PASSWORD-DEPENDENT SPEAKER VERIFICATION USING QUANTIZED ACOUSTIC
TRAJECTORIES

Luc Gagnon, Peter Stubley, and Ghislain Mailhot

Locus Dialogue
460, Sainte-Catherine Ouest
Montréal, Qebec, Canada H3B 1A7
{Luc.Gagnon,Peter.Stubley,Ghislain.Mailp@locusdialogue.com

ABSTRACT as the password phrase.

Speaker verification requires either two steps (identity claim A Gaussian mixture model (GMM) forms the basis of
and verification) or the use of speech recognition to deter-the algorithm.  The GMM is used to both determine the
mine the password phrase. The single step method usingQAT and.score the qtt_erance to yqlldal_te the speaker. In the
speech recognition is text- and language-dependent. We def‘e)ft section, Fhe tra!nlng and verlflca}tlon processes are d'e—
scribe a novel single-step method based on Gaussian mixScribed. Section 3 gives some experimental results and dis-
ture models and quantized acoustic trajectories that does nofUSSion. Section 4 gives our conclusions and outlines future
use any linguistic knowledge and is thus text- and Ianguage—Work-

independent. Although a two-step process can be more ac-

curate, our approach is significantly better than speaker iden-

tification and is more convenient than a two-step process. 2. THE SPEAKER VERIFICATION ALGORITHM

1. INTRODUCTION The Quantized Acoustic Trajectory Gaussian Mixture

Model (QATGMM) technique builds voiceprints by cap-
; : i _ >“italizing on two components. The first component is a
ally requires two steps, an identity claim followed by veri- o etric voiceprint made of a parametric Gaussian mix-
flcatlon.that the speaker is who they claim to be. Itis more ture model (GMM) [3] trained on acoustic features using
convenient for users to S|m.ply spemfy a pa_lssword and haveBayesian adaptation [4]. The second component is a quan-
the password phrase both identify and verify the speaker. yj,o acoustic trajectory which models the acoustic path of

In previous work, this has been accomplished with one ¢ \;ser-selected password phrase. The most likely mixture
of two methods. The first uses speaker identification, but geqyence which quantizes the acoustic vectors is termed the
this approach can be expensive and less accurate, even Whe),antized acoustic trajectory. The QAT actually models the
the number of subscribers is only moderately large. The yasqword phrase without using any linguistic knowledge.
second approach uses automatic speech recognition (ASR}pe QAT is therefore text and language independent. Sub-

with speaker-independent models to recognize the passworciners could in fact use any sounds to make their password
phrase (such as the subscriber's name or PIN) and thus the,,q are not limited to phones associated with languages.
speaker [1, 2]. The speaker verification algorithm is then

applied to the phrase. This approach is effective and effi-

cient, but is text- and language-dependent (the words of the

password phrase must be including in the ASR’s vocabu-2.1. The GMM model
lary).

In this work, we describe a method based on quantized The seed acoustic model (SAM) is a 512-state GMM trained
acoustic trajectories (QAT) that does not rely on linguistic on approximately 10 hours of speech, using a combination
knowledge. The QAT approach has the benefits of the ASRof K-means clustering and the EM algorithm. The feature
approach, but is text- and language-independent. Thus, usergectors are cepstral coefficients determined by a 32ms Ham-
are not restricted in their choice of password, and indeed, doming window, a 256-point FFT resulting in 32 linear fre-
not even need to use words. As long as they can consistentlyguency cepstrum coefficients. The frame advance rate is 8
reproduce the sounds, any sequence of sounds can be usetds. As well, cepstral mean subtraction is used.

In speaker verification (SV), the authentication process usu-



2.2. Voiceprint model creation (biometric training)

The SAM is used as the prior distribution for MAP training
of the subscriber’s biometric voiceprints. It also serves as
the imposter model for score normalization in the SV scor-
ing stage. As well, the SAM is used to determine the QAT.

The SAM is described as a mixture &f Gaussian pdfs

(or states), each with a diagonal covariance matrix:
A = {pi, N(ui,o2),i=1,..., M},
wherep; is the probability of state, 1, is the mean, and?
is the diagonal covariance matrix.

The biometric voiceprint for a speaker is created by per-
forming MAP adaptation of the initial SAM with a sequence
of acoustic observation vectors generated from the training
speech samples of the speaker,

C = {C,Cy,...,Cr},
where(; is the normalized cepstral vector for framheA
fixed relevance factaris used to adapt the mixture weights,
means, and variances.

The outline of the MAP process follows the develop-
ment in [3, 4]. For statg, the SAM provides the prior pa-
rameterp,, iy, af,}, wherep, is the mixture weighty,, is
the mean, andf, is the vector corresponding to the diagonal
covariance matrix. The probabilistic count

T
n = Z Pr(j|Ct)
t=1

defines the total likelihood of stafe given the sequence of
speaker observations.
The adaptation coefficient is defined by

n

n+r’

wherer is the relevance factor. The relevance factor adds

robustness to the training process and is typically set to a

value between 1 and 25.
The adapted mixture weight, is given by

Ylaps + (1 —a)pp),

Pa

wherep, = n/T, andy is computed over all states to ensure
that the mixture weights sum to 1.
Similarly, the adapted mean, is

Ha = [a/‘s + (1_a)/‘PL
where

T
1 Z .
Ms = E CtPI'(j‘Ct)

t=1

Finally, the adapted variane€ is given by

2

g

a

2 2 2 2
[O[O's + (1 - a)(lj’p + Up)] = Ha»
where

T
1
oy = - > CEPr(jICy).
t=1
The adaptation equations are applied to each state of the
SAM to produce the adapted mode] for speakerr.
The one-pass MAP technique has several advantages:

e MAP is robust to limited training data. When a state
has a low probabilistic coumnt, there is a de-emphasis
of the new (potentially under-trained) parameters and
an emphasis of the prior parameters. Conversely,
whenn is large, the new parameters are emphasized,

and the prior parameters are de-emphasized.

it is robust to noisy training data, due in part to the
relevance factor. Before a state is updated, it must see
a certain number of similar acoustic events. Bad, or
out-lying, vectors are softly rejected.

it can be used to adapt the acoustic models to new
environments with limited data. MAP can be re-run
on the new data to re-adapt the SAM.

the SAM provides ale factocohort, or world, model.

it allows fast computations of the relevant states. This
way, a system can afford more states for a given com-
putational limit.

the SAM provides a technique to quantize acoustic
trajectories.

2.3. Voiceprint model creation (acoustic trajectory train-

ing)

A standard GMM is password independent because it learns
the acoustic properties of the speaker’s voice without mak-
ing any assumptions about the order in which observation
vectors will be observed. To create a password-dependent
system, the model must encode the sequence of the obser-
vations that are typical of the password phrase.

To add the coding of the password phrase to a GMM, we
use the quantized acoustic trajectory (QAT). The QAT is the
most likely sequence of SAM states, given the observation
vectors:

QAT(C) = {1, Is,...,Ir},

wherel; is the index of the state that minimizes the Maha-
lanobis distance to the observatiof. This is equivalent to
using vector quantization, with the states as the codebook
and the Mahalanobis distance to choose the appropriate en-
tries. Each training sample provided by the speaker is used
to create a QAT.



The password-dependent voiceprint consists of the a-and
dapted SAM voiceprints and the QATs. For speakewe

get the composite voiceprint model Pr(Asam|Co) = Pr(c"p‘s“””)Pr()\sa””).

Pr(C,)

A, = {\, QAT }. Therefore,

Pr(Co|Az)
Pr(ColAsam)’
To perform the verification, an unknown speaker provides a because we do not use an a priori probability:dfeing an

speech sample, imposter. The likelihoods are calculated using the standard
scoring of a GMM:

2.4. Pattern recognition and scoring 0, =

Co = {017027"'7CT}>

M
assumed to be a password phrase for the speaker. The pass- Pr(ci|Az) = me Pr(ci|ptz,i, 02 ),
word phrase provides the identity of the speaker as well as i=1

the properties used to verify the speaker. In order to be . . . .
. here p,; is the mixture weight for state; and
accepted, it must be the speaker who says the passwordg PR . .
. ; L ) r(etlpz i, 02 ;) is the Gaussian pdf. Finally, the log-

The observation vectors, as with training, consist of 32 nor- .~ & 7% "2t )

. . > . likelihood for the complete utterance is
malized linear frequency cepstral coefficients, dhis the
number of vectors after noise and silence frames have been T
removed. log Pr(As|Co) = Y logPr(ci|As).

The first step is to quantiz€, with the SAM to obtain =1
the QAT of the incoming utterance. Then, a fast match al- ) ) o
gorithm is used to select a small set of QATS that best matchlog Pr(Asam|Co) is computed in a similar manner.
the test utterance. The scoring uses dynamic programming ~ Finally, from amongst thé’ candidate speakers, we se-
where the local distance between elements of the QAT in- €Ct speaker; as the most likely if
dices are provided by table lookup. This table is precom- .
puted using the Mahalanobis distances between the SAM Co) > log Pr(As; |Co), Vi # i
state means.

The scoring algorithm is a DTW-based approach. As

log Pr()\,,

. The speaker is accepted if

with the training process, the speech samglgsare con- log Pr(\,,|C,) — log Pr(Asam|C,) >= 8,
verted to the QAT/,. From the registration process, there '
is a set of reference QATSR,, s = 1,...,S, whereS where is a threshold typically>= 0, and is chosen to

is the number of known speakers. Each reference QAT issatisfy the required level of security.

scored against,, and theK best-matching QATSR,., x €

{x1,x2,...,2K}, are chosen. For the DTW scoring al- 3. EXPERIMENTAL RESULTS

gorithm, the local distance measut#/;, R, ;) is derived

from the Mahalnobis distance between the means of states, perform our experiments, we used the Polycost 250 da-

Iy andR, ;. This scoring is very fast, because the local dis- tahase. A set of four baseline experiments (BE) has previ-

tances can be precomputed. As weII,.a hierarchical or clus-q 5}y heen defined for Polycost to provide a common ground

tered approach can be used to organize the reference QATgyr speaker recognition experiments and to enable-cross-site

so that references that are obviously far from the speechcomparison [5, 6, 7]. We wanted to evaluate the QATGMM

sample need not be scored. . _on a password-dependent task, so we decide to use the only
The adapted GMMs corresponding to the best-matchinggg1 experiment that is a text-dependent speaker verification

QATSs are loaded and scored using likelihood ratio testing yth a fixed sentence. Each speaker is saying the following

(LRT). For each subscriber with a QAT in the short list,  sentence: "Joe took father's green shoe bench out.”

we compute the likelihhood ratio The regular Polycost baseline experiments used 110 of
the 134 speakers from the database to create models. Be-

Pr(A;|C,) - .
0, = ———— cause we have some restriction on noise level and on the

Pr(Asam|Co) similarities of the four different utterances from the same

speaker, we were able to use only 91 speakers from the 110

defined speakers.

Pr(Co|As) Pr(Az) For all the speakers, we created a speaker verification
Pr(C,) model and a QATGMM model. We used 4 utterances to

where), is the GMM for speaket. Using Bayes' rule,

Pr(A\;|Co) =




N | EER is language independent since it does not rely on linguis-
1]371% tic knowledge. We have shown that the QATGMM method
2 | 4.44% has half the EER of simply using speaker identification. Al-
3 | 4.75% though two-step verification (with an indentity claim step
5 | 5.98% followed by a separate verification) has better performance,
10 | 6.44% the single-step approach is more convenient for users and

achieves sufficiently good results for many applications. As
well, the speaker-dependent nature of the QAT will be a
benefit in applications where a significant number of users
share the same password phrase.

Future work includes optimization of the algorithms to

create each of the models as defined in the BE1 experimeniMmpProve their efficiency. As well, more comparisons with

specification. For the speaker verification only one model ASR-based approaches are needed.
was created, but for the QATGMM models, each of the four

Table 1. Equal error rates for the QATGMM whe¥ is
the number of best matching QATSs that are verified.
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4. CONCLUSIONS AND FUTURE WORK

We have described a novel single-step identification and
verification system. Our approach is password-dependent,
but unlike ASR-based approaches, the QATGMM method



