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ABSTRACT

A novel approach is proposed in order to reduce the number of
sweeps (trials) required for the efficient extraction of the brain
evoked potentids (EPs). This approach is developed by
combining both the Wiener filtering and the subspace methods.
First, the signal subspace is estimated by applying the singular-
value decomposition (SVD) to an enhanced version of the raw
data obtained by Wiener filtering. Next, estimation of the EP
data is achieved by orthonormal projecting the raw data onto
the estimated signal subspace. Simulation results show that
combination of both two methods provides much better
capability than each of them separately.

1. INTRODUCTION

The sensory brain evoked potentiadls (EPs) are electrica
responses of the central nervous system to sensory stimuli
applied in a controlled manner. The interest in these potentials
arises from their utilization as clinical and research tools and
for their contribution to the basic understanding of the
functions of the brain [1]-[3], [5], [7]. Ensemble averaging and
weighted ensemble averaging have been usualy used to
enhance the SNR [1]. Such techniques can be thought of as
lowpass filtering of noise and a very large number of sweepsis
required to obtain a suitable EP estimate. Wiener Filtering
based techniques have also been extensively used for the
enhancement and recovering of the EP[3], [7]. In one adaptive
implementation of the Wiener filter, the noisy EPs are taken as
the primary input while, the auxiliary reference input has been
taken as constructed models of the EPs because the reference
noise is in generad not available. Various kinds of basis
functions have been used to construct such models [4]. The
performance of this approach is then dependent on how much
the assumed mode is close to the EP signa. In another
approach, where multiple sweeps are available, the primary
input is taken as the ensemble average while the reference input
is taken as one sweep that is not included in the average, which
keeps noise uncorrelation. Unfortunately, the Wiener filtering
method deteriorates if both the signa and noise spectra are
overlapped.

The subspace method implemented using the singular value
decomposition (SVD) is commonly used for enhancing
nonaveraged data [2], [6]. In this technique the space of the
observed data is decomposed into signa and noise subspaces.
Because both the signal and noise subspaces are orthogonal,
orthonormal projecting the observed signal onto the signa
subspace leads to the reduction of the noise. It is known that
SVD can efficiently decompose the observed signal space if the

signal-to-noise ratio (SNR) is relatively high. However, SNR
may be as low as 0 to —10.0 dB, which deteriorates the
performance of the subspace method.

In the present work, we propose to integrate both the Wiener
filtering and the subspace methods for the extraction of the EP.
This combination indeed reduces the number of sweeps
required to achieve suitable extraction. In Section Il we give a
brief review for the Wiener filtering and the conventional
subspace methods. In Section 111, the proposed approach is
described. Section IV presents extensive simulation results and
finally Section V gives the conclusions.

2. CONVENTIONAL METHODS

2.1. Signal Model and Problem Formulation

Multiple sweeps of the observed EP can be modeled as
Xi (n) = s(n) +v;(n) + 7 (n), 1
i=12..,L,0sns<N-1
where s(n) is the unknown EP signa which is deterministic
for dl i, the noise v;(n) is due to the spontaneous brain

activity caled electroencephaogram (EEG) which is
temporally-correlated random process and its spectrum may be
overlapped with the spectrum of the EP signal s(n), and

z,(n) isthe sensors white noise. The objective is to extract the
EP signal s(n) given L sweeps (trials).
2.2. Wiener Filtering
In Wiener filtering [7], to enhance the ith sweep signa, the
filter input x; (n) is the ith sweep signa that contains the EP
plus the noise. The desired signal d;(n) is computed as the
ensemble average of the L sweeps excluding theith sweep, i.e.,
1 L
di(n) =—— xj(n) @
AR

Excluding the ith sweep, which is the input of the filter, makes

the noise in both the desired and the input uncorrelated. The
filter output is given by

M-1
yi(n) = Zo hi (M) (n - m) ©)

where h;(m) is the impulse response of length M of the ith
filter. The output y;(n)is an estimate of s(n) if the filter

impulse response is computed so as to minimize the mean
square of the error signal g (n) = d; (n) — y; (n) . This optimum



impulse response is known as the solution of the Wiener-Hopf
equations given by

Mz_:hi(m)rxi (Mm-K) = p(-k), k=0L..M-1 (4

where 1, (M-k) =<x(n-K)x(n-m)> is the auto-

correlation function of the input and

p(-k) =< x;(n —k)d;(n) > is the cross-correlation between
the input and the desired in which <.> stands for the time
average operator.

Unfortunately, if both the spectra of the noise and the EP
signal are overlapped, the filter cannot reject completely such
noise. Therefore the Wiener filtering approach is capable of
reducing only white noise and colored noise whose spectra are
not overlapped with that of the EP signal.

2.3. Subspace Method

Singular value decomposition (SVD) of a given signal data
matrix contains information about the signal energy, the noise
level, the number of sources, and enable to divide datato signal
and noise subspaces [6]. A brief review of SVD subspace
method can be described as follows. In the matrix form the
available data can be expressed as

X =%, X, %] ®)

where X, isgiven by

X =[% ), X @, % (N-1]" (6)
The SVD of matrix X for L < N isgiven by
X =UzvT )

where the matrices U OR N*t, VT OR Y% are orthonormal
such that u'u =1, WT =1, and
¥ =diag(M, Ay, AL OR YL, with Ap > Ap > A >0.
The columns of both U and V are caled the right and left

singular vectors of X, respectively. The diagonal entries of X
are called the singular values of X, which give information
about, the number of signals, signal energy and the noise level.
If the signal-to-noise ratio is relatively high, the matrix X can
be decomposed as
s O
X =lUs Unlg® o Vs Vol ®
a n(]
where 2 contains s largest singular values associated with s
source signalsand Z,, contains L —ssingular values associated
with the noise part. Ug and Vg contain s singular vectors
associated with the signal part; and U,, and V,, contain L —s
singular vectors associated with the noise part. The subspace
spanned by the columns of Ug is referred to as the signal
subspace and the subspace spanned by the columns of U, is

referred to as the noise subspace. Both the signal and noise
subspaces are orthogona to each other thus we obtain the best
least squares approximation of the observed noisy
measurements. Therefore orthonormal projecting the noisy
data onto the signal subspace leads to the reduction of the
noise. Thisorthonormal projection is given by

Y =UU{Uy)MUIX ©)

or ssimply by
Y=UUIX (10)
due to the orthonormal property of the singular vectors.

It is worth to mention that SVD subspace method provides
better performance in the case of relatively high SNR. Thisis
because for high SNR, the signa singular values are
substantially larger than the noise singular values and thus
powering would widen the separation of the noise and signal
singular values.

3. THE PROPOSED APPROACH

As mentioned, although the Wiener filtering method provides
SNR improvement, the in-band noise cannot be removed in this
single stage. However, due the fact that for real-world
problems the SNR is relatively low, applying directly the
conventional subspace method may provide aso rather poor
results. For this reason, we propose to apply the SVD to a
matrix constructed from the filtered data y;(n) . In this case

the filtered data matrix can be written as (see (7) and (8))

Y =[yn Yoy 1 =U ZVT (11)
where Yi =[y;(0), Y; @, ¥ (N —1)]T. It should be noted that

due to the SNR enhancement associated with the matrix Y
compared with the raw EP data matrix X , the signal subspace

referred to as Ug will be an enhanced estimate of the
conventional subspace U obtained from the raw data. After

the estimation of the signa subspace tjs, the desired EP data

can be obtained by orthonormal projecting the rawv EP data
X onto this signal subspace as

X =U0Tx (12)

where X represents the matrix data of the desired EP of the
overal approach. It isworth to note that the rank of the signal
subspace is equa to the number of sources. For the
deterministic EPs model, the number of sources is one and the

first column of tjs represents the signal subspace. Thisisaso

valid when the EP signd s(n) from sweep to sweep is only
amplified by different constant gains.

4. SIMULATIONRESULTS

To examine the effectiveness of the proposed approach,
extensive simulations have been carried out. Due to space
limitations we present here only two illustrative examples. In
these examples, two simulated models for the EP s(n) given in
Figure 1 (top) and Figure 3.a are used with sampling frequency
6 kHz (i.e,, N = 1500). The temporally correlated EEG activity
v(n) is generated using the following autoregressive model [7]
v(n) =1.5084v(n - 1) - 0.1587v(n — 2) — 0.3109v(n - 3) 13
—0.0510v(n - 4) + u(n) (13)
with u(n) representing a zero-mean white Gaussian noise. The
white noise z(n) is modeled as a zero-mean white Gaussian
noise. To generate 20 sweeps, 20 redizations of both v(n) and
z(n) are added to s(n). The SNR's are 1.0 and 0.25 for colored
and white noise, respectively, which implies that the total SNR
is—7.0 dB. The filter length M is 128. From Figures 1, it is



observed that both spectra of the colored noise and the EP
signal are overlapped. From Figure 2.b, it is observed that the
Wiener filter removes only the out-of-band noise. From Figure
2.c, it is apparent that the conventional subspace provides no
efficient SNR improvement. Figure 2.d shows that the
presented approach outperforms each of the Wiener filtering
and subspace methods. Figures 3.3, b, ¢, d and e show the first
sweep of the observed signals, the first sweep of the outputs of
the Wiener filter, and the estimated EP signals using both the
subspace method and the presented approach, for the second
EP signal model, respectively.
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Figure 1. The first EP signal model, the additive colored noise
and their spectra from top-to-bottom respectively.
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Figure 2. Results in the case of the first EP signa model: a,
one sweep of the noisy EP; b, one sweep of the Wiener filter
outputs; ¢, the enhanced EP signal using the conventional
subspace method; d, the enhanced EP signal using the
approach presented.

Results of the second EP signa model confirm aso the
efficiency of the presented approach. In both EP examples, the



first column of the right singular values is taken as the signal
subspace. Comparing the estimated EP signal of the approach
presented with that of the conventional subspace method shows
that the latter is still noisy while the former is a good replica of
the noise-free EP signal.
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Figure 3. Results in the case of the second EP signal modd: a;
the noise-free EP; b, one sweep of the noisy EP; c, one sweep
of the Wiener filter outputs; d, the enhanced EP signal using
the conventiona subspace; e, the enhanced EP signal using the
approach presented.

5. CONCLUSION

An approach has been described for the efficient extraction of
the brain evoked potentials. In this approach, for the estimation
of the signal subspace, the SVD is applied to an enhanced
version of the raw data obtained using the Wiener filtering
technique. The final enhanced evoked potential data are
obtained by orthonormal projecting the raw data onto the
estimated signal subspace. The approach can be used to reduce
the number of sweeps required for reliable extraction of the EP
signal from huge noise.
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