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ABSTRACT

This paper proposes a general nonlinear digital filter
structure for echo cancellation applications. Although
echo cancelers employing linear digital filter structures
are more widely used, there are many applications where
nonlinear filters must be used. In this paper, we pro-
pose using the DABNet (Decoupled A-B Net) filter,
which is composed of a decoupled linear dynamic sys-
tem followed by a nonlinear static map, for echo cancel-
lation. The linear dynamic system is initially spanned
by a set of discrete Laguerre systems, and then cas-
caded with a single hidden layer Perceptron. A model
reduction technique can be performed not only to iden-
tify the main time constants, but also to reduce the
dimensionality of the Perceptron input. The DAB-
Net structure is able to approximate any nonlinear,
causal, discrete time invariant, multiple-input single-
output system with fading memory. Comparisons be-
tween echo cancelers implemented with the DABnet
and nonlinear FIR filters are presented.

1. INTRODUCTION

This work is focused on modeling issues related to non-
linear echo cancellation. Although linear filtering is
more widely used, there are many areas where nonlin-
ear filters have found application [9], [2]. In the area
of digital communications, nonlinear phenomena are
present in different situations: in QAM data transmis-
sion systems (microwave radio [11], and voice modems
[7]); in satellite channel equalization [3]; in high-density
recording channels [5]; in intermodulation distortion
Echo cancellation is a common technique applied in

telephone lines and in digital subscriber lines (DSL) be-
cause of the requirements of full duplex transmission.
The inherent two-wire transmission facility is turned
into an equivalent four-wire connection using a hybrid
at each end, where data can then be transmitted in
both directions. However, the attenuation of the hybrid
between its 2-4 wire inputs can be as low as 10dB. The
nonlinearities in A/D-D/A data converters, and the
saturation nonlinearities in the hybrid limit the perfor-
mance of the linear echo canceler to about 60 dB with
1% differential nonlinearity [10], [1]. These arguments
justify the need for efficient nonlinear models.

There is no general framework for describing arbi-
trary nonlinear discrete systems yet, unlike the case
of linear systems that are completely characterized by
the system’s unit-impulse response. Consequently, the
research in this area is restricted to certain nonlinear
filter models, namely: cascade-parallel filters [8], non-
linear FIR filters [12], and Volterra (polynomial) filters
[4]. The Volterra filters are the most widely used. How-
ever, those models have some drawbacks for practical
implementation. Korenberg [8] has proposed a method
for identifying models composed of finite sums of par-
allel cascades, each comprising a linear dynamic and
nonlinear static. The nonlinear FIR (NFIR) structure
1s composed by a tapped delay time of the inputs fol-
lowed by a Multilayered Perceptron [12]. This scheme
1s difficult to implement when the system memory is
large due to the high dimension of the involved input-
output mapping. For example, if the system memory is
40, the tapped delay line would take 40 past inputs. A
Volterra model with 10 Laguerre systems and 27 order
nonlinearities would have 2'9 coefficients what turning



it practically unusable [4].

In this paper, we use nonlinear models consisting
of a linear dynamic part followed by a nonlinear sta-
tic map using input-output data. The linear dynamic
system is initially spanned by a set of discrete La-
guerre systems, and then cascaded with a single hidden
layer Perceptron as depicted in Figure 2. In previous
work [13], it was shown that a nonlinear combination
of discrete Laguerre systems is able to approximate any
single-input nonlinear discrete system having fading
memory. The fading memory concept [10] is an impor-
tant part of the characterization. After the initial span
of the linear layer by Laguerre systems, a model reduc-
tion technique [14] is performed on the hidden nodes of
the neural network as part of the identification process.
The balancing is performed in such a way that the lin-
ear state-space representation is de-coupled by blocks.
By doing so, it is possible not only to identify the main
time constants, but also to reduce the dimensionality
of the Perceptron input space. In addition, the non-
controllable/non-observable modes are removed from
the model. The final DABNet model (De-coupled A-
B matrices Neural Network) consists of a sparse linear
state-space system whose states, de-coupled by blocks,
are mapped by a neural network. This de-coupled rep-
resentation provides insight into the final model, be-
cause 1n a practical identification scheme, the individ-
ual state-space matrices can themselves be represented
as loosely coupled first- and second-order sections.

This paper 1s organized as follows. In section 2 we
present the model structure. In section 3, we apply
the proposed model structure in the equalization of a
nonlinear channel and we compare the results with a
NFIR filters. Finally, we present our conclusions and
the future work arising from this study.

2. NONLINEAR MODEL REPRESENTATION

DABNet models, depicted in Figure 2, are multi-input
single-output systems but for clarity we will write the
equations for single input single output (SISO) sys-
tems. The use of the Laguerre systems is very appeal-
ing due to their highly structured shape. As a conse-
quence, computing the derivatives of a certain function
of the output with respect to a sequence of inputs is
simple. The output of a DABNet model for a SISO
case with n Laguerre systems (with a basis pole a) and
with H hidden neurons is expressed as:

y (k) = c"n (k) (1)
The vector ¢ is made of output weights:

c= [COacla"'acH]T ERH+1 (2)

where (k) is the vector of outputs of the hidden layer

n(k) = [ (k) (BT, i1 H o (3)

For any of the H hidden neurons, there exists a
nonlinear sigmoidal mapping o

n; (k) = o (i (k)), v:1,... H (4)

applied to the pre-synaptic signals &i (k). These sig-
nals are connected to the outputs of Laguerre systems
through the weights of the input layer w;

i (k) = wio + wl z (k), i:l,.,H (5

The model is completed with the following descrip-
tion of the linear dynamic part, composed of a set of
linear Laguerre systems whose states x(k) = (k) =
[#1 (k),....,zn (k)]T, for the generating pole a, are given
by:

zn (k+1) :

and their outputs:

Z1 (]C) =

(7)

skt 1) = (0= 1)y (k) +az) (k)

Let us now define a vector @ containing all of the
parameters: the output weights ¢ and the input weights
w;:

0 = [eo, €1y ooy CH, W10y vy Win, ooy WHO, -, Win]  (8)
Using #, the output of the system can be expressed as

y(k) = f(u(k),8,k) (9)

Given a certain system, we assume that the model
and the system are realizations of the same structure
but characterized by a different vector 9:

gk = £ (w(k), 8,k) += (k) (10)

where ¢ (k) is noise, with variance 2. Then we have
the following theorem.



Theorem: Let N be any time invariant operator
with fading memory in a subset K of the input do-
main. Then, given any ¢ > o, there is a set of Laguerre
operators and a single hidden layer Perceptron such
that for all w € K

HNu—NuH <e, (11)

where Nu = g (k), Nu = y(k) are given by (10) and
(9) respectively (for a proof see [13]).

DABNet models are simple to evaluate since they
require very little dynamic information [13], are easy to
implement because of they have highly structured form,
and have simple derivatives formulation. The DABNet
structure is used in the next section in a nonlinear echo
cancellation application, in order to illustrate its mod-
eling capabilities.

3. A NONLINEAR ECHO-CANCELLATION
APPLICATION

This example presents a nonlinear echo cancellation in
the near-end of a telephone system sketched in Figure
3, by using DABNet and NFIR filters. The near-end
digital signal 7 [k] is analog converted by the D/A con-
verter to g1 and shaped by the linear low-pass transmit
filter i1 to produce the signal 7 (¢). The hybrid circuit
separates 7 (t) from the received far-end signal s(t),
placing 7 (¢) on the transmission line, while routing s (¢)
through the linear filter M5 and the S/H (sample and
hold ) device. Because of the “leakage” in the hybrid
circuit (denoted by g¢2), the near-end output cflv(t) con-
tains contributions from both s (), and an attenuated
echo term originating from 7 (¢). The task of the echo
canceler ¥ is to estimate the echo component d [k] and
cancel it in the analog domain. Even though it is pos-
sible to perform the cancellation in the digital domain,
the nonlinearity of the A/D converter at the signal d [k]
would create a nonlinear function of the sum of two sig-
nals, resulting into an intermodulation term that could
not be canceled. This problem might arise if the at-
tenuation gs through the hybrid path is as low as 10
dB, and the transmission-line attenuation of the far-
end signal s (t) is as high as 40 dB. The nonlinearities
in data the converters (g1, ¢4), and in the hybrid circuit
(g2, g3) limit the performance of the linear echo can-
celer to about 60 dB with 1% differential nonlinearity
[10], [1].

Neglecting the effect of the far-end signal, the task
of a nonlinear echo canceler would be to implement the
system g o Hy(s) o g0 Hy(s) o gr. In the absence
of hysteresis, it is clear that such a system has fading
memory on any set of input sequences, and therefore,

a DABNet model can be used to approximate Y. In
this example, the D/A converter transfer function ¢
and the hybrid transfer function g, were modeled as
g1 (u) = v and g2 (u) = 2tan~?! (bu) + .25u respec-
tively. The transmit and receive filters Hy, and Hy were
modeled as linear systems with unit impulse response
hy (q71) = 52764~ (1 4 4724¢=1) ™" and hy (¢71) =
1045¢71 (1 + .4724(]‘1)_1. Two situations were tested
without attempting to optimize the models. a) A DAB-
Net model with 4 Laguerre systems and a 6 neurons
Perceptron, and a NFIR structure with 4 tap delayed
inputs followed by a 6 neurons Perceptron. The results
are shown on Figure 1. b) A DABNet model with 6
Laguerre systems and a 15 neurons Perceptron, and
a NFIR structure with 6 tap delayed inputs followed
by 15 neurons Perceptron. The results are shown on
Figure 4. Tt is easy to see that in both cases the Per-
ceptrons have the same number of inputs, and that the
DABNet models outperformed the NFIR structures.

4. CONCLUSIONS

We have presented a general nonlinear digital filter
structure for echo cancellation applications. We com-
pared the DABNet with a nonlinear FIR structure.
The results had shown that the nonlinear DABnet struc-
ture outperforms the nonlinear FIR filter in echo can-
cellation problems.
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Fig. 1. 4 Tap/Laguerre Systems and 6 Neurons.

Fig. 2. DABNet Structure.
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Fig. 4. 6 Tap/Laguerre Systems and 15 Neurons.



