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ABSTRACT
Thispaperpresentsasurvey onmodelingissuesof programmable
architecturesusingthe machinedescriptionlanguageLISA. Var-
ious architecturespresentingdiversearchitecturalcharacteristics
will be presentedand the feasibility of automaticallygenerating
simulator, assembler, linker andgraphicaldebuggerfrontendwill
bediscussed.Thepresentedapproachis not limited to a fixedab-
stractionlevel – casestudiesof the TexasInstrumentsC62x and
C54x, theAnalog DevicesADSP2101aswell astheARM7 will
show theapplicabilityof themethodologyfrom cycle/phaseto in-
structionaccuratemodels.

1. INTRODUCTION

All embeddedprocessorslikeDigital SignalProcessors(DSP)and
micro-controllers( � C)needacompletetoolsetconsistingof code-
generationandsimulationtools. However, building simulator, as-
sembler, linker andgraphicaldebuggerfrontendmanuallyfor new
architecturesis extremely error-proneand tedious. The lengthy
processof matchingthesimulatorto anabstractmodelof thepro-
cessorarchitecturemight be performedseveral times within the
developmentof a programmableSystem-On-Chip(SOC)design.
Moreover, co-simulationof hardware and software puts specific
requirementson the simulation accuracy on the programmable
side, while simulator performanceis still an important factor.
Hence,processormodelson differentlevelsof abstractionarede-
mandedto provide increasedsimulationaccuracy aswell asout-
standingfastsimulationperformance.
Theefforts of writing softwaredevelopmenttoolscanbereduced
significantlyby usinga retargetableapproachbasedon a machine
description.
TheLanguagefor InstructionSetArchitectures(LISA) [1] wasde-
velopedfor theautomaticgenerationof 100%consistentdevelop-
ment tools. The LISA languageis designedfor the formalized
descriptionof programmablearchitectures,their peripherals,and
interfaces. A LISA processordescriptioncovers the instruction-
set, the behavioral andthe timing modelof the underlyinghard-
ware, thusproviding all essentialinformation for the generation
of a completeset of developmenttools including compiler, as-
sembler, linker andsimulator. Changesin the hardwareareeas-
ily transferredto theLISA modelandareautomaticallyappliedto
thegeneratedtools. Moreover, thespeedandthe functionalityof
thegeneratedtoolsallow usageaftertheproductdevelopmenthas
beenfinished. Thereforethereis no needto rewrite the tools to
upgradethemto productionqualitystandard.

Thiswork wassupportedby TexasInstrumentsandARM Ltd.

2. RELATED WORK

Hardwaredescriptionlanguages(HDLs) likeVHDL or Verilogare
widely usedto modelandsimulateprocessors,but mainlywith the
goalof developinghardware. Using thesemodelsfor instruction-
level processorsimulationhasa numberof disadvantages.They
cover hardware implementationdetailswhich arenot neededfor
performanceevaluationandsoftwareverification. Moreover, the
descriptionof detailedhardwarestructureshasasignificantimpact
on simulationspeed[2]. Anotherproblemis thattheextractionof
theinstructionsetis ahighly complex, manualtaskandinstruction
setinformation,likee.g.assemblysyntaxcannotbeobtainedfrom
HDL descriptions.
The machinedescriptionlanguagenML was developedat TU
Berlin [3] andadoptedin several projects[4]. While retargetable
assemblersanddisassemblerscanbegeneratedfor someDSPpro-
cessors,it is not possibleto producecycle-accuratesimulatorsfor
pipelinedprocessorarchitectures.
Theserestrictionsalsoapplyto theapproachof ISDL [5] which is
very similar to nML. The approachbasedon the languageEX-
PRESSION[6] incorporatesparticular mechanismsfor the de-
scriptionof memoryhierarchiesand focuseson retargetinghigh
level languagecompilers.However, no resultsarepublishedthat
indicatetheapplicabilityfor cycle-accuratesimulationpurposes.
To summarizethe review, none of the approachesabove does
supportmodelingof cycle/phase-accuratearchitecturesincluding
pipelinesor thegenerationof very fastproductionquality tools.

3. SOFTWARE DEVELOPMENT TOOLS

TheLISA tool-suiteis a setof developmenttools,which is auto-
maticallygeneratedfrom LISA machinedescriptions.It includes
assembler, linker, simulationcompilerandsimulatoraswell asa
graphicaldebuggerfrontend. Providing thesetools, a complete
softwaredevelopmentenvironmentis availablewhichrangesfrom
the assemblysourcefile up to simulation within a comfortable
graphicaldebuggerfrontend. Figure1 shows the componentsof
theLISA tool-suite.

LISA Simulator and Simulation Compiler

TheLISA simulatorutilizesthetechniqueof compiledsimulation
for outstandingsimulationperformance[7]. Compiledsimulators
areapplication-specificsimulators,which aregeneratedoutof the
targetapplicationfile by insertingatranslationstepbeforethesim-
ulationis run. Thetranslationof theapplicationis performedby a
tool calledsimulationcompiler.
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A majortaskin compiledprocessorsimulationis to determinethe
temporalorderof executedoperations– in particularfor pipelined
architectures.The simulationcompiler utilizes threescheduling
principlesto generatethe mostefficient simulatorfor the under-
lying architecturemodel: dynamicscheduling,staticscheduling,
and‘ instruction-basedcodetranslation.Principlesandimplemen-
tationaspectsof thesesimulationtechniquesarediscussedin [8].

LISA Assembler and Linker

TheLISA assemblertranslatesmeaningfultext-basedinstructions
into objectcodefor therespectiveprogrammablearchitecture.Be-
sidetheprocessorspecificinstruction-set,theLISA assemblerpro-
videsasetof pseudo-instructionsto controltheassemblingprocess
(directives). This concernsdatainitialization, reasonablesepara-
tion of theprograminto sections,handlingof symbolicidentifiers
for numericvaluesandbranchaddresses.The retargetability of
the LISA assemblerrequiressupportfor unrestrictedinstruction
word-sizesandthehandlingof complex assemblysyntax.

The linking processis controlledby a linker commandfile which
keepsa detailedmodelof the targetmemoryenvironmentandan
assignmenttableof the modulesectionsto their respective target
memories.

Graphical debugger frontend

The LISA debuggerfrontendis a genericGUI for the generated
LISA simulator. It visualizesthe internalstateof the simulation
process.Both theC-sourcecodeandthedisassemblyof theappli-
cationaswell asall configuredmemoriesand(pipeline)registers
aredisplayed.All contentscanbechangedin thefrontendat run-
time of theapplication.Thesimulationprocesscanbecontrolled
by steppingandrunningthroughtheapplicationandsettingbreak-
points.

4. CONSIDERED ARCHITECTURES

To examineandanalyzethe modelingabilities of LISA as well
as the feasibility of generatingsoftwaredevelopmenttools, four
different architectureshave beenconsidered. The architectures
werecarefullychosento coverabroadrangeof architecturalchar-
acteristicsandare widely usedin the field of digital signalpro-
cessing(DSP)andembeddedsystems.Moreover, theabstraction
level of themodelsrangesfrom phaseaccuracy (TMS320C62x)to
instruction-setaccuracy (ARM7).

$ ARM7 The ARM7 coreis a 32 bit micro-controllerof Ad-
vancedRISCMachinesLtd. Therealizationof aLISA model
of the ARM7 � C at instruction-setaccuracy took approx.
two weeks.

$ ADSP2101 TheAnalogDevicesADSP2101is a16bit fixed-
point DSPwith 20 bit instruction-word width. The realiza-
tion of theLISA modelof theADSP2101at cycle accuracy
took approx.3 weeks.

$ TMS320C54x The Texas InstrumentsTMS320C54xis a
high performance16 bit fixed-pointDSP with a five stage
instructionpipeline.Therealizationof themodelatcycleac-
curacy (includingpipelinebehavior) tookapprox.8 weeks.$ TMS320C62x The Texas InstrumentsTMS320C62xis a
general-purposefixed-point DSP based on a very long
instruction-word (VLIW) architecturecontainingan eleven
stagepipeline. The realizationof the modelat phaseaccu-
racy (includingpipelinebehavior) took approx.6 weeks.

5. ARCHITECTURAL CHARACTERISTICS

Every architecturehasits characteristicsparticularlywith regard
to theinstruction-setor thestructure.However, evenfor complex
architecturesthehigh modelingefficiency of LISA allows to real-
ize a modelof the chosenarchitecturein a reasonableamountof
time. This sectionfocuseson themodelingof specificaspectsfor
eachpresentedarchitecture.

5.1. VLIW

TheC62xDSPof TexasInstrumentsis a VLIW architecturewith
256bit instructionword width. Theinstructionword is fetchedas
a wholefrom memoryandthenpartitionedin eightmicro instruc-
tionswhich aredispatchedinto theexecutionpipeline.

For the modelingof word-sizesgreaterthenthe maximumword
sizeof the simulatinghost,LISA providesa dedicatedtypebit
which is parameterizedby theresourcesbit-width.

RESOURCE
{

...
unsigned bit[256] insn_register;
...

}

is anexcerptof theresource-declarationof theC62xLISA model
showing thedeclarationof the instructionregister. Thebit data
type in LISA containsa setof overloadedoperatorsandcanthus
be usedin the behavior codeof the LISA modelasany otherC-
typecan. For modelingof signedandunsignedoperationson the
processorresources,the bit data-typecan be attributed with a
signed or unsigned keyword.

5.2. Non-orthogonal Coding Fields

In LISA, non-orthogonalcodingis expressedby additionalcondi-
tional statementsthatcanbeusedto structuretheprocessormodel
[7]. Thepurposeof theseconditionalstatementsis to expressthe
codingdependenciesbetweendifferentoperations.Following the
syntaxof programminglanguages,they have theform of IF-ELSE
andSWITCH-CASEstatements.

Figure 2 displaysthe coding of an instructionword taken from
the C62x LISA model. Thereare threeinstructionsadd, sub,
andmul whoseexecutionis alsocontrolledby the coding field
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modewhichselectsbetweenshort andlong operandsandtheir
specificarithmetic. However, the other instructionsld andsto
usethemode field for adifferentpurpose.LISA codefor theadd
instructionin theC62xmodelis shown in example1.

Here,theIF-THEN-ELSEstatementenclosestwo alternative sec-
tionswith their respective behavioral descriptionof theoperation
add. This formal representationletsthesimulationcompilerdis-
tinguishthesetwo casesandgeneratespecificsimulationcode.

OPERATION add
{

DECLARE { REFERENCE mode; }
IF (mode == short) {

BEHAVIOR { dest_lo = src1_lo + src2_lo; }
}
ELSE {

BEHAVIOR {
dest_lo = src1_lo + src2_lo;
carry = dest_lo >> 16;
dest_lo &= 0xFFFF;
dest_hi = src1_hi + src2_hi + carry;

}
}

}

Example1: Formalexpressionof non-orthogonality.

5.3. Multiple instruction words

Frequently, architecturesareemployed which utilize instructions
madeup of multiple instructionwords. The TMS320C54xDSP
containsinstructionsthat canbe composedof eitherone, two or
even threeinstructionwords. The second/thirdinstructionword
mostlycarriesimmediatevaluesor operandsbut canalsobepart
of theopcodeof theinstruction.

Thecorrelationbetweenthedifferentinstructiontypesandthede-
codersis establishedin the coding-root. Example2 shows the
mappingof eachinstructiontype describedin the coding-rootof
theLISA descriptionontotherespective codingtree.

OPERATION Decode IN pipe.DC
{

ENUM InsnType = Type1, Type2, Type3;
SWITCH (InsnType)

CASE Type1:
CODING { Decode == Decode_16 }

CASE Type2:
CODING { (Decode == Decode_32)

&& (Fetch == Operand) }
CASE Type3:

CODING { (Decode == Decode_48)
&& (Fetch == Operand1)
&& (Prefetch == Operand2) }

}

Example2: Formalexpressionof multiple insn-words

Decode, Fetch and Prefetch are thereby processorre-
sourcescarrying the instructionwords whereasType1, Type2
andType3 representthe threecodingtreesfor therespective in-
structiontype.
The branching into the three coding trees is controlled by a
SWITCH-CASEstatementwhichis partof theLISA controlstruc-
ture. The selectionof theappropriatecodingroot is basedon an
enumerationtypewith theeffect thatall codingtreesaresearched
until thecurrentlyprocessedinstructionword is identified.

5.4. Non-coherent coding elements

Especiallyin low-power architecturesanoptimalusageof the in-
structionword is required. Here,coherentcoding-fieldsaresplit
into multiplepiecesspreadovertheinstructionword. In theARM7� C, this is thecasefor theoperandin ALU-instructions.

OPERATION Data_Processing_ALU
{
CODING

{
00b Operand2=[11..12] OpCode Setcond

Src1 Dest Operand2=[0..10]
}

}

Example3: Modelingnon-coherentcodingin LISA

The coding of Operand2 is distributed over the coding of the
operationData Processing ALU. Example3 shows how the
merging of the coding tree is modeledin LISA. The distributed
codingelementis attributedwith thepositionin thecodingof the
LISA operationtheelementis referringto.

5.5. Algebraic instruction syntax

Sometimes,architecturesprogrammedprimarily in assemblyuse
a C like assemblyinstructionsyntaxto easeprogramming. The
Analog DevicesADSP2101featuressuchan algebraicprogram-
ming syntax. This meansthat the instructionsyntaxis not frag-
mentedinto a mnemonicanda list of operandsbut formulatedas
an algebraicexpression.An examplefor analgebraicinstruction
would be:

ADD Y,X,Z /�0 X=Y+Z

The LISA control-flow syntaxcanbe usedto expressthe syntax
dependency on the coding of the instruction-word. Example4
shows anexcerptof themodelof theADSP2101.
Here,dependingon the Opcode of the instructionword the re-
spective syntaxis chosenvia the SWITCH-CASEcontrol struc-
ture.

OPERATION ALU_Instructions
{
GROUP Opcode = { ADD || SUB || AND };
CODING { 0011b Opcode }
SWITCH(Opcode)

CASE ADD:
SYNTAX { Dest "=" Xop "+" Yop }

CASE SUB:
SYNTAX { Dest "=" Xop "-" Yop }

CASE AND:
SYNTAX { Dest "=" Xop "&" Yop }

}

Example4: Algebraicinstructionsyntaxin LISA



6. EFFICIENCY OF GENERATED TOOLS

To evaluatetheapplicabilityandefficiency of thegeneratedtools,
wecomparedthemto thecommerciallyavailabletoolsprovidedby
thesemiconductorvendors.Measurementstook placeon a AMD
Athlon systemwith a clock frequency of 800 MHz. The system
is equippedwith 256 MB of RAM andis part of the networking
system.It runsunderthe operatingsystemLinux, kernelversion
2.2.14. Tool compilationwasperformedwith GNU gcc, version
2.92.
The generationof the completetool-suite(simulator, assembler,
linker anddebuggerfrontend)takes,dependingon thecomplexity
of theconsideredmodel,between12 sec(ARM7 � C instruction-
setaccurate)and67sec(C62xDSPphaseaccurate).

6.1. Performance of generated simulator
Figures3 and4 show thespeedof thegeneratedsimulatorsin in-
structionsper second/cyclesper secondrespectively. Simulation
speedwasquantifiedby runningan applicationon the respective
simulatorandcountingthenumberof prcocessedcycles.Thesim-
ulatedapplicationonall architecturesis anADPCM G.721(Adap-
tive DifferentialPulseCodeModulation)coder/decoder.
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As expected,the compiledsimulation techniqueappliedby the
generatedLISA simulatorsoutperformsthevendorsimulatorsby
oneto two ordersin magnitude.
For the ARM7, ADSP2101andthe C54x, staticschedulingwas
applied,which is thehighestpossiblegradeof predictionin com-
piled simulation. Consideringan ARM7 � C running at a fre-
quency of 25 MHz, the software simulatorrunning at 31 MIPS
even outperformsthe real hardware. This makesapplicationde-
velopmentsuitablebeforetheactualsilicon is at hand.Dueto its
superscalarinstructiondispatchingmechanismthe simulatorfor
the C62x DSPusescompiledsimulationwith dynamicschedul-
ing.

6.2. Performance of generated assembler and linker
Thegeneratedassemblerandlinker arenot astime critical asthe
simulatoris. It shall be mentionedthoughthat the performance
(i.e. the numberof assembled/linked instructionsper second)of
theautomaticallygeneratedtoolsis comparableto thatof theven-
dor tools.

7. CONCLUSION

In this paper, we presenteda survey on modelingprogrammable
architecturesusingthemachinedescriptionlanguageLISA.
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In casestudiesmodelswererealizedandtoolssuccessfullygener-
atedfor theARM7 � C, theAnalogDevicesADSP2101,theTexas
InstrumentsC62xandtheTexasInstrumentsC54xon instruction-
set/cycle/phaseaccuracy respectively. Due to the usageof the
compiled simulation principle, the generatedsimulatorsrun by
oneto two ordersin magnitudefasterthanthevendorsimulators.
Moreover, thegeneratedassemblerandlinkercancompetewell in
speedwith thevendortools.
Our futurework will focusonmodelingfurtherreal-lifeprocessor
architectures.Anotherissueis theintegrationof softwaresimula-
tors into HW/SW co-simulationenvironments. Furthermore,the
goal of the ongoing languagedesignis to addressVHDL-code
synthesisfor the control-pathand the instructiondecoderof the
modeledarchitecture.
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