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ABSTRACT

A subbanddecompositiorbasedlosslessimage compres-
sionalgorithmbasedon adaptve is described . The decom-
positionis achieved by a two-channeladaptve filter bank.
The resulting coeficients are lossy codedfirst, andth en
the residualerror betweenthe lossy and error free coefi-
cientsarecompressedThelocationsandthe magnitude®f
the nonzerocoeficients are encodedseparatelyby a hier
archicalenumeratie codingmethod. The locationsof the
nonzerocoeficientsin children bandsare predictedfrom
thosein the parentband. The proposeccompressioralgo-
rithm, on the average,provides higher compressiorratios
thanthe state-of-the-annethods.

1. INTRODUCTION

Losslesscompressiorof imagesis requiredin mary prac-
tical applicationsncluding medicaland spacemagingfor
archiingor transmission. Early losslessmage codersin-
cluding the JPEGIlosslessmodeare basedon the DPCM.
Wu andMemonimproved DPCM schemedy usingadap-
tive predictionandcontext modelingin CALIC [13]. In[9],
anefficient progressie losslessompressiofis achieved by
introducingS+Ptransformasubbandlecompositioscheme,
andanembeddeentrofy coding.In [1, 2], Perfect
Reconstructiorfrilter Banks(PRFB)employing adaptve LMS
filters areintroducedfor subbanddecompositionandthey
areusedfor lossyimagecompressiorin [2, 5]. In this pa-
per, we usethe adaptve PRFBstructurein alosslessmage
compressiomlgorithmandproposedo codethesubbanao-
efficients by an extensionof the methoddevelopedin [4]
which exploits the multiresolutionstructureof the subband
decomposition/avelettransform.

2. LMSADAPTIVE PREDICTION FILTER BANKS

The conceptof the adaptve filterbanksare introducedin
[6, 7, 8]. Classicaladaptve predictionconceptsare com-
binedwith thePRFBIn [1, 2] wherethekey ideais to decor
relatethe polyphasecomponent®f the multichannelstruc-
tureby usinganadaptve predictorP asshavn in Figure3.
Adaptationof the predictorcoeficients are carriedout by
the LeastMeanSquare(LMS) algorithm,andthis helpsto
copewith unstationanpehaior of theinputdata.In Figure
3, z1(n) is thedownsampledrersionof the original signal,
z(n), thusit consistsof the even samplesof z(n). Simi-
larly, thesignalz,(n) consistof theoddsamplesAn LMS
basedFIR predictorof z,(n) from z;(n) canbe expressed
as

&(n) = w(n)xi (n), @)
wherex; (n) = [z1(n — N),...,z1(n + M)]T is the ob-
senationvector andw(n) is the vectorof predictorcoefi-
cientswhichis adaptedy theequation

x1(n)e(n)

w(n+1) :W(”)‘i‘um, (2)
wheretheerrorsignale(n) is givenby
e(n) = z2(n) — £2(n). 3)

The subbanddecompositionstructureshovn in Figure 3
compactsthe most of the enegy in the lowest resolution
band,andtheresultingsubsignal@reexpectedo bedecor
related. A weaknes®f the structureshown in Figure 3 is
that the subsignalz; (n) may suffer from aliasingdue to
downsampling. Aliasing affects the quality of prediction
especiallywhenfurtherdecompositionsver z; (n) arecar
ried out. In orderto eliminatethis problemananti-aliasing
filtering stageis introducedn [2],wherez(n) is lowpasdil-
teredby a halfbandfilter of theform

Hi(z) = 5[+ 2 A (4)



which are widely usedin classicalPR filter bank design
[12]. With theuseof theso-called'nobleidentity” [12], the
lowpassfiltering operationcan be carriedout after down-
samplingasshownn in Figure2.For example,if

Hy(2) = 0.252 + 0.5 4 0.252 1,
thenthe polynomial,
A(z) = (142712

In thefilterbankstructureof Figure2, thesubsignal:, (n) is
adaptvely predictedusingz;(n) which is a smoothedver
sionof z;(n).The above adaptve PRFB structuresare ex-
tendedo two dimensionsn a separablenanner

3. APPLICATION TO LOSSLESSIMAGE
COMPRESSION

The decompositiorstructurein Figure 2 is usedfor loss-
lessimagecompressiorasfollows: inputimageis decom-
posedinto multiresolutionbandsby consecutie row-wise
andcolumn-wiseoperationsIn orderto obtainintegerval-

uedcoeficients,both the predictoroutputandthe low res-
olution coeficients x;, are roundedto the nearestinteger
at eachstage. This roundingoperationmales the perfect
reconstructiorof {x; } impossible.lt is experimentalyob-
senedthattransmittingthe errorbetween{x; } and{%, } is

generallycostly To overcomethis problem we applyquan-
tizationto {x; } andtransmitthe quantizeccoeficientsfirst.

The decodereconstruct{x; } by usingQ({x;}),whereQ

denotegquantization. Then, we transmitthe residualerror
between{x; } and{x;}.

Both the subbanddecompositioncoeficients and the
residualerrorexhibit amultiresolutionstructureandenegy
compactionsimilar to the quantizedwvavelet coeficientsof
animage.Thus,ary methoddesignedor efficiently encod-
ing the quantizedwavelet coeficients of animagecanbe
employed in encodingthe subbanddecompositioncoefi-
cientsandtheresidualerror The methodwe useis adopted
fromtheencodingnethodproposedn [4]. Boththedecom-
position coeficients and the residual error are organized
into subbandsandthe subbandsireencodedn order start-
ing from the lowestresolutionsubbandsEncodingof each
subbandproceedsas follows (The items of the subbands,
either decompositioncoeficient or residualerror, will be
referredto as’coefficient’ in thefollowing description):

e The2-D subbands adaptvely scannednto two 1-D
arrays,one for the coeficientsthat are likely to be
nonzeroandonefor therest. Thisideawasadopted
from [11] in [4]. The adaptve scanningalgorithm
is reversible,sothe decodeiis ableto reconstructhe
subbanafterdecodinghetwo 1-D arrays.Thescan-
ning algorithmof [4] usesthe magnitude®f the par
ent subbandcoeficients aswell asrecursve region

growing to determinethe scanningorder The co-
efficients which are more likely to be nonzeroare
scanneckarlier

e The magnitudesof the resulting 1-D arrayscan be
modelledasmore-orlesslocally stationarysequences,
andthusthe bitplanesof the coeficient magnitudes
as locally stationarybinary sequences.Hierearchi-
cal Enumeratre Coding(HENUC) [3] is an entrofy
codingalgorithmwhich hasbeenshavn to compress
locally stationarybinary sequencesfficiently, andit
is simplerthan arithmeticcoding. So, the bitplanes
of thetwo 1-D arraysareentrofy codedby HENUC.
In [4], HENUC was proposedor encodingthe sig-
nificancemaps(i.e. zero/nonzeranformation)only;
whereaswe useit for encodingthe magnitudesas
well.

e For eachnonzerocoeficient, the associateaign in-
formation must be sentas well. The signs of the
nonzerocoeficientsaresentuncompressed.

Hence,both are codedby using the methodin [4], which
wasdevelopedfor lossycodingof thewavelettransformco-
efficients. The methodof [4] is animproved versionof the
scheman [11]. Its two mostimportantfeaturesare scan-
ningthecoeficientsof abandby magnitudepreferenceand
employmentof hierarchicalenumeratie coding[3] instead
of arithmeticcoding.

4. EXPERIMENTAL RESULTS

We usedsix 512 x 512 imagesandtwo 256 x 256 im-
agesHouseandCameaman for testingouralgorithm.The
prediction neighborhoodof a pixel is depictedin Figure
1. We checkthe variancesof left diagonalneighborhood
{d1, d2,d3}, rightdiagonaheighborhoodd4, d5, d6}, and
horizontalneighborhood k1, h2, h3, h4} of the pixel to be
predicted(shadedn Figure 1), and usethe onewith min-
imum varianceif its variancedoesnot exceeda threshold.
Otherwiseweusetheneighborhood d2, n1, d5, h3, h4, d6}.
Note thatthe neighborhoods still causalalthoughn1 and
h2 arepixelsfrom x,. The bitrateresultsin Table1 shov
thatthe proposedlgorithm,on the average achievesbetter
performancehanlosslessIPEG[10], S+P[9], andCALIC
[13] codecs.

5. CONCLUSIONS

A losslessmage compressioralgorithm using multireso-
lution decompositiorby LMS adaptve PRFBis proposed.
Thealgorithmprimarily transmitdossycoeficientsandthen
transmitsthe residualerror  The locationsof the nonzero
coeficientsin children bandsare predictedfrom thosein



the parentbandthroughmorphologicaldilation. Both the
locationandthe magnitudeinformationare entroy coded
by hierarchicaknumeratie coding.Theproposedompres-
sionalgorithm,on the average achievesbetterbit rate effi-
cieng thanthatof thestate-of-the-atosslessodecswhile
proposingprogressie transmission.
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Fig. 2. Filter bankstructurewith anantialiasindfilter.
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Fig. 3. Analysisandsynthesistage®of the 2-channeladaptve filter bankstructure.
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Fig2. Adaptive —lter bankstructurewith an artialiasing —lter.




