonzerocoefficientsareencodedseparatelyby a hier-
archicalenumerative codingmethod. The locationsof the
nonzerocoefficients in children bandsare predictedfrom
thosein the parentband. Theproposedcompressionalgo-
rithm, on the average,provideshighercompressionratios
thanthestate-of-the-artmethods.

1. INTRODUCTION

Losslesscompressionof imagesis requiredin many prac-
tical applicationsincluding medicalandspaceimagingfor
archivingor transmission.Early losslessimagecodersin-
cluding the JPEGlosslessmodearebasedon the DPCM.
Wu andMemonimprovedDPCM schemesby usingadap-
tivepredictionandcontext modelingin CALIC [13]. In [9],
anefficientprogressive losslesscompressionis achievedby
introducingS+Ptransform,asubbanddecompositionscheme,
andanembeddedentropy coding.In [1, 2], Perfect
ReconstructionFilter Banks(PRFB)employingadaptiveLMS
filters areintroducedfor subbanddecomposition,andthey
areusedfor lossyimagecompressionin [2, 5]. In this pa-
per, we usetheadaptivePRFBstructurein a losslessimage
compressionalgorithmandproposeto codethesubbandco-
efficientsby an extensionof the methoddevelopedin [4]
which exploits themultiresolutionstructureof thesubband
decomposition/wavelettransform.

2. LMS ADAPTIVE PREDICTION FILTER BANKS

The conceptof the adaptive filterbanksare introducedin
[6, 7, 8]. Classicaladaptive predictionconceptsarecom-
binedwith thePRFBin [1, 2] wherethekey ideais to decor-
relatethepolyphasecomponentsof themultichannelstruc-
tureby usinganadaptive predictor � asshown in Figure3.
Adaptationof the predictorcoefficientsarecarriedout by
the LeastMeanSquare(LMS) algorithm,andthis helpsto
copewith unstationarybehavior of theinputdata.In Figure
3, ���	��

� is thedownsampledversionof theoriginal signal,
����

� , thus it consistsof the even samplesof ����

� . Simi-
larly, thesignal ������

� consistsof theoddsamples.An LMS
basedFIR predictorof ������

� from ������

� canbeexpressed
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� is givenby
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The subbanddecompositionstructureshown in Figure 3
compactsthe most of the energy in the lowest resolution
band,andtheresultingsubsignalsareexpectedto bedecor-
related. A weaknessof the structureshown in Figure3 is
that the subsignal���	��

� may suffer from aliasingdue to
downsampling. Aliasing affects the quality of prediction
especiallywhenfurtherdecompositionsover ������

� arecar-
ried out. In orderto eliminatethis problemananti-aliasing
filtering stageis introducedin [2],where����

� is lowpassfil-
teredby ahalfbandfilter of theform
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which are widely usedin classicalPR filter bank design
[12]. With theuseof theso-called“noble identity” [12], the
lowpassfiltering operationcan be carriedout after down-
samplingasshown in Figure2.For example,if
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In thefilterbankstructureof Figure2, thesubsignal������

� is
adaptively predictedusing � > ��

� which is a smoothedver-
sion of ���	��

� .Theabove adaptive PRFBstructuresareex-
tendedto two dimensionsin a separablemanner.

3. APPLICATION TO LOSSLESS IMAGE
COMPRESSION

The decompositionstructurein Figure 2 is usedfor loss-
lessimagecompressionasfollows: input imageis decom-
posedinto multiresolutionbandsby consecutive row-wise
andcolumn-wiseoperations.In orderto obtainintegerval-
uedcoefficients,both thepredictoroutputandthe low res-
olution coefficients � > , are roundedto the nearestinteger
at eachstage. This roundingoperationmakes the perfect
reconstructionof P��Q�)R impossible.It is experimentalyob-
servedthattransmittingtheerrorbetweenP��Q�)R and PTS���UR is
generallycostly. To overcomethisproblem,weapplyquan-
tizationto P�� > R andtransmitthequantizedcoefficientsfirst.
ThedecoderreconstructsP

�
�Q�)R by using VW��P�� > R�� ,where V

denotesquantization.Then,we transmitthe residualerror
betweenP��Q�)R and P

�
���UR .

Both the subbanddecompositioncoefficients and the
residualerrorexhibit amultiresolutionstructureandenergy
compactionsimilar to thequantizedwaveletcoefficientsof
animage.Thus,any methoddesignedfor efficiently encod-
ing the quantizedwavelet coefficientsof an imagecanbe
employed in encodingthe subbanddecompositioncoeffi-
cientsandtheresidualerror. Themethodweuseis adopted
from theencodingmethodproposedin [4]. Boththedecom-
position coefficients and the residualerror are organized
into subbands,andthesubbandsareencodedin order, start-
ing from thelowestresolutionsubbands.Encodingof each
subbandproceedsas follows (The items of the subbands,
either decompositioncoefficient or residualerror, will be
referredto as’coefficient’ in thefollowing description):
X The2-D subbandis adaptively scannedinto two 1-D

arrays,one for the coefficients that are likely to be
nonzero,andonefor therest. This ideawasadopted
from [11] in [4]. The adaptive scanningalgorithm
is reversible,sothedecoderis ableto reconstructthe
subbandafterdecodingthetwo 1-D arrays.Thescan-
ning algorithmof [4] usesthemagnitudesof thepar-
ent subbandcoefficients as well as recursive region

growing to determinethe scanningorder. The co-
efficients which are more likely to be nonzeroare
scannedearlier.

X The magnitudesof the resulting1-D arrayscan be
modelledasmore-or-lesslocallystationarysequences,
and thus the bitplanesof the coefficient magnitudes
as locally stationarybinary sequences.Hierearchi-
cal Enumerative Coding(HENUC) [3] is an entropy
codingalgorithmwhich hasbeenshown to compress
locally stationarybinarysequencesefficiently, andit
is simpler thanarithmeticcoding. So, the bitplanes
of thetwo 1-D arraysareentropy codedby HENUC.
In [4], HENUC wasproposedfor encodingthe sig-
nificancemaps(i.e. zero/nonzeroinformation)only;
whereaswe use it for encodingthe magnitudesas
well.

X For eachnonzerocoefficient, the associatedsign in-
formation must be sent as well. The signs of the
nonzerocoefficientsaresentuncompressed.

Hence,both arecodedby using the methodin [4], which
wasdevelopedfor lossycodingof thewavelettransformco-
efficients. Themethodof [4] is animprovedversionof the
schemein [11]. Its two most importantfeaturesarescan-
ningthecoefficientsof abandby magnitudepreference,and
employmentof hierarchicalenumerative coding[3] instead
of arithmeticcoding.

4. EXPERIMENTAL RESULTS

We usedsix
J 5 B'Y�J 5 B imagesand two

B�J�Z[Y�B�J�Z
im-

ages,HouseandCameraman, for testingouralgorithm.The
prediction neighborhoodof a pixel is depictedin Figure
1. We checkthe variancesof left diagonalneighborhood
P�\T5��]\ B �]\N^;R , right diagonalneighborhoodP	\;_F��\ J ��\ Z R , and
horizontalneighborhoodP�`�5��a` B �U`b^N�U`F_FR of thepixel to be
predicted(shadedin Figure1), andusethe onewith min-
imum varianceif its variancedoesnot exceeda threshold.
Otherwise,weusetheneighborhoodP	\ B �]
�5c��\ J �U`b^N�a`d_d�]\ Z R .
Note that the neighborhoodis still causalalthough
�5 and
` B arepixels from ��� . Thebitrateresultsin Table1 show
thattheproposedalgorithm,on theaverage,achievesbetter
performancethanlosslessJPEG[10], S+P[9], andCALIC
[13] codecs.

5. CONCLUSIONS

A losslessimagecompressionalgorithm using multireso-
lution decompositionby LMS adaptive PRFBis proposed.
Thealgorithmprimarily transmitslossycoefficientsandthen
transmitsthe residualerror. The locationsof the nonzero
coefficients in children bandsare predictedfrom thosein



the parentbandthroughmorphologicaldilation. Both the
locationandthe magnitudeinformationareentropy coded
by hierarchicalenumerativecoding.Theproposedcompres-
sionalgorithm,on theaverage,achievesbetterbit rateeffi-
ciency thanthatof thestate-of-the-artlosslesscodecs,while
proposingprogressive transmission.
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Fig. 2. Filter bankstructurewith anantialiasingfilter.
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Fig.2. Adaptive −lter bankstructurewith an antialiasing−lter.

Fig. 3. Analysisandsynthesisstagesof the
B
-channeladaptivefilter bankstructure.
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