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ABSTRACT 

A novel approach is proposed in order to reduce the number of 
sweeps (trials) required for the efficient extraction of the brain 
evoked potentials (EPs). This approach is developed by 
combining both the Wiener filtering and the subspace methods.  
First, the signal subspace is estimated by applying the singular-
value decomposition (SVD) to an enhanced version of the raw 
data obtained by Wiener filtering.  Next, estimation of the EP 
data is achieved by orthonormal projecting the raw data onto 
the estimated signal subspace.  Simulation results show that 
combination of both two methods provides much better 
capability than each of them separately. 
 

1. INTRODUCTION 
 
The sensory brain evoked potentials (EPs) are electrical 
responses of the central nervous system to sensory stimuli 
applied in a controlled manner.  The interest in these potentials 
arises from their utilization as clinical and research tools and 
for their contribution to the basic understanding of the 
functions of the brain [1]-[3], [5], [7].  Ensemble averaging and 
weighted ensemble averaging have been usually used to 
enhance the SNR [1].  Such techniques can be thought of as 
lowpass filtering of noise and a very large number of sweeps is 
required to obtain a suitable EP estimate. Wiener Filtering 
based techniques have also been extensively used for the 
enhancement and recovering of the EP [3], [7].  In one adaptive 
implementation of the Wiener filter, the noisy EPs are taken as 
the primary input while, the auxiliary reference input has been 
taken as constructed models of the EPs because the reference 
noise is in general not available. Various kinds of basis 
functions have been used to construct such models [4].  The 
performance of this approach is then dependent on how much 
the assumed model is close to the EP signal. In another 
approach, where multiple sweeps are available, the primary 
input is taken as the ensemble average while the reference input 
is taken as one sweep that is not included in the average, which 
keeps noise uncorrelation. Unfortunately, the Wiener filtering 
method deteriorates if both the signal and noise spectra are 
overlapped. 

The subspace method implemented using the singular value 
decomposition (SVD) is commonly used for enhancing 
nonaveraged data [2], [6].  In this technique the space of the 
observed data is decomposed into signal and noise subspaces.  
Because both the signal and noise subspaces are orthogonal, 
orthonormal projecting the observed signal onto the signal 
subspace leads to the reduction of the noise.  It is known that 
SVD can efficiently decompose the observed signal space if the 

signal-to-noise ratio (SNR) is relatively high.  However, SNR 
may be as low as 0 to –10.0 dB, which deteriorates the 
performance of the subspace method. 

In the present work, we propose to integrate both the Wiener 
filtering and the subspace methods for the extraction of the EP.  
This combination indeed reduces the number of sweeps 
required to achieve suitable extraction.  In Section II we give a 
brief review for the Wiener filtering and the conventional 
subspace methods. In Section III, the proposed approach is 
described.  Section IV presents extensive simulation results and 
finally Section V gives the conclusions. 

 

2. CONVENTIONAL METHODS 
 
2.1.   Signal Model and Problem Formulation 

Multiple sweeps of the observed EP can be modeled as 
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where )(ns  is the unknown EP signal which is deterministic 

for all i, the noise )(nvi  is due to the spontaneous brain 

activity called electroencephalogram (EEG) which is 
temporally-correlated random process and its spectrum may be 
overlapped with the spectrum of the EP signal )(ns ,  and 

)(nzi  is the sensors white noise. The objective is to extract the 

EP signal s(n) given L sweeps (trials). 

2.2.   Wiener Filtering 

In Wiener filtering [7], to enhance the ith sweep signal, the 
filter input )(nxi  is the ith sweep signal that contains the EP 

plus the noise. The desired signal )(ndi  is computed as the 

ensemble average of the L sweeps excluding the ith sweep, i.e.,  
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Excluding the ith sweep, which is the input of the filter, makes 
the noise in both the desired and the input uncorrelated.  The 
filter output is given by 
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where )(mhi  is the impulse response of length M of the ith 

filter.  The output )(nyi is an estimate of s(n) if the filter 

impulse response is computed so as to minimize the mean 
square of the error signal )()()( nyndne iii −= . This optimum 



impulse response is known as the solution of the Wiener-Hopf 
equations given by 
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 where >−−=<− )()()( mnxknxkmr iixi
 is the auto-

correlation function of the input and 
>−=<− )()()( ndknxkp ii  is the cross-correlation between 

the input and the desired in which <.> stands for the time 
average operator. 

Unfortunately, if both the spectra of the noise and the EP 
signal are overlapped, the filter cannot reject completely such 
noise. Therefore the Wiener filtering approach is capable of 
reducing only white noise and colored noise whose spectra are 
not overlapped with that of the EP signal. 

2.3.   Subspace Method 

Singular value decomposition (SVD) of a given signal data 
matrix contains information about the signal energy, the noise 
level, the number of sources, and enable to divide data to signal 
and noise subspaces [6]. A brief review of SVD subspace 
method can be described as follows.  In the matrix form the 
available data can be expressed as 
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where ix  is given by 
T
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The SVD of matrix X for NL <  is given by 
TVUX Σ=    (7) 

where the matrices ,LNU ×∈ R  LLTV ×∈ R  are orthonormal 

such that ,L
T IUU =  L

T IVV =  and 
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The columns of both U and V are called the right and left 

singular vectors of X, respectively. The diagonal entries of Σ  

are called the singular values of X, which give information 
about, the number of signals, signal energy and the noise level. 
If the signal-to-noise ratio is relatively high, the matrix X can 
be decomposed as  
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where sΣ  contains s largest singular values associated with s 

source signals and nΣ  contains L – s singular values associated 

with the noise part. sU  and sV contain s singular vectors 

associated with the signal part; and nU  and nV contain L – s 

singular vectors associated with the noise part.  The subspace 
spanned by the columns of sU  is referred to as the signal 

subspace and the subspace spanned by the columns of nU  is 

referred to as the noise subspace.  Both the signal and noise 
subspaces are orthogonal to each other thus we obtain the best 
least squares approximation of the observed noisy 
measurements.  Therefore orthonormal projecting the noisy 
data onto the signal subspace leads to the reduction of the 
noise.  This orthonormal projection is given by 
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or simply by 
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due to the orthonormal property of the singular vectors.  
It is worth to mention that SVD subspace method provides 

better performance in the case of relatively high SNR.  This is 
because for high SNR, the signal singular values are 
substantially larger than the noise singular values and thus 
powering would widen the separation of the noise and signal 
singular values. 
 

3. THE PROPOSED APPROACH 
 
As mentioned, although the Wiener filtering method provides 
SNR improvement, the in-band noise cannot be removed in this 
single stage.  However, due the fact that for real-world 
problems the SNR is relatively low, applying directly the 
conventional subspace method may provide also rather poor 
results.  For this reason, we propose to apply the SVD to a 
matrix constructed from the filtered data )(nyi .  In this case 

the filtered data matrix can be written as (see (7) and (8)) 
T
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where .)1(,),1(),0( ][ T
iii Ni yyyy −= �  It should be noted that 

due to the SNR enhancement associated with the matrix Y  
compared with the raw EP data matrix X , the signal subspace 

referred to as sÛ  will be an enhanced estimate of the 

conventional subspace sU  obtained from the raw data.  After 

the estimation of the signal subspace sÛ , the desired EP data 

can be obtained by orthonormal projecting the raw EP data 
X onto this signal subspace as 
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where X̂  represents the matrix data of the desired EP of the 
overall approach.  It is worth to note that the rank of the signal 
subspace is equal to the number of sources. For the 
deterministic EPs model, the number of sources is one and the 

first column of sÛ  represents the signal subspace.  This is also 

valid when the EP signal s(n) from sweep to sweep is only 
amplified by different constant gains.  
 

4. SIMULATION RESULTS 
 
To examine the effectiveness of the proposed approach, 
extensive simulations have been carried out.  Due to space 
limitations we present here only two illustrative examples.  In 
these examples, two simulated models for the EP s(n) given in 
Figure 1 (top) and Figure 3.a are used with sampling frequency 
6 kHz (i.e., N = 1500).  The temporally correlated EEG activity 
v(n) is generated using the following autoregressive model [7] 
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with u(n) representing a zero-mean white Gaussian noise. The 
white noise z(n) is modeled as a zero-mean white Gaussian 
noise. To generate 20 sweeps, 20 realizations of both v(n) and 
z(n) are added to s(n).  The SNR’s are 1.0 and 0.25 for colored 
and white noise, respectively, which implies that the total SNR 
is –7.0 dB.  The filter length M is 128.  From Figures 1, it is 



observed that both spectra of the colored noise and the EP 
signal are overlapped.  From Figure 2.b, it is observed that the 
Wiener filter removes only the out-of-band noise.  From Figure 
2.c, it is apparent that the conventional subspace provides no 
efficient SNR improvement. Figure 2.d shows that the 
presented approach outperforms each of the Wiener filtering 
and subspace methods.  Figures 3.a, b, c, d and e show the first 
sweep of the observed signals, the first sweep of the outputs of 
the Wiener filter, and the estimated EP signals using both the 
subspace method and the presented approach, for the second 
EP signal model, respectively. 
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Figure 1. The first EP signal model, the additive colored noise 
and their spectra from top-to-bottom respectively. 
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Figure 2. Results in the case of the first EP signal model: a, 
one sweep of the noisy EP; b, one sweep of the Wiener filter 
outputs; c, the enhanced EP signal using the conventional 
subspace method; d, the enhanced EP signal using the 
approach presented. 
 
 

Results of the second EP signal model confirm also the 
efficiency of the presented approach.  In both EP examples, the 



first column of the right singular values is taken as the signal 
subspace. Comparing the estimated EP signal of the approach 
presented with that of the conventional subspace method shows 
that the latter is still noisy while the former is a good replica of 
the noise-free EP signal.   
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Figure 3. Results in the case of the second EP signal model: a; 
the noise-free EP; b, one sweep of the noisy EP; c, one sweep 
of the Wiener filter outputs; d, the enhanced EP signal using 
the conventional subspace; e, the enhanced EP signal using the 
approach presented. 
 
 

5. CONCLUSION 
 
An approach has been described for the efficient extraction of 
the brain evoked potentials.  In this approach, for the estimation 
of the signal subspace, the SVD is applied to an enhanced 
version of the raw data obtained using the Wiener filtering 
technique. The final enhanced evoked potential data are 
obtained by orthonormal projecting the raw data onto the 
estimated signal subspace.  The approach can be used to reduce 
the number of sweeps required for reliable extraction of the EP 
signal from huge noise. 
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