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ABSTRACT

In recentwork, we proposedthe rational all-pass transform
(RAPT) asthebasisof a speaker adaptationschemeintendedfor
usewith a large vocabulary speechrecognitionsystem. It was
shown that RAPT-basedadaptationreducesto a linear transfor-
mationof cepstralmeans,muchlike the betterknown maximum
likelihoodlinear regression(MLLR). In a setof speechrecogni-
tion experimentsconductedon the SwitchboardCorpus,we ob-
taineda word error rate (WER) of 37.9% using RAPT adapta-
tion, a significant improvementover the 39.5% WER achieved
with MLLR. In thepresentwork, weproposethesine-log all-pass
transform (SLAPT) asa replacementfor theRAPT. Our findings
indicatethe SLAPT is just aseffective asthe RAPT at reducing
WER whenusedasthe basisfor a variety of speaker compensa-
tion schemes,but in additionconducesto far moretractablecom-
putationof transformedcepstralsequences,andtheestimationof
optimaltransformparameters.

1. INTRODUCTION

In prior work weproposedtherational all-pass transform (RAPT)
asthebasisfor avarietyof practicalspeakercompensationschemes
intendedto reducetheworderrorrateof alargevocabularyspeech
recognitionsystem. In [6] we consideredthe useof the RAPT
to transforma setof cepstralfeaturesto bettermatcha speaker-
independent(SI) model,asis typically donein vocal tract length
normalization[2]. In [5] we madeuseof theRAPT to transform
the cepstralmeansof a SI model, as is currently done in most
speaker adaptationschemes[4]. We extendedthis speaker adap-
tation approachin [8] to handlethe caseof multiple regression
classes;our findingsthereindicatedthat RAPT-basedadaptation
wasat leastaseffective asthebetter-known maximumlikelihood
linear regression(MLLR) [4] for moderateamountsof unsuper-
visedenrollmentdata,but far superiorwhenusedwith 10 sec.or
lessof enrollment.

As reportedin theaforementionedwork, theprincipaladvan-
tagesof theRAPT in formulatingspeaker compensationschemes
areits extremelyparsimoniousparameterization,andits linearity
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in thecepstraldomain;the latterpropertyallows theRAPT to be
usedasadirectreplacementfor MLLR in speaker-adaptedtraining
(SAT) [8]. Theprincipaldisadvantage of theRAPT aspresented
heretofore,is thecomplexity of theexpressionsthatmustbeevalu-
atedin calculatingtransformedcepstralsequencesandin perform-
ing parameteroptimizationwith respectto a maximumlikelihood
(ML) criterion. In thepresentwork, we remedythis deficiency by
proposinganew functionalform for theall-passtransform,dubbed
the sine-log all-pass transform (SLAPT). TheSLAPT retainsthe
very desirablecepstraldomainlinearity of theRAPT, andis sim-
ilar in otherregards,but in additionis muchmoretractablewhen
usedfor thecalculationof transformedcepstralsequencesandML
parameterestimation.UnliketheRAPT, theSLAPTdoesnothave
a rationalform. Luckily, however, this is not a drawbackfor the
speaker compensationapplicationwhich comprisesour chief in-
terest.

2. RATIONAL ALL-PASS TRANSFORMS: A REVIEW

Let us begin by reviewing earlierwork on the applicationof all-
passtransformsto speaker compensation.Considera real, even
cepstralsequence��� ��� andits associated� -transform 	�
���
 , here
expressedas
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for all �.�0/2143 � 153 � 1767676 . In what follows, we shall consider
Equations(1–2)ascomprisingthetransform pair �98:	 .

Considernow a conformalmap ; , which we hopeto useasa
mechanismfor calculatinga normalizedcepstralsequence<� from
the initial sequence� . Thebilinear transform(BLT) [1] is a con-
formal mapwell-suitedto this application;it canbeexpressedas;=
���
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 where B is real and G BHGJI � . It
is alsopossibleto formulatemoregeneralconformalmapswhich



subsumethebilineartransform,asindicatedby;K
���
L� �M@>B� @NB)�O P5Q R �S@>T� @NT)U7� �S@>T U� @>T%�O P5Q R � @WV U ��S@NV � @>V���S@>VXUO P5Q R� YJ
���
 ZK
���
 [�
���

(3)

whereT and V arecomplex quantities,suchthat G T\G]1�G V�G I � . We
shall referto suchfunctionsasrational all-passtransformsdueto
the rationalform of (3). Themostsalientcharacteristicsof these
mapsare: G ;=
�^4_4`a
7G�� � (4); �X( 
���
��b;=
�� �%( 
 (5)

Equality (4) is indeedthereasonthatconformalmapssuchas(3)
aregenerallyreferredto asall-pass systems in the digital signal
processingliterature[9, Section5.5].

Using an RAPT, we should like to transforma cepstralse-
quence� in somedesireablemanner. Hence,let usdefinethecom-
position <	c�d	feJ; and associatewith <	 a transformedcep-
stral sequence<� , suchthat <�98 <	 . It is straightforward to demon-
strate[7, g 2.3] thatthecoefficientsof <� aregivenby<��� ���a� ��hH����� ��� iA� ����j� ! ; h 
���
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The linearity of the cepstraltransformationeffectedby a confor-
mal mapis apparentfrom (6); this linearity is a directresultof the
analyticityof ; on thecontourof integration,in thiscase,theunit
circle.

Wecanexploit theaforementionedanalyticityfurtherby form-
ing thetransformpair k�8l; . For example,it is straightforwardto
show thatthesimpleBLT admitstheseriesrepresentation;=
���
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from which thecoefficients k of theseriesexpansionareavailable
by inspection.It is alsopossibleto obtainseriesexpansionsfor Z
and [ appearingin (3); see[7, AppendixC]. Upon definingthe
transformpairs x#8tY , y98lZ , and z#8l[ , thefinal sequencek for
themoregeneralRAPT is readilyobtainedfromkM�{x}|~y~|~z (7)

where | is theconvolution operator. Theanalyticityof ; h canbe
exploited to form a transformpair k $&hH* 8:; h for every i���/ .
In general,the sequencesk $&hu* will have infinite extent for both
positive and negative valuesof � . As ; h ��;��t; h��X( , the
several sequencesk $&hH* for all i�� � can be calculatedbased
solelyon knowledgeof k $�(+* via therecursionk $&hH* �{k $]h��%(+* |\k $�(+* (8)

Moreover, thedesiredtransformedcepstracanbecalculatedfrom<��� ���a� ��hH�)��� ��� iA��k $&hH* � ��� (9)

As � is even,it is uniquelyspecifiedby its causalportion. Let
us follow [9, Chapter12] anddefine <� asthecausalportionof <� ,
which impliesthat <� canbeobtainedfrom<� � ����� ��hu�a� x ��h � � i�� (10)

where
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are the componentsof the transformation matrix Y�� � x ��h � ;
see[7, g 3.3].

3. SINE-LOG ALL-PASS TRANSFORMS

In this sectionwe considera different type of all-passtransform
thatsharesmany of thecharacteristicsof theRAPT, but is simpler
in form andthusmoreamenableto numericalcomputation.Let us
begin by definingthesine-log all-pass transform (SLAPT) as;=
���
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and ¯ is thenumberof freeparametersin thetransform.Thedes-
ignationsine-logis dueto thefunctionalform of � ¡ . Observe that� ¡ 
���
 is single-valuedeven though «&¬�­ � is multiple-valued [7,g 3.5]. Moreover, applyingthewell-known relation
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which is a moretractableform for computation.Note that ; as
definedin (12)satisfies(4–5).

In orderto calculatethecoefficientsof a transformedcepstral
sequencein themannerdescribedin Section2, it is first necessary
to calculatethecoefficients k in theLaurentseriesexpansionof ; ;
this we doasfollows: For � asin (13)set[�
���
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 (16)

andlet z denotethecoefficientsof theLaurentseriesexpansionof[ valid in anannularregion includingtheunit circle. Thenz�� ����� ����j� ! [�
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wherethe contourof integration is the unit circle. The natural
exponentialadmitsthe seriesexpansion̂ ± ��² �hH�a� ±5³hs´ for all� ¢ 	 , sothat
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for all � ¢ 	M¶ � /�� . As explainedin [7, g 3.5] substitutingthelatter
into (17) provides
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Thesequence· of coefficientsin theseriesexpansionof � is avail-
ableby inspectionfrom (13) and(15). Defining · $]hH* suchthat· $&hu* 8:� h andapplyingthisdefinitionto (18)we find
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Moreover, from theCauchyproductit follows · $&hH* �C·n|X· $&h��X(+*
for i¸� � 1 � 1º¹21967676 . Equation(16) implies that ;=
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for all �¼�b/F143 � 153 � 17676w6 .Thedevelopmentof this sectionindicatestheprimaryadvan-
tageof the sine-logAPT with respectto the rational APT con-
sideredin earlierwork; i.e., the computationsaremuchsimpler:
Thebasicseriesexpansionsassociatedwith theSLAPT aremore
straightforward, asis apparenton comparingEqns.(17–19)with
theircounterpartsin [7, AppendixC]. With theSLAPT, thereis no
needto derivespecialexpansionsfor thesmallanglecaseasis also
donefor theRAPT in [7, AppendixC]. Moreover, duringnumeri-
caloptimizationof SLAPTparametersthereis noneedto perform
co-ordinateconversionnor to includea barrierterm in theobjec-
tive function; asdiscussedin [7, g 5.3], bothof thesearerequired
for numericaloptimizationof theRAPT.

4. SPEECH RECOGNITION EXPERIMENTS

In this sectionwe summarizethespeechrecognitionexperiments
experimentsundertaken to comparethe effectivenessof RAPT-
andSLAPT-basedadaptationat reducingthe word error ratesof
largevocabulary continousspeechrecognition(LVCSR)systems.
Theseexperimentswereconductedusingtraining andtestmate-
rial extractedfrom the Switchboard Corpus, a collection of ap-
proximately2,500conversationsconductedoverstandardUStele-
phonelinesbetweentwo peoplepreviouslyunknown to eachother.
Thiscorpusaboundsin all thephenomenathatmaketheautomatic
recognitionof spontaneousspeecha difficult task: extremeco-
articulationeffects,stopsandrestarts,ungrammaticalword usage,
andvowel reductioncomprisea partiallist.

Of thecompleteSwitchboardCorpus,approximately140hours
of dataaresetasidefor systemtraining. For the purposeof the
experimentsdescribedbelow, however, a subsetof the complete
trainingcorpuswasused.This subset,dubbedMsTrain,1 is com-
posedof nearly800completeconversationsspokenby 409speak-
ers,andtotals50.0hrs. of speech.The testsetusedin all exper-
imentswascomprisedof bothsidesof 19 Switchboardconversa-
tions,for a total of 18,000words.

The featuresusedfor speechrecognitionwerecomposedof
thefirst12perceptuallinearprediction(PLP)cepstralcoefficients[3]
alongwith first and secondorder differencecoefficients derived
from these.2 Parameterscorrespondingto short-timeenergy and
its first andsecondorderdifferencewerealsoestimated,for a to-
tal featurelengthof 39. Cepstralmeansubtractionwasappliedto
the featuresof the testandtraining setson eithera per-utterance

1TheMsTrain setwasprovidedby Dr. JosephPiconeandhis students
at MississippiStateUniversity.

2Theauthorswish to thankDr. Steve Youngof CambridgeUniversity
for providing the implementationof PLPcepstralextractionusedin these
experiments.

% WordErrorRate
Feature Full-Matrix MLLR

Normalization No Yes
None 40.6 36.3

RAPT-1 38.8 34.8
RAPT-5 39.4 35.0
SLAPT-1 38.8 34.7
SLAPT-5 39.6 35.3

Table 1. Word error ratesfor systemstrainedwith original and
APT-normalizedfeatures,both with and without two-regression
classMLLR/SAT.

or per-conversationsidebasis,asrequiredby theparticularexper-
iment.

All HMM training and test was conductedusing HTK, the
HiddenMarkov Model Toolkit [10] asaugmentedby the Home-
wood Extensions.The HMMs were trainedwith cross-word tri-
phones. Eachtriphonewas composedof threestates,and each
statewascomposedof 12 Gaussians.The standardHTK imple-
mentationof the decisiontreealgorithmwas usedto generatea
totalof 6,712stateclustersin thefinal HMM. All word-errorrates
tabulatedbelow wereobtainedby rescoringa setof trigram lat-
ticeswith a modifiedversionof theHTK decodingtool. Thevo-
cabulary usedin generatingand rescoringthe latticescontained
approximately40,000words.

Speaker Normalization

The first setof experimentswas intendedto establishthe capac-
ity of speaker-dependent(SD) normalizationof cepstralfeatures
basedon theAPT to reducetheword error rateof a largevocab-
ulary conversationalspeechrecognition(LVCSR) system. In all
casesreportedbelow, featurenormalization,whenused,wasap-
plied to both testandtraining featuresto provide a matchedcon-
dition. Thenormalizationparametersfor eachspeaker in the test
and training setswere estimatedwith a simple GMM using the
proceduredelineatedin [7, g 6.1]. Single-passretraining[10] was
usedto move themultiple-mixtureHMM trainedwith theoriginal
cepstralfeaturesto theappropriatelynormalizedsetof features.

Featurenormalizationwastestedin combinationwith MLLR.
As before,MLLR, whenused,wasappliedto both testandtrain-
ing; the basicSAT procedure[7, g 4.4] was usedfor the latter.
Adaptationof cepstralmeanswasconductedwith two fixedregres-
sionclasses.In performingunsupervisedestmationof MLLR pa-
rameters,aninitial setof errorful transcriptsobtainedby decoding
with theunadaptedbaselinesystemwasusedto performthenec-
essaryforward-backwardpasses.This baselinesystemachieveda
WER of 40.6%.

Table1 reportsresultsobtainedwith systemstrainedon the
50 hr. MsTrain set. From theseresultsit is apparentthat feature
normalizationwith the one-parameterRAPT (i.e., the BLT) pro-
videsa WER reductionof approximately1.5%absolute,andthat
thisreductionis additivewith thatachievedusingMLLR/SAT. Us-
ing APT-basedfeaturenormalizationtogetherwith MLLR adapta-
tion provided a total WER reductionof 5.8% beginning with an
uncompensatedsystemthatachieved40.6%WER. Also apparent
is that normalizationwith the RAPT-5 transformprovides some
error rate reductionwith respectto the un-normalizedbaseline,
but that this reductionis not so large as that achieved using the



Enrollment % WordErrorRate
Set RT-1 RT-9 ST-1 ST-9 MLLR

Baseline 41.5
2.5min. 38.5 37.3 38.4 37.4 37.1
60 sec. 38.3 37.4 38.2 37.5 37.5
30 sec. 38.5 37.6 38.3 37.7 37.9
10 sec. 38.7 37.8 38.6 38.0 40.1
5 sec. 38.8 37.9 38.6 38.2 45.5

Table 2. Resultsof rapid adaptationexperimentswith unsuper-
visedenrollmentdata. RT (resp.,ST) denotesthe rational(resp.,
sine-log)all-passtransform.

simplerone-parametertransform. This result is somewhat coun-
terintuitive: It mayindicatethata simpleGMM is notsufficient to
estimatedetailed,multi-parametertransforms.

Also reportedin Table 1 are the resultsof a set of exper-
iments undertaken to determinethe WER reductionachievable
with SLAPT-basednormalization.Theseexperimentsusedeither
aone-or five-parametertransform,oncemorein combinationwith
MLLR/SAT. FromtheseresultsweseethattheRAPT- andSLAPT-
basednormalizationschemesprovidenearlyidenticalWERreduc-
tions,whetheror notMLLR/SAT is usedin additionto featurenor-
malization.As with theRAPT, onefreeparameterprovidesamore
effective featurenormalizationthanfive freeparameters.

Rapid Speaker Adaptation

We alsotestedthe capabilityof the APT to reducethe error rate
of anLVCSRwhenusedfor speaker adaptation.Theresultsof a
setof experimentsconductedto comparefull-matrix MLLR and
APT-basedadaptationon a taskwith limited unsupervisedenroll-
mentdataaregivenin Table2; in keepingwith popularusage,we
refer to this scenarioasrapid adaptation. For theseexperiments,
one global transformationwas usedfor eachspeaker and CMS
wasappliedon a perutterancebasis.All systemsweretrainedon
theMsTrain set[7, g 6.2]. Theerrorful transcriptsusedfor unsu-
pervisedparameter, be it MLLR or APT, wereobtainedwith the
unadaptedbaselinesystem,which achieveda WER of 41.5%.As
is apparentfrom the table, when2.5 minutesof datawereused
during theunsupervisedestimationof transformationparameters,
the performanceof MLLR andthe nine-parameterAPT systems
werenearly identical. In this instance,the useof morefree pa-
rametersin theall-passtransformresultedin furtherreductionsin
error rate. Also noteworthy is that as the amountof adaptation
datawasreduced,the performanceof the MLLR systemquickly
deteriorated,suffering a catastrophicdegradationat 10.0sec.and
less.TheAPT-basedsystems,ontheotherhand,experiencedonly
marginalperformancedegradations,providingareductionin WER
of approximately3.5%absolutewith only 5.0 sec. of enrollment
data. This differencein characteristicsis surelydueto thesparse
parameterizationof theAPT.

5. CONCLUSIONS

In this work we have introducedthe sine-logall-passtransform
(SLAPT),areplacementfor therationalall-passtransform(RAPT)
consideredin prior work. In asetof unsupervisedspeakercompen-
sationexperimentsconductedonspeechmaterialfrom theSwitch-

boadCorpus,bothtransformswerefoundto giveverycomparable,
if not indentical,reductionsin word error rate(WER). In a setof
speaker normalizationexperiments,thegainfrom APT-basednor-
malizationwasfoundto beadditive with thatprovidedby conven-
tional maximumlikelihoodlinear regression(MLLR). The com-
bination of APT normalizationwith MLLR adaptationprovided
a error rate reductionof 5.8% absolutecomparedto an uncom-
pensatedbaselinesystemwhich achieved 40.6%WER. In a set
of unsupervisedspeaker adaptationexperimentsconductedon the
SwitchboardCorpus,MLLR- andAPT-basedsystemswerefound
to give nearly identical reductionsin WER when an entirecon-
versationside was usedfor speaker enrollment. As the amount
of adaptationdatawasreduced,however, the performanceof the
MLLR systemquickly deteriorated,sufferingacatastrophicdegra-
dationat 10.0sec.andless.TheAPT-basedsystems,on theother
hand,experiencedonly marginal performancedegradations,pro-
viding a reductionin WER of approximately3.5%absolutewith
only 5.0 sec. of enrollmentdatafrom a baselineof 41.5%. This
differencein characteristicsis surelydueto thesparseparameteri-
zationof theAPT.

The Homewood Extensions(THE) are a set of C++ classes
implementingthespeaker adaptationandtrainingalgorithmsdis-
cussedin thiswork; THEispubliclyavailablefor all non-commercial
useat isl.ira.uka.de/˜jmcd . THE hasbeenportedto the
JanusSpeechRecognitionToolkit (JRTK), althougha complete
setof experimentalresultsobtainedwith JRTK wasnot available
at thetime of publication.
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