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ABSTRACT

In recentwork, we proposedhe rational all-pass transform
(RAPT) asthe basisof a spealkr adaptatiorschementendedfor
usewith a large vocalulary speechrecognitionsystem. It was
shavn that RAPT-basedadaptationreducesto a linear transfor
mation of cepstralmeansmuchlike the betterknovn maximum
likelihoodlinear regression(MLLR). In a setof speechrecogni-
tion experimentsconductedon the SwitchboardCorpus,we ob-
taineda word error rate (WER) of 37.9% using RAPT adapta-
tion, a significantimprovementover the 39.5% WER achieed
with MLLR. In the presentvork, we proposethe sine-log all-pass
transform (SLAPT) asa replacementor the RAPT. Our findings
indicatethe SLAPT is just as effective asthe RAPT at reducing
WER whenusedasthe basisfor a variety of speakr compensa-
tion schemesbut in additionconducego far moretractablecom-
putationof transformecdcepstralsequencesandthe estimationof
optimaltransformparameters.

1. INTRODUCTION

In prior work we proposedherational all-passtransform (RAPT)
asthebasidfor avarietyof practicalspeakrcompensatioschemes
intendedo reducetheword errorrateof alargevocahulary speech
recognitionsystem. In [6] we consideredhe useof the RAPT
to transforma setof cepstralfeaturesto bettermatcha spealer-
independen{SI|) model,asis typically donein vocaltractlength
normalization[2]. In [5] we madeuseof the RAPT to transform
the cepstralmeansof a SI model, asis currently donein most
speakr adaptatiorschemeg4]. We extendedthis spealer adap-
tation approachin [8] to handlethe caseof multiple regression
classespur findingsthereindicatedthat RAPT-basedadaptation
wasat leastaseffective asthe betterknowvn maximumlik elihood
linear regression(MLLR) [4] for moderateamountsof unsuper
visedenrollmentdata,but far superiorwhenusedwith 10 sec. or
lessof enrollment.

As reportedin the aforementionedvork, the principaladwan-
tagesof the RAPT in formulatingspealker compensatioschemes
areits extremely parsimoniougparameterizatiorandits linearity
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in the cepstraldomain;the latter propertyallows the RAPT to be
usedasadirectreplacemenfior MLLR in speakr-adaptedraining
(SAT) [8]. The principal disadvantage of the RAPT aspresented
heretoforejs thecompleity of theexpressionshatmustbeevalu-
atedin calculatingtransformedepstrasequenceandin perform-
ing parametepptimizationwith respecto a maximumlikelihood
(ML) criterion. In the presentvork, we remedythis deficieny by
proposinganew functionalform for theall-pasgransformdubbed
the sine-log all-pass transform (SLAPT). The SLAPT retainsthe
very desirablecepstraldomainlinearity of the RAPT, andis sim-
ilar in otherregards,but in additionis muchmoretractablewhen
usedfor thecalculationof transformedepstrasequenceandML
parameteestimation.UnliketheRAPT, the SLAPT doesnothave
arationalform. Luckily, however, this is not a drawvbackfor the
speakr compensatiorapplicationwhich comprisesour chief in-
terest.

2. RATIONAL ALL-PASSTRANSFORMS: A REVIEW

Let us bagin by reviewing earlierwork on the applicationof all-
passtransformsto spealer compensation.Considera real, even
cepstralsequence[n] andits associated-transformC(z), here
expressedis
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With this definitionc[n] canberecoeredfrom C(z) throughthe
contourintegral

cn] = %%C(z) 2 (g, 2

forall n = 0,4+1,+£2,.... In whatfollows, we shall consider
Equationg1-2)ascomprisingthetransform pair c<+C.
Considemow aconformalmap@, which we hopeto useasa
mechanisnfor calculatinga normalizedcepstralsequencé from
theinitial sequence. Thebilineartransform(BLT) [1] is a con-
formal mapwell-suitedto this application;it canbe expressedis
Q(z) = (2 — a)/(1 — az) wherea isrealand|a| < 1. It
is alsopossibleto formulatemoregeneralconformalmapswhich



subsumehe bilineartransform asindicatedby
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where8 andy arecomple quantitiessuchthat|g]|, |y| < 1. We
shallreferto suchfunctionsasrational all-passtransformsdueto
the rationalform of (3). The mostsalientcharacteristicef these
mapsare:

Q) =1 (4)
Q') =QE" (5)

Equality (4) is indeedthe reasorthat conformalmapssuchas(3)
are generallyreferredto asall-pass systems in the digital signal
processinditerature[9, Section5.5].

Using an RAPT, we shouldlike to transforma cepstralse-
guence: in somedesireablenanner Hence Jet usdefinethecom-
positionC’ = C o  andassociatewith e} a transformedcep-
stral sequencé, suchthaté«C. It is straightforward to demon-
strate[7, §2.3] thatthe coeficientsof ¢ aregivenby
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The linearity of the cepstraltransformatioreffectedby a confor
mal mapis apparenfrom (6); this linearity is adirectresultof the
analyticity of Q onthecontourof integration,in this casetheunit
circle.

We canexploit theaforementionednalyticityfurtherby form-
ing thetransformpair ¢<+@Q. For example,it is straightforvardto
shav thatthe simpleBLT admitsthe seriesrepresentation

Q(z)=—a+1-a’)z+a(l—a’)z"+---

from which the coeficientsq of the seriesexpansionareavailable
by inspection.lt is alsopossibleto obtainseriesexpansiondor B
and G appearingn (3); see[7, AppendixC]. Upon definingthe
transformpairsa<> A, b« B, andg«+G, thefinal sequence for
themoregeneraRAPT is readily obtainedfrom

g=axbxg (7

wheresx is the convolution operator The analyticity of Q™ canbe
exploited to form a transformpair ¢{™) Q™ for every m > 0.
In general the sequenceg™ will have infinite extent for both
positive and negative valuesof n. As Q™ = Q x Q™ !, the
several sequenceg‘™ for all m > 1 can be calculatedbased
solelyon knowledgeof ¢t via therecursion

g™ = ¢(m=D 4 g ®)
Moreover, thedesiredransformedepstracanbe calculatedrom
gnl= Y cmlg™n] ©)

As c is even, it is uniquelyspecifiedby its causalportion. Let
usfollow [9, Chapterl2] anddefinez asthe causalportion of ¢,
whichimpliesthatZ canbe obtainedfrom

&[n] =) anm x[m] (10)

where
q(m)[o]’ forn = 0,m>0
0, forn>0,m=0 (11)

Anm =

are the componentf the transformation matrix A = {anm};
see[7, §3.3].

3. SINE-LOG ALL-PASSTRANSFORMS

In this sectionwe considera differenttype of all-passtransform
thatsharesnary of the characteristicef the RAPT, but is simpler
in form andthusmoreamenableo numericalcomputationLet us
begin by definingthesine-log all-pass transform (SLAPT) as

Q(2) = z exp F(2) 12)
where
K
=Zaka(z) fOI'Ozl,... ,ax € R, (13)
k=1
Fi(z) = jwsin (? log z) (14)

andK is thenumberof freeparameterin thetransform.Thedes-
ignationsine-logis dueto thefunctionalform of Fj. Obsere that
Fy(z) is single-\alued even thoughlog z is multiple-valued|[7,
§3.5]. Moreover, applyingthewell-known relationsin z = (e/* —
e~9%) /24 to (14) provides

Fy(z) = z (zk — z7k> (15)

which is a moretractableform for computation. Note that Q as
definedin (12) satisfieq4-5).

In orderto calculatethe coeficientsof atransformedtepstral
sequencén themannermescribedn Section2, it is first necessary
to calculatethe coeficientsq in the Laurentseriesexpansiorof @;
this we do asfollows: For F' asin (13) set

G(z) = exp F(2) (16)

andlet g denotethe coeficientsof the Laurentseriesexpansionof
G valid in anannularregion includingtheunit circle. Then

gln] = %fG(z) 2~ g @17

wherethe contour of integrationis the unit circle. The natural
exponentialadmitsthe seriesexpansione® = Y > £ for all
z € C, sothat

for all z € C\{0}. As explainedin [7, §3.5] substitutingthelatter
into (17) provides

gln] = 2_: mLZL me (z)z~ "tV 4z (18)



Thesequencé of coeficientsin theseriesexpansiorof F' is avail-
able by inspectionfrom (13) and (15). Defining f(™) suchthat
f™ & F™ andapplyingthis definitionto (18) we find

gl = 3 = /™

Moreover, from the Cauchyproductit follows f™) = f s =1
form = 1,2,3,.... Equation(16) impliesthatQ(z) = z G(z),
sothedesiredcoeficientsaregivenby

gln] = g[n —1] (19)

foralln =0,+1,+2,....

The developmentof this sectionindicatesthe primary advan-
tageof the sine-log APT with respectto the rational APT con-
sideredin earlierwork; i.e., the computationsare muchsimpler:
The basicseriesexpansionsassociateavith the SLAPT aremore
straightforvard, asis apparenbn comparingeqgns.(17-19)with
theircounterpartén [7, AppendixC]. With the SLAPT, thereis no
needto derive specialexpansiondor thesmallanglecaseasis also
donefor theRAPT in [7, AppendixC]. Moreover, duringnumeri-
cal optimizationof SLAPT parameterghereis no needto perform
co-ordinatecornversionnor to includea barriertermin the objec-
tive function; asdiscussedn [7, §5.3], both of thesearerequired
for numericaloptimizationof the RAPT.

4. SPEECH RECOGNITION EXPERIMENTS

In this sectionwe summarizethe speectrecognitionexperiments
experimentsundertaken to comparethe effectivenessof RAPT-
and SLAPT-basedadaptatiorat reducingthe word error ratesof
large vocalulary continousspeectrecognition(LVCSR) systems.
Theseexperimentswere conductedusing training and test mate-
rial extractedfrom the Switchboard Corpus, a collection of ap-
proximately2,500conversationsonductedver standardJS tele-
phonédinesbetweertwo peoplepreviously unknawvn to eachother
This corpusaboundsn all thephenomenghatmake theautomatic
recognitionof spontaneouspeecha difficult task: extreme co-
articulationeffects,stopsandrestartsungrammaticaivord usage,
andvowel reductioncomprisea partiallist.

Of thecompleteSwitchboardCorpusapproximatelyl40hours
of dataare setasidefor systemtraining. For the purposeof the
experimentsdescribedbelov, however, a subsetof the complete
training corpuswas used. This subsetdubbedMsTrain, is com-
posedof nearly800completeconversationspolenby 409speak-
ers,andtotals50.0hrs. of speech.Thetestsetusedin all exper
imentswas comprisedof both sidesof 19 Switchboardconversa-
tions, for atotal of 18,000words.

The featuresusedfor speechrecognitionwere composedf
thefirst 12 perceptualinearprediction(PLP)cepstratoeficients[3]
alongwith first and secondorder differencecoeficients derived
from thes€® Parametersorrespondindo short-timeenegy and
its first andsecondorderdifferencewerealsoestimatedfor ato-
tal featurelengthof 39. Cepstraimeansubtractionvasappliedto
the featuresof the testandtraining setson eithera perutterance

1The MsTrain setwasprovided by Dr. JosephPiconeandhis students
at MississippiStateUniversity

2Theauthorswish to thankDr. Steve Youngof CambridgeUniversity
for providing theimplementatiorof PLP cepstralextractionusedin these
experiments.

% Word Error Rate
Feature Full-Matrix MLLR

Normalization || No Yes
None 40.6 36.3
RAPT-1 38.8 34.8
RAPT-5 39.4 35.0
SLAPT-1 38.8 34.7
SLAPT-5 39.6 35.3

Table 1. Word error ratesfor systemstrainedwith original and
APT-normalizedfeatures,both with and without two-regression
classMLLR/SAT.

or percorversationsidebasis,asrequiredby the particularexper
iment.

All HMM training and test was conductedusing HTK, the
HiddenMarkov Model Toolkit [10] asaugmentedy the Home-
wood Extensions.The HMMs weretrainedwith cross-verd tri-
phones. Eachtriphonewas composedf three states,and each
statewas composedf 12 Gaussians.The standardHTK imple-
mentationof the decisiontree algorithmwas usedto generatea
total of 6,712stateclustersn thefinal HMM. All word-errorrates
takulatedbelav were obtainedby rescoringa setof trigram lat-
ticeswith a modifiedversionof the HTK decodingtool. The vo-
calulary usedin generatingand rescoringthe lattices contained
approximately40,000words.

Speaker Normalization

The first setof experimentswasintendedto establishthe capac-
ity of speakrdependen{SD) normalizationof cepstralfeatures
basedon the APT to reducethe word error rate of a large vocab-
ulary corversationalspeectrecognition(LVCSR) system. In all
casegeportedbelow, featurenormalizationwhenused,was ap-
plied to bothtestandtraining featuresto provide a matchedcon-
dition. The normalizationparametergor eachspealer in the test
and training setswere estimatedwith a simple GMM using the
proceduredelineatedn [7, §6.1]. Single-passetraining[10] was
usedto move the multiple-mixtureHMM trainedwith theoriginal
cepstrafeaturego theappropriatelynormalizedsetof features.

Featurenormalizationwastestedn combinationwith MLLR.
As before,MLLR, whenused,wasappliedto bothtestandtrain-
ing; the basic SAT procedure[7, §4.4] was usedfor the latter.
Adaptationof cepstrameansvasconductedvith two fixedregres-
sionclassesin performingunsupervise@stmatiorof MLLR pa-
rametersaninitial setof errorfultranscriptobtainedby decoding
with the unadaptedaselinesystemwasusedto performthe nec-
essarnyforward-backvard passesThis baselinesystemachieved a
WER of 40.6%.

Table 1 reportsresultsobtainedwith systemstrainedon the
50 hr. MsTrain set. From theseresultsit is apparenthat feature
normalizationwith the one-parameteRAPT (i.e., the BLT) pro-
videsa WER reductionof approximatelyl.5% absolute andthat
thisreductionis additive with thatachievedusingMLLR/SAT. Us-
ing APT-basedeaturenormalizatiortogethemwith MLLR adapta-
tion provided a total WER reductionof 5.8% beginning with an
uncompensatesystemthatachieved 40.6%WER. Also apparent
is that normalizationwith the RAPT-5 transformprovides some
error rate reductionwith respectto the un-normalizedbaseline,
but that this reductionis not so large asthat achieved using the



Enrollment % Word Error Rate
Set RT-1 [ RT-9 | SF1 ] ST9 [ MLLR
Baseline 41.5

2.5min. 385 | 373 | 384 | 374 | 37.1
60 sec. 383 | 374 | 382| 37.5| 375
30sec. 385 | 376 | 383 | 37.7| 379
10sec. 38.7 | 37.8 | 386 | 38.0| 40.1
5sec. 38.8| 379 | 38.6| 38.2| 455

Table 2. Resultsof rapid adaptationexperimentswith unsuper
visedenrollmentdata. RT (resp.,ST) denoteghe rational(resp.,
sine-log)all-passtransform.

simpler one-parametetransform. This resultis somavhat coun-
terintuitive: It mayindicatethata simpleGMM is notsuficientto
estimatedetailed multi-parametetransforms.

Also reportedin Table 1 are the resultsof a set of exper
iments undertakn to determinethe WER reductionachievable
with SLAPT-basedhormalization. Theseexperimentsusedeither
aone-or five-parametetransform,oncemorein combinationwith
MLLR/SAT. Fromtheseaesultswe seethattheRAPT- andSLAPT-
basechormalizatiorschemegrovide nearlyidenticalWER reduc-
tions,whetheror notMLLR/SAT is usedn additionto featurenor-
malization.As with the RAPT, onefreeparameteprovidesamore
effective featurenormalizatiorthanfive free parameters.

Rapid Speaker Adaptation

We alsotestedthe capability of the APT to reducethe error rate
of anLVCSRwhenusedfor spealer adaptation.Theresultsof a
setof experimentsconductedo comparefull-matrix MLLR and
APT-basedadaptatioron a taskwith limited unsuperviseenroll-
mentdataaregivenin Table2; in keepingwith popularusagewe
referto this scenaricasrapid adaptation. For theseexperiments,
one global transformationwas usedfor eachspeakr and CMS
wasappliedon a per utterancebasis.All systemswveretrainedon
the MsTrain set[7, §6.2]. The errorful transcriptsusedfor unsu-
pervisedparameterbe it MLLR or APT, were obtainedwith the
unadaptedbaselinesystemwhich achieveda WER of 41.5%. As
is apparentrom the table, when 2.5 minutesof datawere used
during the unsuperviseestimationof transformatiorparameters,
the performanceof MLLR andthe nine-parameteAPT systems
were nearlyidentical. In this instance the useof morefree pa-
rametersn the all-passtransformresultedin furtherreductionsn
error rate. Also notevorthy is that asthe amountof adaptation
datawasreducedthe performanceof the MLLR systemquickly
deterioratedsuffering a catastrophiaegradationat 10.0sec.and
less.The APT-basedsystemspn the otherhand,experiencednly
mauginal performancelegradationsproviding areductionn WER
of approximately3.5% absolutewith only 5.0 sec. of enrollment
data. This differencein characteristicés surelydueto the sparse
parameterizatioof the APT.

5. CONCLUSIONS

In this work we have introducedthe sine-logall-passtransform
(SLAPT),areplacementor therationalall-pasgransform(RAPT)
consideredh prior work. In asetof unsupervisedpealercompen-
sationexperimentonductedn speechmaterialfrom the Switch-

boadCorpusbothtransformaverefoundto give verycomparable,
if notindentical,reductionsn word error rate (WER). In a setof
speakr normalizationexperimentsthe gainfrom APT-basechor-
malizationwasfoundto beadditive with thatprovided by corven-
tional maximumlikelihoodlinear regression(MLLR). The com-
bination of APT normalizationwith MLLR adaptationprovided
a error rate reductionof 5.8% absolutecomparedto an uncom-
pensatedaselinesystemwhich achieved 40.6% WER. In a set
of unsupervisedpealer adaptatiorexperimentonductedn the
SwitchboardCorpus,MLLR- andAPT-basedsystemsverefound
to give nearlyidentical reductionsin WER when an entire con-
versationside was usedfor spealer enroliment. As the amount
of adaptatiordatawasreduced however, the performanceof the
MLLR systemquickly deterioratedsufieringacatastrophiclegra-
dationat10.0sec.andless.The APT-basedsystemspn the other
hand,experiencedonly mamginal performancedegradations pro-
viding a reductionin WER of approximately3.5% absolutewith
only 5.0 sec. of enrolimentdatafrom a baselineof 41.5%. This
differencein characteristicss surelydueto the sparseparameteri-
zationof the APT.

The Homevood Extensions(THE) are a setof C++ classes
implementingthe spealer adaptatiorandtraining algorithmsdis-
cussedn thiswork; THE is publicly availablefor all non-commercial
useatisl.ira.uka.de/"jmcd . THE hasbeenportedto the
JanusSpeechRecognitionToolkit (JRTK), althougha complete
setof experimentalresultsobtainedwith JRTK wasnot available
atthetime of publication.
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