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In this paper, we study techniques that allow us to relax some
constraints imposed by expert knowledge in task specifications of
natural language call router design. We intend to fully automate
training of the routing matrix while still maintaining the same level
of performance (over 90% accuracy) as that in an optimized sys-
tem. Two specific issues are investigated: (1) reducing matrix size
by removing word pairs and triplets in key term definition while
using only single word terms; and (2) increasing matrix size by re-
moving the need for defining stop words and performing stop word
filtering. Since simplification of design often implies a degradation
of performance, discriminative training of routing matrix param-
eters becomes an essential procedure. We show in our experi-
ments that the performance degradation caused by relaxing design
constraints can be compensated entirely by minimum error classi-
fication (MCE) training even with the above two simplifications.
We believe the procedure is applicable to algorithms addressing
a broad range of speech understanding, topic identification, and
information retrieval problems.

1. INTRODUCTION
Touch-tone menus for routing callers are cumbersome to use when
there are many destinations because the callers have to listen to
all the choices and what they want to do may not even be obvi-
ously related to the given choices. Call routing based on spoken
utterances have been proposed as an alternative that is natural and
easier to use. However, callers may not know the name of the
department they need (e.g. “home equity loan department”) and
only know what they want to do (e.g. “good morning um i wanna
speak with someone about um a second mortgage loan do you all
do that”). A previous study [1] has shown that callers prefer to
specify the activity they need to accomplish rather than the name
of the department, by a factor of more than three to one.

In natural language call routing, callers are routed to desired
departments based on natural spoken responses to an open-ended
“How may I direct your call?” prompt. [4, 1] In designing a voice
response system to handle these calls, it is not sufficient to include
in the speech recognizer just the names of the departments in the
vocabulary or to use a finite state grammar, becausewhat the callers
may say cannot be fully anticipated. Instead, requests from real
callers have to be collected for training the system. Data-driven
techniques are therefore essential in the design of such systems.

In previous work [1], a vector-based information retrieval tech-
nique was introduced for performing call routing. A routing matrix
was trained based on statistics of occurrence of words and word
sequences in a training corpus after morphological and stop-word
filtering. New user requests were represented as feature vectors and
were routed based on the cosine similarity score with the model

destination vectors encoded in the routing matrix.
In this paper we propose several techniques to simplify the

training of the routing matrix in order to eliminate human expert
knowledge in training the router for new domains. We simplify
the features in order to reduce the number of parameters in the
model and compensate for the resulting loss in performance by
discriminative training [5]. In particular, we show that we are able
to get performance similar to the original optimized system of over
90% accuracy. Discriminative training reduces the error rate by
about 40%. Discriminative training increased the robustness of the
classifier such that with 10% rejection, there was a relative error rate
reduction of about 40%. The proposed formulation is applicable
to algorithms addressing a broad range of speech understanding,
topic identification, and information retrieval problems.

In the following sections, details of the proposed techniques
and results of experiments will be presented.

2. VECTOR-BASED NATURAL LANGUAGE CALL
ROUTING

In vector-based natural language call routing, call routing is treated
as an instance of document routing, where a collection of labeled
documents is used for training and the task is to judge the relevance
of a set of test documents. Each destination in the call center is
treated as a collection of documents (transcriptions of calls routed
to that destination), and a new caller request is evaluated in terms
of relevance to each destination. [6, 1, 2, 3]

The training process involves constructing a routing matrix R.
Each document (customer utterances within a caller session) is first
passed through morphological processing where the root forms of
words are extracted. A list of ignore words are eliminated and a
list of stop words are replaced with place holders. Then n-grams
are extracted, specifically unigrams, bigrams and trigrams. Only
unigrams that occur at least twice and bigrams and trigrams that
occur at least three times in the corpus are included. This leads to
a list of m terms (features).

The m � n term-document matrix is then constructed. The
rows represent the m terms and the columns the n destinations.
The routing matrixR is the transpose of the term-document matrix,
where rvw is the frequency with which term w occurs in calls to
destination v. Each term is weighted according to term frequency
inverse document frequency (TFIDF) and are also normalized to
unit length.

New user requests are represented as feature vectors and are
routed based on the cosine similarity score with the n model des-
tination vectors ~ri in the routing matrix R. Let ~x be the m-
dimensional observation vector representing the weighted terms
which have been extracted from the user’s utterance. One possi-



ble routing decision is to route to the destination with the highest
cosine similarity score:

destination ĵ = arg max
j

cos�j = arg max
j

~rj � ~x

k~rjkk~xk
: (1)

A classification error occurs when the score of the correct class
is less than the maximum score. Notice that according to the way
the routing matrix is constructed, there is no guarantee that the
classification error rate will be minimized. The routing matrix can
be improved by adjusting the models to achieve a minimum (at
least locally, and in the probabilistic sense) of classification error
rate, which is the subject of the next section.

3. MINIMUM CLASSIFICATION ERROR CRITERION
We had recently proposed using discriminative training to optimize
the minimum classification error criterion for natural language call
routing [5]. The same framework is used in this paper and is
sketched out below.

The n �m elements of the routing matrix are regarded as the
classifier parameters to be adjusted to achieve minimum classifi-
cation error by improving the separation of the correct class from
competing classes. The dot product of normalized query and desti-
nation vectors is used as the discriminant function. In the training
algorithm, the model destination vectors are normalized after each
adjustment step in order to maintain the equivalence between the
measures of dot product and cosine score used in computing the
classification error rate. Intuitively, this algorithm looks at each
training example and adjusts the model parameters of the correct
and competing classes in order to improve the scores of the correct
class relative to the other classes.

Specifically, let ~x be the observation vector and~rj be the model
document vector for destination j. We define the discriminant
function for class j and observation vector ~x to be the dot product
of the model vector and the observation vector:

gj(~x;R) = ~rj � ~x =
X
i

rjixi: (2)

Note that this function is identical to the cosine score if the two
vectors have been normalized to unit length.

Given that the correct target destination for ~x is k, we define
the misclassification function as

dk(~x; R) = �gk(~x;R) +Gk(~x;R); (3)

where

Gk(~x;R) =

"
1

K � 1

X
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gj(~x;R)
�

# 1
�

(4)

is the anti-discriminant function of the input ~x in class k and
K � 1 is the number of competing classes. Note that in the limit
as the positive parameter � ! 1, the anti-discriminant func-
tion is dominated by the biggest competing discriminant function:
Gk(~x;R) ! maxj 6=k gj(~x;R). Notice also that dk(~x;R) > 0
implies misclassification, i.e. the discriminant function for the
correct class is less than the anti-discriminant function.

A smooth differentiable 0-1 function such as the sigmoid func-
tion is chosen to be the class loss function:

lk(~x;R) = l(dk) =
1

1 + exp�
dk+�
; (5)

where 
 and � are constants which control the slope and the shift
of the sigmoid function, respectively.

The parameter set R is adjusted iteratively according to

Rt+1 = Rt + �Rt: (6)

where Rt is the parameter set at the t-th iteration. The correction
term �Rt is solved using the training sample ~xt given for that
iteration, whose true destination is k:

�Rt = ��trlk(~xt;Rt); (7)

where �t is the learning step size.
Once this essential framework for discriminative training has

been laid out,what is left is to work out the algebra for this particular
problem. Let rvw be elements of the routing matrix R. Then at
iteration step t,

rlk(~xt;Rt) =
@lk(~xt;Rt)

@Rt

=
@lk
@dk

@dk(~xt;Rt)

@rvw
: (8)

Note that for the lk we have chosen,

@lk
@dk

= 
lk(dk)(1� lk(dk)): (9)

From equations 2, 3, and 4, the following can be shown:

@dk(~xt; Rt)

@rvw
=

(
�xw if v = k
xwGk(~xt;R)(~rv �~xt)

��1P
j 6=k

(~rj �~xt)�
if v 6= k (10)

Therefore, given the observation vector ~xt at each iteration,
each element of the routing matrix is adjusted according to:

rvw(t+1) =

8<
:

rvw(t) + �t
@lk
@dk

xw if v = k

rvw(t)�
�t

@lk
@dk

xwGk(~xt;R)(~rv �~xt)
��1P

j 6=k
(~rj �~xt)�

if v 6= k

(11)

Equation 11 shows that the model vector for the correct class is
adjusted differently from those of the competing classes; notice in
particular the difference in sign of the adjustment. Intuitively, the
score of the correct class is improved relative to the scores of the
competitors by the incremental adjustments. The adjustment to the
wth component of each model vector is proportional to the learning
step size �t, the size of thewth component in the observation vector
~xt, and the slope of the sigmoid function @lk

@dk
. This slope is zero

for very large or small values of dk and positive in a certain region:
the decision boundary which depends on � and
. Only the training
data whose dk values fall within the decision boundary will affect
the model parameters significantly.

After each adjustment step, the affected models ~ri are normal-
ized to unit length in order that the discriminant function be identi-
cal to the cosine similarity score used in classification. The training
vectors are normalized once before the discriminative training.

4. EXPERIMENTAL SETUP
Experiments were performed using the training and test sets col-
lected for the USAA call routing task as reported in [1], consisting
of a total of about 4000 calls. The same set of training data was
used both to construct the initial routing matrix and for performing
discriminative training. Each training vector is composed of the
information provided by all the customer utterances within each



call session, including disambiguating follow-up utterances. Each
call session has been manually routed to a destination, representing
the ground truth of the correct class. There are a total of n = 23
destinations and m = 756 terms in the baseline system. In the
discriminative training, multiple passes are made through the en-
tire training set. Within each pass, the order in which each training
vector is processed is randomized. For testing, only the 307 unam-
biguous initial utterances were used from the unseen test set. The
baseline system as reported in [1] has a classification rate of 92.2%
or error rate of 7.82% for this same set of 307 test utterances.

5. PARAMETER SELECTION
We see from the above equations that a number of parameters for
GPD training have to be chosen. � controls the relative importance
among the competitors – a larger value emphasizes the strongest
competitors only. 
 and � controls the decision boundary through
modifying the shape and location of the sigmoid function. �t
controls the step size of the gradient descent. It is reduced gradually
in order to achieve stable convergence; specifically, the step size
is chosen to be a function like 1=t, but chosen so that it changes
only once every 25 passes. Note that K-1 is the total number of
competitors to the correct class. In practice, the discriminative
training can be focused on just the top M competitors instead of all
K� 1 classes. Another parameter is the number of passes through
the training set which can be expressed as a stopping criterion, for
example, when the change in the empirical loss function is less
than a certain threshold.

A different set of paramters was used in this paper than the
ones previously reported [5]. In the following results, we chose
the following parameter values: � = 20, 
 = 32:0, � = 0:0,
�t = 3 � 10�4 (initial), and M = 6. We found this setting
improves the baseline performance previously reported in [5].

6. RESULTS
We first begin by presenting the baseline results of the natural lan-
guage call router using 756 features, consisting of 62 trigrams, 274
bigrams, 420 unigrams. As shown in Table 1, the classification
error rate was 7.8% and with discriminative training could be re-
duced to 5.5%, representing a relative improvement of 29%. With
recognized strings from the speech recognizer (which has a word
error rate of about 30%), the improvement is less, only about 12%.

baseline after DT %change
human transcription 7.82% 5.54% 29%
ASR recognized strings 10.42% 9.12% 12%

Table 1: Classification error rate before and after discriminative
training using stop word filtering and 756 features, consisting of
62 trigrams, 274 bigrams, 420 unigrams.

What happens if we use less detailed features in the classifier?
As an example, the trigram and bigram features are excluded,
leaving only 420 unigram features in the routing matrix. As can
be expected, the classification results are worse, the error rate
increasing from 7.8% to 12.7%. Using discriminative training
on the unigram features, however, the error rate can be reduced
to 5.5%, representing a relative improvement of about 56%, and
identical to the best error rate with trigram, bigram, and unigram

features. Using ASR recognized strings, a relative improvement
of 44% is achieved, and the resulting error rate is below 10%.

baseline after DT %change
human transcription 12.7% 5.54% 56%
ASR recognized strings 16.9% 9.45% 44%

Table 2: Classification error rate before and after discriminative
training using stop word filtering and 420 unigram features.

Recall that the original routing matrix was constructed from
n-gram features after preprocessing where a list of ignore words
are eliminated and a list of stop words replaced with place holders.
The lists of stop and ignore words are typically manually con-
structed, because the words which may be considered semantically
unimportant are different for different contexts and applications.
Because such lists require some degree of linguistic knowledge
and hand-tuning, supporting natural language call routers for many
different domains can be very difficult if not impossible. It is there-
fore desirable to fully automate the call router design so that such
human knowledge and hand-tuning are not necessary. Ideally, the
router can be trained using only transcribed utterances and routing
destination information.

However, the stop and ignore word lists are quite important to
filter out words in order to reduce the total number of features and
parameters in the routing matrix. As an example, if no stop and
ignore words were filtered, there would have been 7434 features
(2756 trigrams, 3442 bigrams, and 1236 unigrams) instead of 756
features. The routing matrix would then have about 230 times
more parameters (7434� 23 in total).

Since we saw earlier that unigram features together with dis-
criminative training achieved similar results as with all features, we
now choose to use only the unigram features (1236 in total) from
the list of features which had not been processed with stop word
filtering. By not using stop word filtering, we can fully automate
the training since no human knowledgeis now required to construct
the stop word list.

Table 3 shows the results of using these 1236 unigram fea-
tures without stop word filtering. The baseline result (9.1%) is
worse than that using all features, as expected and comparable
(slightly better) than the results from using the unigram features
which had undergone stop word filtering. Nevertheless, we see that
after discriminative training, the error rate again has been reduced
significantly (by 39%) to 5.5%, a result similar to the other two
feature sets. We see therefore that discriminative training is able
to bring all three feature sets to the same classification results. For
ASR recognized strings, again the final result after discriminative
training is similar to the other two cases.

baseline after DT %change
human transcription 9.1% 5.54% 39%
ASR recognized strings 12.7% 8.79% 31%

Table 3: Classification error rate before and after discriminative
training without stop word filtering (fully automatic) and 1236
unigram features.

We are thus able to achieve similar classification results as the



human optimized system using only unigram features which are
automatically extracted from the training data without any human
expert intervention or specification of stop word lists.
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Figure 1: Distribution of the misclassification function is shifted
left after discriminative training, yielding a more robust classifier.
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Figure 2: Error rate versus rejection rate

Discriminative training not only reduces the classification er-
ror rate, but also improves the robustness of the classifier. Fig-
ure 1 shows the distribution of the misclassification function (as
described in Equation 3) of the training data before and after dis-
criminative training. The distribution has been shifted left, indicat-
ing a more robust classifier. (Recall that a positive value implies
misclassification.)

Figure 2 shows the classification error rate of the test data
when a subset is rejected using the difference in scores of the top
two candidates. At 0% rejection, as seen earlier, the error rate
is reduced from 9.1% to 5.5% after discriminative training. At
10% utterance rejection for the test data, there is a relative error
reduction of about 40% (from 5% to 3%). At almost all levels of
rejection, the discriminative training consistently does better than
the baseline because the separation of the correct class from the

competing classes has been increased. Therefore, the utility of
discriminative training is not only in reducing the classification
error rate, but also in improving the robustness of the classifier.

In the original routing matrix, all the elements are positive be-
cause they were derived from the counts of the occurrence of the
terms. The discriminative training procedure, as we have formu-
lated it, does not guarantee that the parameters remain positive.
In fact, checking the routing matrix after the training reveals that
many of the elements have now become negative. This makessense
intuitively since the presence of some terms can provide negative
evidence against a particular destination, particularly when they
are helpful in distinguishing a class from its closest competitors.

7. CONCLUSIONS
In this paper, we achieved the goal of fully automating the training
of the routing matrix while still maintaining the same level of
performance (over 90% accuracy) as that in an optimized system.
Specifically, the need for human design of stop and ignore words
was eliminated, so that call routers can be trained using just the
transcriptions of routed calls.

Eliminating stop word filtering increases the number of fea-
tures, and this increase was compensatedby using only single word
terms and eliminating the word pairs and triplets. We showed that
the resulting performance degradation can be compensatedentirely
by minimum error classification (MCE) training. The discrimina-
tive training also increased the robustness of the classifier.

We believe the proposed techniques are applicable to algo-
rithms addressing a broad range of speech understanding, topic
identification, and information retrieval problems. However, more
testing needs to be done to see if they are indeed applicable to
many different domains, and as an important example, if they can
be used in applications such as internet search engines.
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