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ABSTRACT

Our work introduces the sparse code shrinkage (SCS) technique
as a speech enhancement algorithm that aims at improving the
quality of speech perception. SCS is a fairly new statistical
technique originally presented to the applied mathematics and
image denoising community, but, to our knowledge, its potential
for speech enhancement has not yet been exploited. Its
application on speech denoising gives rise to a conceptual
framework which is quite different from the techniques
dominating speech enhancement domain. SCS originates in
applying Independent Component Analysis (ICA) to a large
ensemble of clean speech frames, revealing their underlying
basis of statistically independent functions. Projecting the
frames composing a noisy speech signal on this basis, facilitates
the application of Bayesian denoising to each of the resulting
independent components individually. The maximum a-
posteriori (MAP) formulation leads to a soft threshold function
optimally adapted to the statistics of each independent
component which effectively reduces white and coloured
Gaussian noise. Subsequently, an inverse transformation from
the ICA-transformed domain back to the time domain
reconstructs the enhanced signal.

1. INTRODUCTION

The primary objective of noise compensation methods as
applied in the context of speech processing is to reduce the
effect of any signal which is alien to and disruptive of the
message conveyed among participants in a communicative event
(whether humans or ASR machines). Depending on the
application, speech enhancement methods aim at speech quality
improvement and/or speech or speaker recognition. The key
difference is that in the latter case, the complexity of the effort
undertaken by the recognizer is relaxed by a pre-processing
transformation from the time domain to a domain with more
desirable properties as regards the recognition process. When
speech quality and intelligibility is the issue, it is essential that
we respect the specific idiosyncrasies of human speech hearing
and, therefore, reconstruct the time-domain signal. Due to the
polymorphic manifestations and detrimental effect of noise,
speech enhancement remains an open challenge.

Comprehensive assessments of noise compensation methods
that belong to different speech processing strategies can be found
in [1]. The subtractive and the attenuating type of filters are well-
established, one-channel noise compensation methods that
predominate in speech enhancement literature. Namely: a)
spectral subtraction (SS) [2], b) least mean square (LMS),
adaptive filtering [3], c) filter-based parametric approaches [4],
d) model-based, short-time spectral magnitude estimation [5], e)

hidden Markov model (HMM)-based speech enhancement
techniques [6]. In what follows we foreground the main
presuppositions of these techniques from which our approach
departs:

a) Most aforementioned algorithms, are based on a
transformation such as Discrete Fourier Transform [2][6],
Discrete Cosine Transform [7], Karhunen-Loeve Transform [5],
which facilitates the estimation of the clean speech model
parameters. The transformation itself is more or less determined
on an ad hoc basis. SCS is based on a data driven transformation
kernel adapted to the structure of clean speech data.

b) Most methods focus on the distorted short-time amplitude of
the speech signal leaving the phase unprocessed, on the
assumption that the human ear does not perceive phase distortion
[8]. On the other hand, experiments carried out in [9]
experimentally demonstrated that as regards enhancement aiming
at improving speech quality, phase has its share of importance. In
the SCS technique the speech signal is processed uniformly,
meaning that there is no inherent need that compels us to
concentrate on amplitude and ignore phase processing.

¢) The noise reduction process in the subtractive types of
algorithms introduces a trade-off between distortion of spectral
balance of the processed speech signal and noise suppression
factor. In very noisy situations the enhanced speech can be even
more disturbed than the corrupted speech signal in terms of
intelligibility. SCS is not a subtractive technique and musical
noise is perceivable at very low SNRs.

d) Even if the statistics of the degrading noise are known, SS and
some versions of Wiener/Kalman and HMM-based algorithms
require an accurate estimate of corrupting noise statistics. This is
acquired during speech pauses through the use of a Voice
Activity Detector (VAD). The construction of a robust VAD at
low SNRs is a task still open to research. The framework of SCS
has no need of a VAD to estimate speech-presence.

Though background noise can have spectral density that is
case-specific to the operational environmental conditions, in
many cases it can be adequately simulated as additive Gaussian.
SCS is based on the assumption that background noise is additive
and Gaussian (although it can be coloured). However, we suggest
in theory and demonstrate in practice that SCS is quite robust in
noise types that show modest deviation from normality.

We apply Independent Component Analysis to a large
ensemble of frames derived from clean, phonetically balanced
recordings, revealing their underlying independent component
structure based on Bells’ seminal work on the higher order
structure of images and sounds [10] along with Hyvirinen’s
MAP formulation [11] on the independent bases of images. [CA
is a statistical technique that determines a linear coordinate
system, whose axes are defined by all higher moments of the



data to which it is applied. Projecting the frames of a noisy
recording on this basis, the time-domain observations are linearly
transformed so that the resulting data are as statistically
independent as possible. MAP inference leads to a soft threshold
function optimally derived from the statistics of each
independent component that effectively reduces white and
coloured Gaussian noise. Subsequently, an inverse
transformation from the ICA transformed domain back to time
domain reconstructs the enhanced signal.

We  support theoretical  derivations by  extensive
experimentation using recorded speech signals and real noise
sources from the NOISEX-92 database. The assessment criteria
are based on total and segmental signal to noise ratio (SNR)
measures, as well as Itakura-Saito distortion measurements
(allegedly correlated with subjective perception of speech
quality). We also include visual comparison of speech
spectrograms and informal listening tests.

2. PROBLEM FORMULATION

Consider a clean, time-domain speech signal x(m) subsequently
corrupted by additive Gaussian noise n(m) producing the noisy
signal y(m), where m is the sample index:

y(m)=x(m)+n(m) M
We reshape signals y(m), x(m), n(m) as matrices formed by
setting as columns, consecutive non-overlapping speech
windows of 10 ms duration. The resulting matrices are of size
NxF, where F denotes the number of frames and N=80 the 10 ms
window size in samples at a sampling rate of 8§ kHz. N is selected
to guarantee stationarity and must be small enough to capture
rapid varying phenomena as transients and stop bursts. After size
normalization of the last frame (zero padding), the signals are
represented as:
Y=X+N, )
where Y=[yy,..,yrl, X=[Xy,..,.Xp], N=[ny,..,ng]. Each x;, y;, z; ,
i=1,..,F, is an N-dimensional vector corresponding to a frame.
Let assume the existence of a suitable orthogonal matrix W

€ RN Wwhich, when applied to each vector x € RN renders
its components independent. We postpone the derivation of W

until section 3. By applying W from the left side to Eq. 2 we get:

Z=WY=WX+WN=U+N’ 3)
Gausssian distributions are invariant to linear transformations,
therefore N>=WN is also Gaussian. Any u € U: U=WX, where
U=[uy,..,ug], corresponds to an uncorrupted speech frame in the

ICA transform domain. The components composing each u are
now independent and in terms of p.d.f. can be set as:

£, (u) = H i(u)

Since the statistics of noise and speech share the same statistical
properties from frame to frame we drop subscript i denoting that
the subsequent analysis holds for every vector of the
corresponding matrices Z, U, N°.

z=u+n’ (&)
The vector z corresponds to the noisy observation y in the ICA

transformed domain and n’ the transformed noisy frame. The
posterior p.d.f. of u can be e tpressed according to the Bayes rule

f,u ()t (u) B i
u/z( u/z ) - fz( ) - fz (Z) fn' (Z u)fu (u) (6)
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The likelihood f,,(z-u) is given by:

(20 =Q2) V[ Texp(-12w) Zyy M) (7)
From the minimization of the uniform cost function we obtain
the classical MAP estimate of u. That is:

u= argmax { W (u/z)} = argmax {f (z-u)f, (u)} (8)

Assuming that there is no correlatlon of noise between
components, and based on the factorization of f,(u), we obtain
the MAP estimate of u:

N N
u = argmax an' (z; -y )Hfui (u;) )
u i=l i=l

As U is now factorized, it can be decomposed and the denoising
method can be applied to each individual component leading to:

uj = argmax {fn'i (z; -upfy (ui)} (10)

ui
Evaluating Eq.10 for i=1,..,N allowsu —[ul, ,7\]T to be

constructed and subsequently U= [ 1»-U;]. By making use of

the relation U=WX and the orthogonality of W, we return
back to time domain using the transformation:

X=w"'U (11)
Reshaping matrix X to vector form by concatenating all columns

reconstructs the enhanced waveform. What remains to obtain is
W and a closed-form of the densities f,;(u;) required in Eq. 10.

3. INDEPENDENT COMPONENT ANALYSIS

Let x(t)=[x;(t),...xn(t)]" be a zero mean vector of scalar-valued
components, where t is the time index. ICA seeks to find a
suitable transformation matrix W e ERNXN which, when applied to
x(t), produces a vector u(t)=Wx(t) € ®N composed of variables
that are as mutually independent as possible over time. That is:

&d ® =0 (12)
[T futw

MI(u(t)) denotes the concept of mutual information that
measures the level of dependency between the variables
composing u(t) at each observation instance t. MI is strictly non-
negative and zero only when the components comprised in a
vector are independent, that is, when f,(u(t)) is factorized.

In [12], different algorithmic versions of ICA can be put under

the unifying framework of information maximization leading to
the same iterative learning formula.
Information maximization: Let y(t)=g(WX) where g(.) has the
form of cumulative density function of the prior distribution of
the data which in the case of speech is super-Gaussian.
Minimization of mutual information between the y;(t)
components of y(t) implies minimization between the u;(t)
components of u(t), since g (.) is an invertible mapping from uy(t)
to yi(t) and the MI measure is invariant to component-wise
monotonic transformations. W is iteratively calculated by taking
the gradient of MI(y(t)) with respect to W (see [10],[12]).

abamv(vy):[l (6f(u)/f(u))u] (13)

MI(u(t)) = jf(u(t))log

AW o«

In order to derive the transformation matrix W we make use of
1000 clean, phonetically balanced recordings uttered by an equal



number of speakers of both genders. Each recording was
sampled at 8 kHz sampling rate. Since W must learn all intrinsic
information about quickly varying phenomena such as transients,
we used small windows 10 ms long (80 samples with 79 samples
overlap) to capture all the necessary detail.. A batch version of
the infomax algorithm has been derived where W is iteratively
calculated through successive presentations of the frames of each
recording separately until convergence in order to avoid
processing at once the huge amount of total observational data.
The transformation kernel W is derived by applying ICA to the
ensemble of observational frames from all recordings, denoted
by X@E)‘.RI\IXFt ; where the time index corresponds to the frame
index, N=80 corresponding to the samples of a 10 ms window
and Ft is the number of total frames.

4. ESTIMATING THE SPARSE DENSITIES
We estimated the kurtosis of each component u; defined as:
_ E{ui4} _
Efy’}y

for every testing recording and we found with no exception that
all components are super-Gaussian, therefore very sparse. (Refer
to part 5 for the test set. Mean values of variance-normalized
kurtosis over all test recordings are depicted in Fig. 1 and it is

obvious that they diverge significantly from the zero value of
normalized kurtosis of a Gaussian p.d.f.).
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Fig. 1: Assessing the sparsity of independent components.

Therefore, the representative of a family of very sparse p.d.f:s is
selected in advance. We adopted a density sparser than the
Laplacian described in [12]:

1 (a+ 2@ +1y2] ***!

f o (u.)=—
ui (W) 2d [fa@ + 12 + [u/d]]*H (15)

d denotes standard deviation and a=1/d/(E*{|uj}-1) controls the
sparsity of the distribution. Substituting Eq. 15 in Eq. 10 and
setting the derivative of the log-likelihood to zero results to a
non-linearity applied to z; (see [12] for details in derivation).

_ lz/-bd
u; =sign(z )max(0, 3 +5\/(

where I=1,..,N and b =,/a(a+1)/2 . As can be observed from

z|+bd)’ -4c’(a+3)]  (16)

the coefficient |z|-bd , the non-linearity has a thresholding,
‘shrinking’ effect by setting small values to zero.

5. EXPERIMENTAL RESULTS

5.1. Noise Types

From Eq. 3, it becomes obvious that every z(t) accumulates a
number of noise components. According to the Central Limit
Theorem for each z(t) component the density of noise will be

closer to Gaussian than the distribution of each of the noise
components. Therefore, we expect small impact on the
effectiveness of SCS for noise cases which exhibit moderate
divergence from the normality assumption. As regards the SNR
of the recordings: each noise type is added to 34 clean speech
files of 5 sec. mean duration so that the corrupted waveform
ranges from —10 to 20 SNRys. To be more specific: let y1, y2, y
be the clean/noisy/corrupted signal respectively. y=yl+H*y2,
such that 10log(E{yl}/E{H*y2})=SNR4s where E{.} denotes
energy. The objective criteria are based on the mean value over
all recordings.

5.2. Objective criteria

Global SNR provides a simple error estimation over time and
frequency although it has been questioned as to its suitability for
speech quality assessment since it weights all time-domain
errors equally while noise is known to be especially disruptive
in low energy parts of the waveform. Let s(t) and §(t) denote the
original undegraded speech and enhanced speech signals,
respectively. The total output SNR is defined:

PIERC

SNR 4 =10log ;g ———— (17)
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Fig. 2: Global SNR performance in different noise context.

SNR improvement may be misleading. In high input SNRs, the
enhancement algorithm produces signals having retained a very
small amount of residual noise which results in high SNR output
values. In the -10 dB category the improvement for all noise
types is impressive but the remaining noise and the distortion
induced to the original signal may render it close to being
inaudible. Objective measurements demonstrate that the
algorithm shows its best performance for the case of car noise
which is again misleading since we made use of speech files
recorded over telephone lines. Telephone line inflicts a filter of
300-3400 Hz and the transformation matrix W which is adapted
to the spectral characteristics of the recorded speech, leaves the
part of the spectrum lower than 300 Hz unprocessed. Therefore,
we made use of a fourth order high-pass Butterworth filter after
enhancement to remove the part of the spectum that was not
processed by the algorithm. Since car-noise is concentrated in
low frequencies, the high-pass filter suppresses part of the noise.
The second best performance is for the white Gaussian type of
noise. We attribute the extensive denoising capability to the fact
that white Gaussian noise complies with the assumptions of the
algorithm, more than any other type of noise.

Segmental SNR is suggested to be better correlated with
speech quality evaluations than global SNR and is calculated



for non-overlapping frames of 15 ms duration while the result
is averaged over all waveform segments. Seg.SNR is defined:

M-1 Z 52 (t)

SNRdB:ﬁZmlogms-MiAz (18)
=0 D ()= s(1)
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Fig. 3: Segmental SNR performance in different noise context.

The segmental SNR confirms our observation based on total
SNR measure and further, it is able to order the performance of
the algorithm clearly for the different noise types. Very good
performance is observed for coloured types of noise, though, it
seems that they form a category of their own compared to the
Gaussian noise.

Itakura-Saito distortion measure is known to be closely
associated with speech quality assessment since it is very
sensitive to spectrum variations but not to phase distortion. It is
based on the spectral distance between AR coefficient sets of the
clean and enhanced speech waveforms over synchronous frames
of 15ms duration. We used the median value of the distances
between all frames in order to eliminate possible outliers.
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Fig. 4: Itakura-Saito performance in different noise context.

Itakura measure is heavily influenced due to mismatch in
formant locations. From Fig. 4 we infer that the enhancement
procedure distorts formants the same way for all coloured noises.

5.3. Subjective criteria

Fig. 5 shows the spectrogram of clean speech waveforms and the
corresponding noisy versions corrupted by Gaussian, factory and
speech noise types and the corresponding enhanced versions at 0
dB input SNR. The figures demonstrate extensive noise
reduction. Close lookup does not reveal visually perceptible
distortion of the formants due to the enhancement procedure. In
row 2, (Factory noise), it can be observed that impulsively
occurring components cannot be suppressed, a fact that we
attribute to the violation of the stationarity assumption. Parallel
listening tests confirm that these noises have non-stationary
components (e.g. factory noise, operations room, F16) that
remain intact in the enhanced version of the signal.
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Fig. 5: Noisy and enhanced signals for: Row a) Gaussian, Row
b) Factory, Row ¢) Speech noise types, at 0 dB input SNR.
6. SUMMARY AND CONCLUSIONS

A novel view for the enhancement of signals is applied
successfully to speech. It is based on the idea of decomposing
speech frames corresponding to 10 ms phonetic segments into
their independent basis functions. This transformation facilitates
the application of Bayesian inference to each of the resulting
independent components separately. The MAP formulation leads
to a shrinkage function optimally derived from the statistics of
each component. Extensive experimentation with this technique
gave excellent results in the case of white Gaussian noise. It
proved very effective in coloured types of Gaussian noise that do
not diverge significantly from the stationarity and the normality
assumption. We observed considerable improvement of the
enhanced signal versus the noisy one, in all objective criteria and
most important, the preservation of natural sound. As regards the
computation load, the most time-consuming task of the algorithm
is the computation of the projection matrix W, which is
computed off-line and only once for all subsequent restorations.
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