AN AUDIO VIRTUAL DSP FOR MULTIMEDIA FRAMEWORKS

Giorgio Zoia and Claudio Alberti

Integrated Systems Laboratory
Ecole Polytechnique Fédérale de Lausanne

{giorgio. zoia,

ABSTRACT

The new MPEG-4 Audio standard provides two toolsets for
synthetic Audio generation, Audio processing and multimedia
content description called Structured Audio (SA) and Blnary
Format for Scenes (BIFS).

Moving from a systematic analysis of SA and from the
implementation of an efficient SA decoder, this paper describes
the design of a virtual DSP architecture able to exploit the data
level paraleism contained in many typica audio processing
agorithms. The proposed virtual DSP architecture shows good
performance on general purpose platforms and can be easily
adapted and optimized for paralel superscalar devices. The
porting and results on a V-LIW DSP device confirm the
effectiveness and flexibility of the approach, particularly suitable
for standalone embedded solutions.

1. INTRODUCTION

In the last decade software digital audio signa processing has
enormously evolved in functiondity and acceptance among
developers and content producers [1]. The reasons behind this
explosion are various: first of all, the impressive increase in the
available computational power even in low price personal
computers;, then the great flexibility and ease in data
manipulation provided by digita audio tools; finaly, the
consequent migration of a musician’s and content creator's
education towards electronic and software-oriented tools. The
new MPEG-4 Audio standard can be considered a milestone in
this evolutionary process, since it provides two toolsets to code
advanced multimedia-oriented audio functionaity, namely
Structured Audio (SA) and Blnary Format for Scenes (BIFS).

SA derives from years of academic research in software
sound synthesis (SWSS) languages [1]; the SAOL (Structured
Audio Orchestra Language, see [2]) programming language is
similar to many of these SWSS tools but the SA toolset as a
whole has been conceived for multimedia and downloadable
applications; the syntax of the language itself has become very
close to that of C, with stronger object-oriented connotations and
several stream-oriented extensions. SAOL maintains the typical
execution scheme of its predecessors, with an internal scheduler
(the fixed "main") and the possibility to define, in its synthesis
and processing functions, variables with different execution rates:
initidlization, control and audio rate. But unlike other similar
tools, characterized by a block-based syntax, SA has a sample-by-
sample (s-b-s) execution structure, that approaches it even more
to C: this essentidly means that syntax and semantics of

cl audi o. al berti}@pfl.ch

statements and operators are defined for a single sample and not
for ablock of samples of length B,

B, = srate/krate (0]

where srate and krate are the sampling rate and the control rate
respectively. If this makes possible a correct implementation of
basic functions like recursive filters, on the other hand it
introduces a relevant overhead in the case of an interpreted
implementation of the language decoder’, the most suitable for
embedded real-time engines.

In MPEG-4, SA issurrounded at the system level by a higher-
level language for scene description, BIFS; it is a language very
similar in structure to VRML, but with an innovative audio-
specific subtree caled AudioBIFS [3]; functiondity of
AudioBIFS nodes ranges from simple mixing or delay until
advanced spatialization schemes based on geometrica and
perceptual information, so a complete virtual audio environment
can be described. Custom processing in SAOL code can be
inserted in the scene tree through the AudioFX node, making of
AudioBIFS an extremely powerful and flexible environment.

We present in the first half of this paper a new virtual DSP
architecture designed starting from a platform independent
profiling of the SAOL language; the DSP is able to exploit the
block-based data level paraldism contained in many audio
synthesis and processing algorithms, and to consistently reduce
the SA execution overhead. In the second half of the paper we
show how the DSP has been extended to include the complete
AudioBIFS functionality, making it a complete audio engine for
standardized multimedia description frameworks. The easy and
effective porting of the virtual engine on a V-LIW DSP device
validates the approach by showing how the task partitioning and
the instruction set are suitable for modern processor/superscal ar-
DSP mixed solutions.

2. THE SAINT VIRTUAL DSP

The SAINT (for Structured Audio INTerpreter) SA decoder find
its foundation in a systematic approach to the estimation of the
SA decoding complexity, which must necessarily move from a
time-dependent analysis and profiling of its typical applications.
A new abstract method for measuring decoding complexity of
normative Structured Audio programs has been developed [4]
that provides platform independent metrics and that permits to
carefully profile the execution of a program in function of time;

Y In the MPEG-4 termi nology the execution of a SAOL program
is called decoding

ICASSP-1

in this way it is possible to characterize critical situations and to
define a subset of the SAOL core library that is candidate for
stronger optimization [5]. This new profiling method has been
adopted in the MPEG-4 standard to define SA Levels of
complexity and for SA Conformance testing [6].

2.1. Feedback analysisin Structured Audio

In parallel with the analysis of complexity, a second fundamental
decoding issue has been considered: the possibility of a block-by-
block (b-b-b) execution in SA, without altering the output of the
normative s-b-s language specification.

Efficiency of a block-based execution over a sample based
one has been previously proofed in literature [7]. In SA, what can
prevent from executing b-b-b is the presence of an explicit
feedback in the SAOL code. By explicit feedback we intend here
a feedback programmed using more than one line of code, while
an implicit one is for instance the case of the iir library function,
where the feedback is hidden at a lower level, visible by the
interpreter but not by the programmer. Explicit feedbacks have
been detected by a smple graph analysis only in afew situations.
The most obvious is when a new value is assigned to an audio
variable after its first use. These cases have to be detected and
trested in a special way, while the rest of the code can be
executed on a possibly large b-b-b basis, typically with a block
length of B, as defined in (1). Of course, this can be done until the
latency introduced by the block processing in the real-time
synchronization of the complete MPEG-4 decoding process is
tolerable (see [3]).

2.2. The SAINT architecture

Combined analyses of complexity and feedback demonstrated
that in most cases an efficient implementation of the SA decoder
can be obtained by the design of an extended multimedia DSP,
based on avectorial instruction set [8].

Since many multimedia-oriented superscalar devices are
nowadays available, we imagined to design a virtual device with
an instruction set that best matches the parallelism exploitable in
many state-of-the-art DSPs, processors and multimedia
processors [9,10].

With the SAINT approach, the entire decoding is splitted
between two independent layers. the decoder/compiler layer and
the instruction layer. In this way the complete process is divided
into two separable parts, the initialization task and the resl
processing task; once this is accomplished, it is not difficult to
run the first phase on a general purpose processor, and to execute
the intensive processing possibly in the same CPU, but with the
same effectiveness in a separate co-processor, single or even
distributed; thisis achieved through a simple sequence of method
calls after a specific resource allocation that means allocation of
the data space, method codes and their correct sequence. This
architecture was conceived to target embedded solutions for
standalone devices, which usually contain custom solutions based
on low-power processors and DSPs.

The SAOL compiler is completed by a post-processor that
optimizes some parts of the code, decomposes the standard
library into core operations and finaly performs a feedback
detection analysis over the potential cases.

2.3. The SAINT DSP engine and its performance

The instruction set of the SAINT virtua DSP is essentially
composed by macroinstructions, so called because they are
conceived to possibly operate on vectors of samples. These
macroinstructions are the methods that are directly executed by
the ALU of the machine. All of them are defined in vectoria
form, where the block of data on which the instruction is
executed is defined by the values of two special registers in the
machine, start and end. Unlike the case of e.g. the JAVA virtua
machine [11], in SAINT there is no memory stack to work on, all
the instructions directly operate on memory locations, and then
they are defined with (usually) two or three addresses to load data
and store results. This approach is more effective than the JAVA
stack in our case, since here the coded information is transmitted
by the MPEG-4 bitstream, and then there is no need to
"compress' the compiled byte-code.

The scheduler works in direct contact with the ALU of the
DSP, and then it must run on the same device where the code is
being executed, to avoid useless communication delays between
the two units. In fact, the scheduler can be seen as a master DSP
unit working together with the processing DSP and executing a
fixed, "hardwired" program of control and data postprocessing.

The virtual DSP architecture has been tested by severa
measurements with different versions of the decoder. The SAINT
tool has been compiled on different platforms. we report here
results on a PC with an Intel Pentium Il a 400 MHz with 128
MB of RAM running Windows NT4. The software was compiled
using BorlandC++ 5.02; optimization for speed was introduced.
Many different groups of simulations have been conducted:
results for a typical sequence of synthesis, based on wavetables
with additional reverberation, are reported in Figure 1.

Wavetable Piano

N T
]m 4

w 4 |

m 4 |

55
40 4 |
185
0] 124 .
0 ‘ ‘ ‘
1 2 3 4 5

Figure 1. Experimental results for different decoding
approaches. Y-axis is time in seconds. The values of the
five columns from left to right are the decoding time for:
1) the MPEG-4 SA reference software; 2) the SAINT
decoder without any optimization; 3) the SAINT decoder
with a block-by-block execution, when possible; 4) the
SAINT decoder with the "Optivec" free downloadable
vectorial libraries for Pentium; 5) the duration of the
complete scorefile

The mean polyphony of the score file, considering the effect of
sustain, is approximately 3.5, the score duration is 18.5 seconds,
the interpolation factor is 3. A considerable amount of static

ICASSP-2

optimization already gives a speed-up factor of 3 in comparison
with the MPEG-4 reference software (columns 1 and 2). The b-b-
b execution further introduces a speed-up factor of nearly 3, here
with a block length of 441 (srate = 44100 and krate = 100).
Finaly, the introduction of handcrafted vectorial libraries on some
basic functions, to replace macroinstructions written in C, shows
how this approach can be effective: consider in fact that
paralelism is exploited here only at the software level, while the
vectoria instruction set can be optimized with a much greater
efficiency on atruly parallel co-processor.

SAINT has also been compared with another available SA
decoder based on a cross compiler approach (SAOL to C, see
[12]), which requires of course a C compiler running on the target
device while portability of SAINT only requires a C compiler for
the device. Compiling the C code in the same conditions and on
different test sequences we have obtained results showing that
SAINT is in the mean 20-30% slower than the cross-compiled
approach. This figure is considered more than acceptable
considering the well-known drawback in speed between
interpreted and compiled solutions.

3. MULTIMEDIA EXTENSIONSTO SAINT

An architecture and an instruction set conceived and optimized
only for Structured Audio reveal several limitations when the
device must be used for more general multimedia-oriented
applications. Even if SAOL can potentially be used to describe
any kind of algorithm, being a programming language and then a
genera audio coding scheme [13], many fundamental features of
typica multimedia applications cannot be described with the
necessary effectiveness.

Moving from the purpose of extending the MPEG-4 decoder
to a complete AudioBIFS subtree processor, severa extensions
have been included in SAINT to support at best functionality of
higher-level multimedia description languages.

3.1. From SAINT to BIFSAINT

The implementation of the complete AudioBIFS subtree requires
the solution of non-trivial implementation challenges, first of all
the correct synchronization between the Structured Audio built-in
scheduler, which is active to process the AudioFX nodes, and the
BIFS scene scheduler. An evaluation of practical implementation
issues suggests that an efficient solution can be the integration of
the complete audio subtree into an extended orchestra (the
collection of functions to run an SA program), where all the
nodes are transformed into SAOL agorithms and linked to the
input/output buffers of the eventual AudioFX nodesin the correct
sequence. It was then decided to "cross-compil€" the AudioBIFS
subtree to a sequence of extended SAOL functions and to
proceed then to the execution of the complete audio scene using
the SA scheduler as the master mechanism for synchronization.
This solution only requires a correct synchronization with the
video part of the BIFS scene, whenever this should be present.

We mentioned earlier the necessity to extend the SAOL
functionality; these extensions are necessary on both the
instruction set and the memory management of the DSP, to deal
essentially with more dynamical characteristics of BIFS, but also
of other commonly used languages like VRML.

In SAOL the several instruments (i.e. the synthesis or
processing functions) are statically defined at the beginning of the
decoding process, when the bitstream header is received, and so
are the routings among them; routings define the relationships
among the input and output buffers of the different instruments.
Only new instances of an existing instrument can be transmitted
by streaming information.

In BIFS, as aso in VRML, this is no more enough because
routings among the nodes are dynamic and new nodes can be
instantiated in the middle of the scene representation, when new
commands are received via the bitstream. Since in the proposed
system the interaction between the parser/compiler and the
execution engine is kept as far as possible separate, the virtua
DSP must be made able to process streaming commands dealing
with dynamic configurations of the input/output buffers, and
above al with creation of new instruments. For instance, a new
mixing AudioMix node could be instantiated, with a mixing
matrix processing four inputs to produce two outputs, linked with
sources and to target post-processing nodes.

A second class of extensions is necessary to support
functionality provided by the more advanced nodes of BIFS. If
some functions like mixers, delay lines and switchers are not
difficult to trandate into SAOL, on the other hand AudioBIFS
provides even the possibility to spatialize monophonic sources
using complex schemes such as room modelling or perceptua
parameters. It is evident that in such cases some dedicated
instructions are necessary to limit the overhead of the interpreted
decoder to a minimum and to better optimize the transcoding into
the intermediate format.

Finally, BIFS allows the presence of nodes working at
different sampling rates, and lower rates must be converted to the
higher ones at the most advanced point in the processing tree [3].
Thisis not possible in standard SAOL, where all the instruments
must work at the same audio rate. It is then necessary to extend
the scheduler with the capability to treat different subgroups of
instruments (i.e. different orchestras) that are sequenced through
asynchronous sampling-rate converters at the correct point.

3.2. The ThreeDSPACE Audio framework

The concept and design of SAINT and of its extended BIFS
version are inserted in the context of the ThreeDSPACE project.
ThreeDSPACE is a mixed academic/industrial research project
aiming at implementing advanced 3-D audio processing and
rendering methods, compatible with the MPEG-4 AudioBIFS
specification. The chosen technology for spatial processing in
ThreeDSPACE iswave field synthesis (WFS, [14]). To apply this
technology loudspeaker stripes, containing a high number of
separate channels, must be mounted directly to walls. The signals
are generated by dedicated signal processors, which need suitably
encoded sound-field representations as inputs. A spherical wave
coming from avirtual source behind the array, or the extrapolated
wavefront of a source in front of the array can be reproduced
using the WFS solution [14].

In this framework, SAINT is used as signa generator and
preprocessor. The composition of the AudioBIFS scene, the only
standardized format able to support the necessary information for
WFS rendering, is not completed by the virtual DSP itself.
Instead, monophonic audio sources and side information for
spatial control are sent to the output of a first processing stage,

ICASSP-3

and active loudspeaker stripes will produce the necessary number
of channels (64 per stripe) in order to generate the holophonic
sound field. The overall system and data flow of the SAINT
decoder used in ThreeDSPACE is represented in Figure 2.

f—1

Mpega
bitsream
SA-
BLFS)

Parsing

Compiiling

Post-proccessing

N
wodmd fexuan

Virtual DSI>
instantiation

Byte
codc

Scheduler

Nd) MITA

rew

AR
SEDYAESAN0TSIN

Figure 2 The data flow through the ThreeDSPACE audio
framework. Mono channels and control information are
processed by active arrays of loudspeakers to produce
suitable WFS multiple channels.

The entire system can be splitted into three main stages. The first
one, dealing with the parsing and compilation of the MPEG-4
bitstream, has been implemented on a general purpose CPU
platform. The second stage supports the virtual DSP and has been
ported on a Philips TriMedia multimedia DSP, a V-LIW
architecture. The processor runs a 100MHz and its V-LIW
instruction set alows up to five simultaneous operations to be
issued. The proposed block-by-block approach shows its potential
exploiting this feature, reaching average values of 4.5 processing
units busy per clock cycle in some benchmarks. Moreover, since
the feedback analyzer and the virtual DSP execution engine a
priori avoid the presence of feedback loops, a significant speed-up
has been measured declaring specia pointers not referring to
overlapping memory locations. The aggressive exploitation of
these features lets the virtual DSP run at a speed comparable to
the one obtained on a 200MHz genera purpose CPU (Pentium
MMX), with output audio formatting in addition.

Monophonic output channels are then sent in ADAT format to the
arrays of loudspeakers, where WFS is implemented with the
support of side control information delivered by the BIFSAINT
decoder on afurther channel.

4. CONCLUSION

We have presented in this paper the design and implementation of
a virtual DSP engine dedicated to exploitation in multimedia
environments like those proposed by the new MPEG-4 standard.
Additional information about our work on SAINT and
ThreeDSPACE can be found at http://Isiwww.epfl.ch .

5. REFERENCES

[1] Roads, C., 1996. "The Computer Music Tutorial".
Cambridge, MA: MIT Press.

[2] Scheirer E.D., B. L. Vercoe: "SAOL: The MPEG-4
Structured Audio Orchestra Language." Computer Music
Journal 23 (2) : pp. 23-35, 1999.

[3] Scheirer, E., J. Huopaniemi and R. V&&nanen "AudioBIFS:
The MPEG-4 Standard for Effects Processing.” Proc.
DAFX98 Workshop on Digital Audio Effects, Barcelona,
Nov. 1998

[4] Zoia, G. "A method for Complexity Measurements in
Structured Audio". ISO/IEC JTC1/SC29/WG11 (MPEG98)
document M 3602, Dublin - July 1998.

[5] ZoiaG., C. Alberti "A Virtual DSP Architecture for MPEG-4
Structured Audio”, Proceedings of the COST-G6 Conference
on Digital Audio Effects - DAFx-00, Verona, Italy,
December 2000.

[6] ISO/NEC JTCUSC29/WG11 (MPEG99) document N3067-
sub3. "Information Technology - Coding of Audio-Visua
objects. Pat 4. Conformance. Subpart 3: Audio
Conformance”. MPEG-4 Audio International Standard.

[7] Dannenberg, R. B., N. Thompson: "Real-Time Software
Synthesis on Superscalar Architectures'. Computer Music
Journal 21 (3) : pp. 83-94, 1997.

[8] ZoiaG., C. Alberti "An Efficient Block-Based Interpreter for
MPEG-4 Structured Audio", Proceedings of the IEEE
International Symposium on Circuits and Systems - ISCAS
2000, Geneva, Switzerland, May 2000.

[9] Espasa R., M. Vaero: "Exploiting Instruction- and Data
Level Paralelism". IEEE Micro, September - October 1997 :
20-27.

[10] Flynn, M. J.: "Computer Architecture: Pipelined and Parallel
Processor Design". Sudbury, MA: Jones and Bartlett
Publishers, 1995.

[11] Lindholm T. and F. Yellin "The JAVA Virtua Machine
Specification”. 2nd Edition (JAVA series), Addison Wesley,
1999.

[12] Lazzaro J. and J. Wavrzynek "MPEG-4 Structured Audio:
developer tools' CS Division, UC Berkeley,
http://www.cs.berkel ey.edu/~lazzaro/sal/index.html

[13] Scheirer E., Y. Kim "Generdized Audio Coding with
MPEG-4 Structured Audio". AES 17" conference on High
Quality Audio Coding.

[14] Boone M., E. Verheijen, G. Jansen "Virtua Redlity by
Sound Reproduction Based on Wave Field Synthesis'
Proceedings of the 100th AES Convention, Copenhagen,
Denmark, 1996.

ICASSP-4

