A SURVEY ON MODELING ISSUES
USING THE MACHINE DESCRIPTION LANGUAGE LI1SA

AndreasHoffmann,Achim Nohl, GunnarBraunandHeinrich Meyr

IntegratedSignalProcessingystemsRWTH Aachen
http://www.iss.rwth-aachen.de/lisa
hoffmann[nohl,braung,mg]@iss.rwth-aachen.de

ABSTRACT
This paperpresenta suney on modelingissueof programmable
architecturesisingthe machinedescriptionlanguage.ISA. Var-
ious architecturepresentingdiversearchitecturalcharacteristics
will be presentedand the feasibility of automaticallygenerating
simulator assembledinker andgraphicaldehuggerfrontendwill
be discussedThe presentedpproachs notlimited to a fixed ab-
stractionlevel — casestudiesof the Texas InstrumentsC62x and
C54x,the Analog DevicesADSP2101aswell asthe ARM7 will
shav theapplicability of the methodologyfrom cycle/phaseo in-
structionaccuratemodels.

1. INTRODUCTION

All embeddegbrocessortik e Digital SignalProcessoré@DSP)and
micro-controllerguC) needacompletetool setconsistingof code-
generatiorandsimulationtools. However, building simulator as-
semblerlinker andgraphicaldehuggerfrontendmanuallyfor new
architectureds extremely errorproneand tedious. The lengthy
procesf matchingthe simulatorto anabstracimodelof the pro-
cessorarchitecturemight be performedseveral times within the
developmentof a programmableéSystem-On-ChigSOC)design.
Moreover, co-simulationof hardware and software puts specific
requirementson the simulation accurag on the programmable
side, while simulator performanceis still an important factor
Hence processomodelson differentlevels of abstractiorarede-
mandedto provide increasedsimulationaccurag aswell asout-
standingfastsimulationperformance.

The efforts of writing softwaredevelopmenttools canbe reduced
significantlyby usinga retagetableapproactbasedn a machine
description.

ThelLanguagédor InstructionSet ArchitecturegLISA) [1] wasde-
velopedfor the automaticgeneratiorof 100%consistentievelop-
menttools. The LISA languageis designedfor the formalized
descriptionof programmablearchitecturestheir peripheralsand
interfaces. A LISA processodescriptioncoversthe instruction-
set,the behaioral andthe timing model of the underlyinghard-
ware, thus providing all essentiainformationfor the generation
of a completeset of developmenttools including compiler as-
sembler linker andsimulator Changesn the hardware are eas-
ily transferredo theLISA modelandareautomaticallyappliedto
the generatedools. Moreover, the speedandthe functionality of
thegeneratedoolsallow usageafterthe productdevelopmenthas
beenfinished. Thereforethereis no needto rewrite the tools to
upgradethemto productionquality standard.

Thiswork wassupportedy TexasInstrumentandARM Ltd.

2. RELATED WORK

Hardwaredescriptionanguage¢HDLSs) like VHDL or Verilogare
widely usedto modelandsimulateprocessorgyut mainly with the
goal of developinghardware. Using thesemodelsfor instruction-
level processosimulationhasa numberof disadwantages.They
cover hardware implementatiordetailswhich are not neededor
performanceevaluationand software verification. Moreover, the
descriptiorof detailedhardwarestructuredasasignificantimpact
on simulationspeed?2]. Anotherproblemis thatthe extractionof
theinstructionsetis ahighly comple, manuataskandinstruction
setinformation,lik e e.g.assemblysyntaxcannotbe obtainedfrom
HDL descriptions.

The machinedescriptionlanguagenML was developedat TU
Berlin [3] andadoptedn several projects[4]. While retagetable
assembleranddisassemblersanbegeneratedor someDSPpro-
cessorsit is not possibleto producecycle-accuratesimulatorsfor
pipelinedprocessoarchitectures.
Theserestrictionsalsoapplyto theapproachof ISDL [5] whichis
very similar to nML. The approachbasedon the languageEX-
PRESSIONI[6] incorporatesparticular mechanismdor the de-
scription of memoryhierarchiesand focuseson retageting high
level languagecompilers. However, no resultsare publishedthat
indicatethe applicabilityfor cycle-accuratsimulationpurposes.
To summarizethe review, none of the approachesabore does
supportmodelingof cycle/phase-accuratrchitecturesncluding
pipelinesor the generatiorof very fastproductionquality tools.

3. SOFTWARE DEVELOPMENT TOOLS

The LISA tool-suiteis a setof developmenttools, which is auto-
matically generatedrom LISA machinedescriptions.It includes
assemblerlinker, simulationcompilerand simulatoraswell asa
graphicaldehuggerfrontend. Providing thesetools, a complete
softwaredevelopmentervironmentis availablewhich rangesrom
the assemblysourcefile up to simulationwithin a comfortable
graphicaldehuggerfrontend. Figure 1 shavs the componentf
the LISA tool-suite.

LISA Simulator and Simulation Compiler

TheLISA simulatorutilizesthetechniqueof compiledsimulation
for outstandingsimulationperformancg7]. Compiledsimulators
areapplication-specifisimulatorswhich aregenerateaut of the
targetapplicatiorfile by insertingatranslatiorstepbeforethesim-
ulationis run. Thetranslationof the applicationis performecby a
tool calledsimulationcompiler

LISA
processor e '
description

' 1
- :
14... e E model |

model (inter iate rep ion) I
generator generator generator generator

| -
generator

Debugger

Simulation
frontend i

assembler

‘Simulator ‘ linker ‘

Fig. 1. Automatic tool-chain generation.

A majortaskin compiledprocessosimulationis to determinethe
temporalorderof executedoperations- in particularfor pipelined
architectures.The simulationcompiler utilizes three scheduling
principlesto generatehe mostefficient simulatorfor the under
lying architecturemodel: dynamicscheduling static scheduling,
and' instruction-basedodetranslation.Principlesandimplemen-
tationaspect®f thesesimulationtechniquesrediscussedn [8].

L1SA Assembler and Linker

TheLISA assembletranslatesneaningfultext-basednstructions
into objectcodefor therespectie programmablarchitecture Be-
sidetheprocessospecificinstruction-settheLISA assemblepro-
videsasetof pseudo-instruction® controltheassemblingrocess
(directives). This concerndatainitialization, reasonableepara-
tion of the programinto sectionshandlingof symbolicidentifiers
for numericvaluesand branchaddresses.The retagetability of
the LISA assemblerequiressupportfor unrestrictednstruction
word-sizesandthe handlingof comple« assemblysyntax.

Thelinking processs controlledby a linker commandile which
keepsa detailedmodelof the target memoryenvironmentandan
assignmentable of the modulesectionsto their respectie target
memories.

Graphical debugger frontend

The LISA dehuggerfrontendis a genericGUI for the generated
LISA simulator It visualizesthe internal stateof the simulation

processBoth the C-sourcecodeandthe disassemblwf the appli-

cationaswell asall configuredmemoriesand (pipeline)registers
aredisplayed.All contentscanbechangedn the frontendat run-

time of the application. The simulationprocesscanbe controlled

by steppingandrunningthroughtheapplicationandsettingbreak-
points.

4. CONSIDERED ARCHITECTURES

To examineand analyzethe modelingabilities of LISA aswell
asthe feasibility of generatingsoftware developmenttools, four
different architectureshave beenconsidered. The architectures
werecarefullychoserto cover abroadrangeof architecturathar
acteristicsand are widely usedin the field of digital signal pro-
cessing(DSP)andembeddeaystems.Moreover, the abstraction
level of themodelsrangedrom phaseaccurag (TMS320C62x}to
instruction-seaccurag (ARM7).

o ARM7 The ARM7 coreis a 32 bit micro-controllerof Ad-
vancedRISCMachined.td. Therealizationof aLISA model
of the ARM7 pC at instruction-setaccurag took approx.
two weeks.

o ADSP2101 TheAnalogDevicesADSP2101is a 16 bit fixed-
point DSPwith 20 bit instruction-word width. The realiza-
tion of the LISA modelof the ADSP2101at cycle accurag
took approx.3 weeks.

e TMS320C54x The Texas InstrumentsTMS320C54xis a
high performancel6 bit fixed-pointDSP with a five stage
instructionpipeline. Therealizationof themodelatcycle ac-
curay (includingpipelinebehaior) took approx.8 weeks.

e TMS320C62x The Texas InstrumentsTMS320C62xis a
general-purposdixed-point DSP basedon a very long
instruction-word (VLIW) architecturecontainingan eleven
stagepipeline. The realizationof the modelat phaseaccu-
rag (includingpipelinebehaior) took approx.6 weeks.

5. ARCHITECTURAL CHARACTERISTICS

Every architecturehasits characteristicparticularly with regard
to theinstruction-sebr the structure.However, evenfor comple
architectureshe high modelingefficiengy of LISA allows to real-
ize a modelof the chosenarchitecturen a reasonabl@mountof
time. This sectionfocuseson the modelingof specificaspectdor
eachpresentedrchitecture.

51 VLIW

The C62x DSPof TexasInstrumentss a VLIW architecturewith
256 bit instructionword width. Theinstructionword is fetchedas
awholefrom memoryandthenpartitionedin eightmicro instruc-
tionswhich aredispatchednto the executionpipeline.

For the modelingof word-sizesgreaterthenthe maximumword
size of the simulatinghost,LISA providesa dedicatedype bi t
which is parameterizetly theresourcesbit-width.

RESOURCE
{

unS| gned bit[256] insn_register;
}

is anexcerptof theresource-declaratioof the C62xLISA model
shaving the declaratiorof theinstructionregister Thebi t data
typein LISA containsa setof overloadedoperatorsandcanthus
be usedin the behaior codeof the LISA modelasary otherC-
type can. For modelingof signedandunsignedoperationson the
processoresourcesthe bi t data-typecan be attributed with a
si gned orunsi gned keyword.

5.2. Non-orthogonal Coding Fields

In LISA, non-orthogonatodingis expressedy additionalcondi-
tional statementshatcanbeusedto structurethe processomodel
[7]. The purposeof theseconditionalstatementss to expressthe
codingdependenciebetweendifferentoperations.Following the
syntaxof programmindanguagesthey have theform of IF-ELSE
andSWITCH-CASEstatements.

Figure 2 displaysthe coding of an instructionword taken from
the C62x LISA model. Therearethreeinstructionsadd, sub,
andmul whoseexecutionis also controlled by the coding field

instruction word

instruction H condition H mode H dest-reg H src-reg1 H src-reg2 ‘

NN

[da][sub] [mut [1¢ | to

instruction mode

Fig. 2. Non-orthogonal coding fields.

node whichselectdbetweershor t andl ong operandsndtheir
specificarithmetic. However, the otherinstructionsl d andst o
usethenode field for adifferentpurpose LISA codefor theadd
instructionin the C62xmodelis shavn in examplel.

Here,the IF-THEN-ELSE statemenéencloseswo alternatve sec-
tionswith their respectre behaioral descriptionof the operation
add. Thisformal representatiofetsthe simulationcompilerdis-
tinguishthesetwo casesandgeneratepecificsimulationcode.

OPERATI ON add

DECLARE { REFERENCE node; }
I F (npode == short) {
BEHAVICOR { dest_lo = srcl_|lo + src2_lo; }

}
ELSE {
BEHAVI OR {
dest _lo = srcl_lo + src2_lo;
carry = dest_lo >> 16;
dest _| o & OxFFFF;
dest _hi = srcl_hi + src2_hi + carry;
}
}
}

Examplel: Formalexpressiorof non-orthogonality

5.3. Multipleinstruction words

Frequently architecturesare emplo/ed which utilize instructions
madeup of multiple instructionwords. The TMS320C54xDSP

containsinstructionsthat can be composedf eitherone, two or

even threeinstructionwords. The second/thirdnstructionword

mostly carriesimmediatevaluesor operandsut canalsobe part
of theopcodeof theinstruction.

Thecorrelationbetweerthe differentinstructiontypesandthe de-
codersis establishedn the coding-root. Example2 shaws the
mappingof eachinstructiontype describedn the coding-rootof
theLISA descriptionontotherespectie codingtree.

OPERATI ON Decode | N pi pe. DC

ENUM I nsnType = Typel, Type2, Type3;
SW TCH (I nsnType)

CASE Typel:
CODI NG { Decode == Decode_16 }
CASE Type2:
CODI NG { (Decode == Decode_32)
&& (Fetch == Operand) }
CASE Type3:
CODI NG { (Decode == Decode_48)
&& (Fetch == Oper andl)

&& (Prefetch == Operand2) }

Decode, Fetch and Prefetch are thereby processorre-
sourcescarrying the instructionwords whereasTypel, Type2
andType3 representhe threecodingtreesfor the respectre in-
structiontype.

The branchinginto the three coding treesis controlled by a
SWITCH-CASEstatementvhichis partof theLISA controlstruc-
ture. The selectionof the appropriatecodingroot is basedon an
enumeratiortype with the effect thatall codingtreesaresearched
until the currentlyprocessedhstructionword is identified.

5.4. Non-coherent coding elements

Especiallyin low-power architecturesn optimal usageof thein-
structionword is required. Here, coherentcoding-fieldsare split
into multiple piecesspreadvertheinstructionword. In theARM7
u1C, thisis the casefor theoperandn ALU-instructions.

OPERATI ON Dat a_Processi ng_ALU

{
COoDI NG

00b Operand2=[11..12] OpCode Setcond
Srcl Dest Qperand2=[0..10]

Example3: Modelingnon-coherentodingin LISA

The coding of Oper and2 is distributed over the coding of the
operationDat a_Pr ocessi ng_ALU. Example3 shavs how the
meiging of the codingtreeis modeledin LISA. The distributed
codingelements attributedwith the positionin the codingof the
LISA operatiorthe elements referringto.

5.5. Algebraic instruction syntax

Sometimesarchitectureprogrammecdrimarily in assemblyuse
a C like assemblyinstructionsyntaxto easeprogramming. The
Analog Devices ADSP2101featuressuchan algebraicprogram-
ming syntax. This meansthat the instructionsyntaxis not frag-
mentedinto amnemonicanda list of operandsut formulatedas
an algebraicexpression.An examplefor an algebraicinstruction
would be:

ADD Y,X,Z <~ X=Y+Z
The LISA control-flav syntaxcanbe usedto expressthe syntax
dependengc on the coding of the instruction-vord. Example4
shavs anexcerptof themodelof the ADSP2101.
Here, dependingon the Opcode of the instructionword the re-
spectve syntaxis chosernvia the SWITCH-CASE control struc-
ture.

OPERATI ON ALU_I nstructions
{
GROUP Opcode = { ADD || SUB || AND };
CODI NG { 0011b Opcode }
SW TCH(Opcode)
CASE ADD:
SYNTAX { Dest "=" Xop "+" Yop }
CASE SUB:
SYNTAX { Dest "=" Xop "-" Yop }
CASE AND:
SYNTAX { Dest "=" Xop "&' Yop }

Example2: Formalexpressiorof multiple insn-words

Exampled: Algebraicinstructionsyntaxin LISA

6. EFFICIENCY OF GENERATED TOOLS

To evaluatethe applicabilityandefficiengy of the generatedools,
we comparedhemto thecommerciallyavailabletoolsprovidedby
the semiconductorvendors.Measurementtook placeon a AMD
Athlon systemwith a clock frequeng of 800 MHz. The system
is equippedwith 256 MB of RAM andis partof the networking
system. It runsunderthe operatingsystemLinux, kernelversion
2.2.14. Tool compilationwas performedwith GNU gcc, version
2.92.

The generationof the completetool-suite (simulator assembler
linker anddeluggerfrontend)takes,dependingn the compleity
of the considerednodel,betweenl2 sec(ARM7 pC instruction-
setaccuratepnd67 sec(C62x DSPphaseaccurate).

6.1. Performance of generated ssimulator

Figures3 and4 shav the speedof the generatesgimulatorsin in-
structionsper second/gcles per secondrespectiely. Simulation
speedwas quantifiedby runningan applicationon the respectie
simulatorandcountingthe numberof prcocessedycles. Thesim-
ulatedapplicationonall architecturess anADPCM G.721(Adap-
tive DifferentialPulseCodeModulation)coder/decoder

35000

H 31 Meg mLISA

§ 30000

g Ovendor

g 25000

5 204 Meg

% 20000

K

£ 15000 1

£

g 10000 -

T 5000

% 1,8 Meg 0,8 Meg

0+ . —

ARM7 ADSP2101

Fig. 3. Simulation speed of ARM7 and ADSP2101

As expected,the compiled simulationtechniqueapplied by the
generated.ISA simulatorsoutperformsthe vendorsimulatorsby

oneto two ordersin magnitude.

For the ARM7, ADSP2101andthe C54x, static schedulingwas
applied,which is the highestpossiblegradeof predictionin com-
piled simulation. Consideringan ARM7 pC running at a fre-

queng of 25 MHz, the software simulatorrunning at 31 MIPS

even outperformsthe real hardware. This makes applicationde-
velopmentsuitablebeforethe actualsilicon is at hand. Dueto its

superscalainstructiondispatchingmechanisthe simulatorfor

the C62x DSP usescompiledsimulationwith dynamicschedul-
ing.

6.2. Performance of generated assembler and linker

The generatechssemblerndlinker are not astime critical asthe
simulatoris. It shall be mentionedthoughthat the performance
(i.e. the numberof assembled/lingd instructionsper second)of
theautomaticallygeneratedoolsis comparabldo thatof theven-
dortools.

7. CONCLUSION

In this paper we presenteda suney on modelingprogrammable
architecturesisingthe machinedescriptionlanguagd_ISA.

4500
4000
3500
3000
2500
2000
1500
1000 -
500 -

HLISA 3900 k

O vendor

Speed (in 1000 cycles per second)

Céx C54x

Fig. 4. Simulation speed of C6x and C54x

In casestudiesmodelswererealizedandtools successfullygener
atedfor the ARM7 1C, the AnalogDevicesADSP2101the Texas
InstrumentC62xandthe TexasInstrumentC54xon instruction-
set/g/cle/phaseaccurag respectrely. Due to the usageof the
compiled simulation principle, the generatedsimulatorsrun by
oneto two ordersin magnitudefasterthanthe vendorsimulators.
Moreover, thegenerateéssembleandlinker cancompetewell in
speedwith thevendortools.

Our futurework will focuson modelingfurtherreal-life processor
architecturesAnotherissueis the integrationof software simula-
tors into HW/SW co-simulationervironments. Furthermorethe
goal of the ongoinglanguagedesignis to addressVHDL-code
synthesisfor the control-pathand the instructiondecoderof the
modeledarchitecture.

8. REFERENCES

[1] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr,
“LISA — Machine Description Language for Cycle-
Accurate Models of Programmable DSP Architectures,”
in Proceeding®f the DesignAutomationConfeence(DAC),
(New Orleans), pp. 933-938, June 1999.

[2] J. Rowson, “Hardware/Software co-simulation,” in
Proc. of the ACM/IEEE Design Automation Confeence
(DAC), 1994.

[3] A. Fauth, M. Freericks, and A. Knoll, “Generation of
hardware machine models from instruction set descrip-
tions,” in Proc. of the IEEE Workshopon VLSI Signal Pro-
cessing 1993.

[4] M. Hartoog, J. Rowson, etal., “Generation of software
tools from processor descriptions for hardware/software
codesign,” in Proc. of the Design AutomationConfeence
(DAC), Jun. 1997.

[6] G.Hadjiyiannis, S. Hanono, and S. Devadas, “ISDL: An
instruction set description language for retargetability,”
in Proc. of the DesignAutomationConfeence(DAC), Jun.
1997.

[6] A. Halambi, P. Grun, et al., “EXPRESSION: A
language for architecture exploration through com-
piler/simulator retargetability,” in Proc.oftheConfeence
on Design,Automation& Testin Europe(DATE), Mar. 1999.

[7] S. Pees, A. Hoffmann, and H. Meyr, “Retargeting of
compiled simulators for digital signal processors using a
machine description language,” in Proc.of theConfeence
on Design,Automation& Testin Europe(DATE), Mar. 2000.

[8] V. Zivojnovié and H. Meyr, “Compiled HW/SW co-
simulation,” in Proc.oftheDAC 1996—LasVegas pp. 690—
695, June 1996.

