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ABSTRACT

Speaker verification requires either two steps (identity claim
and verification) or the use of speech recognition to deter-
mine the password phrase. The single step method using
speech recognition is text- and language-dependent. We de-
scribe a novel single-step method based on Gaussian mix-
ture models and quantized acoustic trajectories that does not
use any linguistic knowledge and is thus text- and language-
independent. Although a two-step process can be more ac-
curate, our approach is significantly better than speaker iden-
tification and is more convenient than a two-step process.

1. INTRODUCTION

In speaker verification (SV), the authentication process usu-
ally requires two steps, an identity claim followed by veri-
fication that the speaker is who they claim to be. It is more
convenient for users to simply specify a password and have
the password phrase both identify and verify the speaker.

In previous work, this has been accomplished with one
of two methods. The first uses speaker identification, but
this approach can be expensive and less accurate, even when
the number of subscribers is only moderately large. The
second approach uses automatic speech recognition (ASR)
with speaker-independent models to recognize the password
phrase (such as the subscriber’s name or PIN) and thus the
speaker [1, 2]. The speaker verification algorithm is then
applied to the phrase. This approach is effective and effi-
cient, but is text- and language-dependent (the words of the
password phrase must be including in the ASR’s vocabu-
lary).

In this work, we describe a method based on quantized
acoustic trajectories (QAT) that does not rely on linguistic
knowledge. The QAT approach has the benefits of the ASR
approach, but is text- and language-independent. Thus, users
are not restricted in their choice of password, and indeed, do
not even need to use words. As long as they can consistently
reproduce the sounds, any sequence of sounds can be used

as the password phrase.

A Gaussian mixture model (GMM) forms the basis of
the algorithm. The GMM is used to both determine the
QAT and score the utterance to validate the speaker. In the
next section, the training and verification processes are de-
scribed. Section 3 gives some experimental results and dis-
cussion. Section 4 gives our conclusions and outlines future
work.

2. THE SPEAKER VERIFICATION ALGORITHM

The Quantized Acoustic Trajectory Gaussian Mixture
Model (QATGMM) technique builds voiceprints by cap-
italizing on two components. The first component is a
biometric voiceprint made of a parametric Gaussian mix-
ture model (GMM) [3] trained on acoustic features using
Bayesian adaptation [4]. The second component is a quan-
tized acoustic trajectory which models the acoustic path of
the user-selected password phrase. The most likely mixture
sequence which quantizes the acoustic vectors is termed the
quantized acoustic trajectory. The QAT actually models the
password phrase without using any linguistic knowledge.
The QAT is therefore text and language independent. Sub-
scribers could in fact use any sounds to make their password
and are not limited to phones associated with languages.

2.1. The GMM model

The seed acoustic model (SAM) is a 512-state GMM trained
on approximately 10 hours of speech, using a combination
of K-means clustering and the EM algorithm. The feature
vectors are cepstral coefficients determined by a 32ms Ham-
ming window, a 256-point FFT resulting in 32 linear fre-
quency cepstrum coefficients. The frame advance rate is 8
ms. As well, cepstral mean subtraction is used.



2.2. Voiceprint model creation (biometric training)

The SAM is used as the prior distribution for MAP training
of the subscriber’s biometric voiceprints. It also serves as
the imposter model for score normalization in the SV scor-
ing stage. As well, the SAM is used to determine the QAT.

The SAM is described as a mixture ofM Gaussian pdfs
(or states), each with a diagonal covariance matrix:

λ = {pi, N(µi, σ2
i ), i = 1, . . . , M},

wherepi is the probability of statei, µi is the mean, andσ2
i

is the diagonal covariance matrix.
The biometric voiceprint for a speaker is created by per-

forming MAP adaptation of the initial SAM with a sequence
of acoustic observation vectors generated from the training
speech samples of the speaker,

C = {C1, C2, . . . , CT },

whereCt is the normalized cepstral vector for framet. A
fixed relevance factorr is used to adapt the mixture weights,
means, and variances.

The outline of the MAP process follows the develop-
ment in [3, 4]. For statej, the SAM provides the prior pa-
rameters{pp, µp, σ2

p}, wherepp is the mixture weight,µp is
the mean, andσ2

p is the vector corresponding to the diagonal
covariance matrix. The probabilistic count

n =
T

∑

t=1

Pr(j|Ct)

defines the total likelihood of statej, given the sequence of
speaker observations.

The adaptation coefficientα is defined by

α =
n

n + r
,

wherer is the relevance factor. The relevance factor adds
robustness to the training process and is typically set to a
value between 1 and 25.

The adapted mixture weightpa is given by

pa = γ[αps + (1− α)pp],

whereps = n/T , andγ is computed over all states to ensure
that the mixture weights sum to 1.

Similarly, the adapted meanµa is

µa = [αµs + (1− α)µp],

where

µs =
1
n

T
∑

t=1

Ct Pr(j|Ct).

Finally, the adapted varianceσ2
a is given by

σ2
a = [ασ2

s + (1− α)(µ2
p + σ2

p)] − µ2
a,

where

σ2
s =

1
n

T
∑

t=1

C2
t Pr(j|Ct).

The adaptation equations are applied to each state of the
SAM to produce the adapted modelλx for speakerx.

The one-pass MAP technique has several advantages:

• MAP is robust to limited training data. When a state
has a low probabilistic countn, there is a de-emphasis
of the new (potentially under-trained) parameters and
an emphasis of the prior parameters. Conversely,
whenn is large, the new parameters are emphasized,
and the prior parameters are de-emphasized.

• it is robust to noisy training data, due in part to the
relevance factor. Before a state is updated, it must see
a certain number of similar acoustic events. Bad, or
out-lying, vectors are softly rejected.

• it can be used to adapt the acoustic models to new
environments with limited data. MAP can be re-run
on the new data to re-adapt the SAM.

• the SAM provides ade factocohort, or world, model.

• it allows fast computations of the relevant states. This
way, a system can afford more states for a given com-
putational limit.

• the SAM provides a technique to quantize acoustic
trajectories.

2.3. Voiceprint model creation (acoustic trajectory train-
ing)

A standard GMM is password independent because it learns
the acoustic properties of the speaker’s voice without mak-
ing any assumptions about the order in which observation
vectors will be observed. To create a password-dependent
system, the model must encode the sequence of the obser-
vations that are typical of the password phrase.

To add the coding of the password phrase to a GMM, we
use the quantized acoustic trajectory (QAT). The QAT is the
most likely sequence of SAM states, given the observation
vectors:

QAT (C) = {I1, I2, . . . , IT },
whereIt is the index of the state that minimizes the Maha-
lanobis distance to the observationCt. This is equivalent to
using vector quantization, with the states as the codebook
and the Mahalanobis distance to choose the appropriate en-
tries. Each training sample provided by the speaker is used
to create a QAT.



The password-dependent voiceprint consists of the a-
dapted SAM voiceprints and the QATs. For speakerx, we
get the composite voiceprint model

Λx = {λx, QATx}.

2.4. Pattern recognition and scoring

To perform the verification, an unknown speaker provides a
speech sample,

Co = {c1, c2, . . . , cT },

assumed to be a password phrase for the speaker. The pass-
word phrase provides the identity of the speaker as well as
the properties used to verify the speaker. In order to be
accepted, it must be the speaker who says the password.
The observation vectors, as with training, consist of 32 nor-
malized linear frequency cepstral coefficients, andT is the
number of vectors after noise and silence frames have been
removed.

The first step is to quantizeCo with the SAM to obtain
the QAT of the incoming utterance. Then, a fast match al-
gorithm is used to select a small set of QATs that best match
the test utterance. The scoring uses dynamic programming
where the local distance between elements of the QAT in-
dices are provided by table lookup. This table is precom-
puted using the Mahalanobis distances between the SAM
state means.

The scoring algorithm is a DTW-based approach. As
with the training process, the speech samplesCo are con-
verted to the QAT,Io. From the registration process, there
is a set of reference QATs,Rs, s = 1, . . . , S, whereS
is the number of known speakers. Each reference QAT is
scored againstIo, and theK best-matching QATs,Rx, x ∈
{x1, x2, . . . , xK}, are chosen. For the DTW scoring al-
gorithm, the local distance measure,d(It, Rx,j) is derived
from the Mahalnobis distance between the means of states
It andRx,j . This scoring is very fast, because the local dis-
tances can be precomputed. As well, a hierarchical or clus-
tered approach can be used to organize the reference QATs
so that references that are obviously far from the speech
sample need not be scored.

The adapted GMMs corresponding to the best-matching
QATs are loaded and scored using likelihood ratio testing
(LRT). For each subscriberx with a QAT in the short list,
we compute the likelihhood ratio

θx =
Pr(λx|Co)

Pr(λsam|Co)
,

whereλx is the GMM for speakerx. Using Bayes’ rule,

Pr(λx|Co) =
Pr(Co|λx) Pr(λx)

Pr(Co)

and

Pr(λsam|Co) =
Pr(Co|λsam) Pr(λsam)

Pr(Co)
.

Therefore,

θx =
Pr(Co|λx)

Pr(Co|λsam)
,

because we do not use an a priori probability ofx being an
imposter. The likelihoods are calculated using the standard
scoring of a GMM:

Pr(ct|λx) =
M
∑

i=1

px,i Pr(ct|µx,i, σ2
x,i),

where px,i is the mixture weight for statei and
Pr(ct|µx,i, σ2

x,i) is the Gaussian pdf. Finally, the log-
likelihood for the complete utterance is

log Pr(λx|Co) =
T

∑

t=1

log Pr(ct|λx).

log Pr(λsam|Co) is computed in a similar manner.
Finally, from amongst theK candidate speakers, we se-

lect speakerxi as the most likely if

log Pr(λxi |Co) > log Pr(λxj |Co), ∀j 6= i

. The speaker is accepted if

log Pr(λxi |Co) − log Pr(λsam|Co) >= θ,

whereθ is a threshold typically>= 0, and is chosen to
satisfy the required level of security.

3. EXPERIMENTAL RESULTS

To perform our experiments, we used the Polycost 250 da-
tabase. A set of four baseline experiments (BE) has previ-
ously been defined for Polycost to provide a common ground
for speaker recognition experiments and to enable-cross-site
comparison [5, 6, 7]. We wanted to evaluate the QATGMM
on a password-dependent task, so we decide to use the only
BE1 experiment that is a text-dependent speaker verification
with a fixed sentence. Each speaker is saying the following
sentence: ”Joe took father’s green shoe bench out.”

The regular Polycost baseline experiments used 110 of
the 134 speakers from the database to create models. Be-
cause we have some restriction on noise level and on the
similarities of the four different utterances from the same
speaker, we were able to use only 91 speakers from the 110
defined speakers.

For all the speakers, we created a speaker verification
model and a QATGMM model. We used 4 utterances to



N EER
1 3.71%
2 4.44%
3 4.75%
5 5.98%
10 6.44%

Table 1. Equal error rates for the QATGMM whereN is
the number of best matching QATs that are verified.

create each of the models as defined in the BE1 experiment
specification. For the speaker verification only one model
was created, but for the QATGMM models, each of the four
utterances becomes a specific trajectory. All the QATGMM
models (the four trajectories) for the same speaker are kept
inside the same file.

Table 1 shows the results of combined identification and
verification using the QATGMMs. As described above, each
QATGMM is scored against the test utterance. TheN speak-
ers with the QATGMMs closest to the utterance are then
verified. The model with the highest score is chosen as the
speaker, and the speaker is accepted if and only if the score
(normalized by the SAM score) is above a threshold. The
table shows the equal-error rate (EER) for several values of
N .

For the sake of comparison, we implemented a single-
step verification using speaker identification. The same
GMMs were used, but without the filtering of speakers us-
ing the QATs. The resulting EER was 8.33%, double the
EER with the QATGMM approach.

Finally, to determine the upper bound, we assumed that
we could identify the speaker with perfect accuracy (similar
to a two-step verification process). In this case, the EER
with the same GMMs is 1.47%, significantly better than the
single-step approach. However, we believe the performance
of the QATGMM is sufficient for many applications, and
that the single-step approach is more convenient for users.

Note that this task is somewhat pessimistic, since all
speakers are using the same password. We believe, in this
case, that the performance of a system using ASR to do the
selection would perform at approximately the same level
as the speaker identification approach. This is because the
QATGMM approach includes some speaker dependence in
the QAT that is used to select the most likely candidates.
The ASR-based approach, on the other hand, uses speaker
independentmodels to perform the candidate selection.

4. CONCLUSIONS AND FUTURE WORK

We have described a novel single-step identification and
verification system. Our approach is password-dependent,
but unlike ASR-based approaches, the QATGMM method

is language independent since it does not rely on linguis-
tic knowledge. We have shown that the QATGMM method
has half the EER of simply using speaker identification. Al-
though two-step verification (with an indentity claim step
followed by a separate verification) has better performance,
the single-step approach is more convenient for users and
achieves sufficiently good results for many applications. As
well, the speaker-dependent nature of the QAT will be a
benefit in applications where a significant number of users
share the same password phrase.

Future work includes optimization of the algorithms to
improve their efficiency. As well, more comparisons with
ASR-based approaches are needed.
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