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ABSTRACT

In the motor control industry, DSP systems offer major improve-

ments over analog designs, enabling notably to replace speed or

position sensors by the implementation of sensorless control algo-

rithms. In this paper, we propose a new viable method which esti-

mates the rotor velocity from the �rotor slot harmonics� included

in the stator current signals. This approach is based on both an

adjustable digital �lter, which is �tted to this particular applica-

tion, and an extended Kalman �lter whose computational burden

has been reduced thanks to an additionnal virtual state.

1. INTRODUCTION

Process industries use more and more induction motors instead of

DC motors, because of their higher robustness, higher reliability,

and lower price [21, 20]. One way to control the speed and torque

of these motors is to include tachometers or position transducers

in a feedback loop. But these sensors and their wirings are a sig-

ni�cant source of failure and cost. When they are mounted on the

driving shaft of a single-shaft motor, they are also located at a place

which should preferably be assigned to the load. Therefore, their

elimination is an attractive prospect, which can be achieved by es-

timating speed from the stator terminal current measurements (see

Fig. 1). This is what is commonly called the sensorless control of

induction machines [21].
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Fig. 1. Block diagram of a sensorless motor drive.

At least three classes of solutions exist to estimate the rotor

speed without mechanical sensor. The �rst one relies on a speed

dependent phenomenon called back emf [21, 10], which can be

described by a dynamic model. This non-linear model can be used

to design an adaptive observer, which both estimates the states and

the rotor velocity. But this observer is inherently parameter de-

pendent, making the estimation sensitive to parameter uncertain-

ties and to parameter variations caused by internal heating. These

parameters may also be tracked [2], but the resulting non-linear

model may loose the observability conditions, mainly in steady

state and at low speed.

The second kind of solution is based on an active injection of

an additionnal carrier-signal voltage [14, 6]. This voltage com-

ponent produces a carrier-signal current which is modulated by

position-dependent leakage inductances. This approach is a promis-

ing way, but it may require a modi�cation of the rotor slots, which

may also induce torque pulsations. It also requires a voltage source

inverter with a high switching frequency.

The third kind of solution, to which our approach belongs, is

based on a passive monitoring of the rotor slot harmonics [12, 13].

Mechanical and magnetic saliencies in the rotor (unbalances, ec-

centricities, variations of the air-gap permeance) generate spectral

lines in the current signals whose frequencies and amplitudes do

not depend on the motor parameters [8]. This approach is compli-

cated however by the weakness of these harmonics compared to

the fundamental frequency, and by the presence of many spectral

lines arising both from the voltage source inverter and the motor

itself.
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Fig. 2. Estimated power spectral density of the current in one

phase of an induction motor in steady-state. The rotor velocity

can be recovered from the dashed spectral lines.

To illustrate this, Fig. 2 shows a spectral analysis of the cur-

rent in one phase of a three-phase 0:7 kW squirrel-cage induction

motor operating at 3 Hz (180 rpm) from a sinusoidal (50 Hz) sup-

ply (this rather queer operating mode has only been chosen for the

readability of the �gure). This spectrum includes spectral lines

not only at multiples of the fundamental stator frequency (solid

lines), but also at frequencies of the form fsh = ns fs+nr
Nr

p
fr

(dashed lines), where ns and nr are two signed integers, and fs,
fr , Nr and p are respectively the stator frequency, the mechanical

rotor frequency, the total number of rotor slots and the number of

stator pole pairs. The magnitude of these harmonics can vary with

the load [8] and with rotor aging [3].



So as to estimate the rotor frequency fr from these spectral

lines, non parametric (FFT based) approaches can not be used, be-

cause of the trade-off between high frequency resolution (obtained

with long data records) and quick time response to speed varia-

tions (obtained with short data records). Besides, from a statistical

point of view, peak picking periodograms yields biased frequency

estimates, since the signal includes more than one sinusoid [15].

Other approaches seem to have a large computational burden [12],

or to use a very little of the informations available in the current

signals [8].

Therefore, we propose in this paper a new approach which

tries to comply with most of the practical requirements. This ap-

proach, which uses both an ef�cient adjustable digital �lter and

a Kalman �lter based frequency estimator, is presented in x2. Its
good accuracy and fast response are demonstrated in x3. Experi-
mental results are shown in x4.

2. PROPOSED ESTIMATOR

As can be seen on Fig. 2 around 150 Hz, the PSD of the mea-

sured currents reveals weak spectral line pairs at frequencies of

the form ns fs � nr
Nr

p
fr , where fs is known a priori and fr is

the rotor frequency to be estimated. When sampled with a sam-

pling period Ts, these components become located at the normal-

ized frequencies �0 � Æ� and �0 + Æ�, with �0 = ns fs Ts and

Æ� = nr
Nr

p
fr Ts. Our approach consists in removing everything

except these two components thanks to an adjustable two-band �l-

ter, and in estimating Æ� (and hence fr) by a frequency estimator.

To this aim, the proposed speed estimation algorithm shown Fig.

3 is made of three building blocks:

-

-

isa[n]

isb[n]
C
la
rk
e

-is�[n] IIR
two-band
�lter

-is� [n] IIR
two-band
�lter

-y�[n]

-y�[n]

frequency
estimator

(modi�ed EKF)

-bÆ�[n]
�

z�1�
�
�
�
�
�
�
�
���

Fig. 3. Schematic diagram of the proposed frequency estimator.

2.1. Clarke transform

This linear transformation builds from the stator currents measured

on two phases, is1 and is2, the coordinates is� and is� of the stator

current in an orthogonal stationary reference frame [21]. Under

balanced conditions, the resulting signals are in quadrature. Using

these perpendicular signals instead of just one measured current

will feed the frequency estimator with more information, and will

therefore improve its accuracy and its tracking capability.

2.2. Adjustable two-band �lters

The two signals is� and is� are then �ltered by two identical IIR

multi-band �lters, which have two pass-bands centered on �0�Æ�
and �0 + Æ�, so as to enhance the two information-bearing sig-

nal components, and to remove as much as possible the irrele-

vant stator harmonic �0 and the neighbouring rotor slot harmonics

�0 � 2Æ�. So as to track varying frequencies, the coef�cients of

these �lters must be deduced from the design parameters �0 and

Æ� by analytic expressions. Several approaches can be used to de-

sign such adjustable �lters. We used a simple scheme using two

second order all-pass sections [18], shown Fig. 4. The resulting

transfer function is

H2b(z) = 1 �
1

2
(Hlsb(z) +Husb(z)) ; (1)

withHlsb(z) =
r2 � (1 + r2) �lsbz

�1 + z�2

1� (1 + r2)�lsbz�1 + r2z�2
; (2)

Husb(z) =
r2 � (1 + r2) �usbz

�1 + z�2

1� (1 + r2)�usbz�1 + r2z�2
; (3)

�lsb = cos(2�(�0 � Æ�);

�usb = cos(2�(�0 + Æ�);

r
2 =

1� tan(���)

1 + tan(���)

When Æ�
��

� 1, �� is the bandwidth in both frequency bands.

The main justi�cations of our choice are an appropriate behaviour

at low speed (when Æ� � 0, H2b(z) is a band-pass �lter centered
on �0), and the existence of an ef�cient implementation whose

robustness against truncation errors allows its use on �xed point

processors [18].

-is�[n]
Husb(z)s

- Hlsb(z)

?

6

n+
+
@@�� - 1

2
- n@@��+

�
-

? y[n]

Fig. 4. Block diagram of the adjustable two-band �lter.

2.3. Frequency estimator

Extended Kalman �lters (EKF) [1, 9] are privileged tools to es-

timate the amplitude, phase and frequency of a single sinusoid

[16, 5] or of multiple sinusoids [17] from noisy measurements.

Their design proceeds from a linear state space model of the sig-

nal, the frequencies being considered as known a priori. The state

space model is then extended to the vector � of the unknown fre-

quencies, which are supposed to be slowly varying, and the model

describing the evolution of this extended state becomes nonlinear.

The conventional equations of these �lters are summarized in Ta-

ble 1.

In our case, if the state is made of four in-phase and quadrature

signals (as in [16]) and the unknown (angular) frequency parame-

ter � = 2� Æ�, the computational cost of a conventional extended

Kalman �lter will be large, requiring one matrix inversion and sev-

eral matrix sums and products. However, it should be pointed out

that the transition matrix Ad and the observation vector C of the

linear model both include 2 � 2 submatrices with equal terms on

the diagonal and opposite terms on the anti-diagonal.

Ad[k] =

2
64

a11 b11 0 0
�b11 a11 0 0

0 0 a22 b22
0 0 �b22 a22

3
75 ; (4)

C =

�
1 0 1 0
0 1 0 1

�
; (5)

with a11 = �usb; b11 = � sin(2�(�0 + Æ�)); (6)

a22 = �lsb; b22 = � sin(2�(�0 � Æ�)) (7)



State and parameters prediction

X[k + 1jk] = Ad[k]X[kjk]
�[k + 1jk] = �[kjk]

A priori covariance matrix computation

P [k + 1jk] = F [k]P [kjk]F [k]t +Q

F [k] =

h
Ad[k]

@
@� (Ad[k]X[kjk])�[kjk]

0 I

i
Kalman gain computation

K[k + 1] = P [k + 1jk]Ht(H P [k + 1jk]Ht +R)�1

H = [ C 0 ]

State and parameters correctionh
X[k + 1jk + 1]
�[k + 1jk + 1]

i
=

h
X[k + 1jk]
�[k + 1jk]

i
+ K[k + 1] (Y [k + 1]� CX[k + 1jk])

A posteriori covariance matrix computation

P [k + 1jk + 1] = P [k + 1jk] �K[k + 1]H P [k + 1jk]

Table 1. Conventional extended Kalman �lter equations

So as to force the F matrix to also satisfy this structural property,

we propose to include in the parameter vector � a virtual parame-

ter �v (� = (� �v)
t). This new parameter is supposed to be nearly

constant (�v[k + 1] = �v[k] + v6[k], where v6[k] is a zero-mean

noise process) and to be virtually bound to the signal model so that

F [k] =

2
66664

Ad[k]

f1 �f2
f2 f1
f3 �f4
f4 f3

0 0 0 0
0 0 0 0

1 0
0 1

3
77775 (8)

(f1 f2 f3 f4)
t =

@

@�
(Ad[k]X[kjk])�[kjk] (9)

f1 = b11 xr� � a11 xr� (10)

f2 = a11 xr� + b11 xr� (11)

f3 = �b22 xl� + a22 xl� (12)

f4 = �a22 xl� � b22 xl� (13)

The main theoretical innovation brought by this paper is that if Q
and R are chosen so as to also satisfy this structural property, then
the two covariance matrices P [k + 1jk] and P [k + 1jk + 1] and
the correction gainK[k + 1] have the following structure:

P =

2
64

P11 0 P13 P14 P15 P16
0 P11 �P14 P13 �P16 P15

P13 �P14 P33 0 P35 P36
P14 P13 0 P33 �P36 P35
P15 �P16 P35 �P36 P55 0
P16 P15 P36 P35 0 P55

3
75 (14)

K
t =

h
K11 �K14 K13 K14 K15 K16

K14 K11 �K14 K13 �K16 K15

i
(15)

This result reduces the number of distinct values in these matrices,

and allows the extended Kalman �lter to be implemented by scalar

recurrence equations. This also forces the estimation errors on

the in-phase and quadrature components to be uncorrelated, since

P12 = P34 = P56 = 0. Since the Kalman gain is not changed

when both Q and R are multiplied by the same scalar, and since

there is no reason to consider differently the two signal compo-

nents, we chose Q = diag (q1; q1; q1; q1; q3; q3) and R = II2. So
as to comply with the four-page limit of these proceedings, the

complete equations of the Kalman �lter are not presented here, but

can be found in an internal report available on the web [11], where

supplementary informations can also be found.

Finally, so as to track time-varying frequencies, the frequency

de�ection bÆ� estimated by the EKF is used at the next time sample

to update the two-band �lter coef�cients.

Table 2 shows the number of arithmetic operations required at

each time sample by our algorithm, compared to a straightforward

matrix-based implementation of a 5-state extended Kalman �lter,

as the one obtained with an automatic C code generator. The com-

plexity and the memory requirements are signi�cantly lowered by

the use of an additionnal virtual state, as already shown in [10]

for another application. For the evaluation of the total number of

arithmetic operations, the trigonometric functions required by the

estimator are supposed to be computed by �fth degree polynomi-

als, as done for example on DSP's [19]. The three trigonometric

functions are therefore equivalent to 15 multiplications and 15 ad-

ditions.

Computation of number of multiplications Number of

and inversions additions

two-band �lters 22 30

Ad 24 (40) 24 (48)

F 0 (8) 0 (4)

X[k + 1jk] 8 (16) 4 (12)

P [k + 1jk] 45 (250) 33 (225)

K[k + 1] 7 (146) 7 (111)

P [k + 1jk + 1] 16 (165) 22 (145)h
X[k + 1jk + 1]
�[k + 1jk + 1]

i
10 (20) 14 (20)

Total 109 (645) 104 (566)

Table 2. Number of operations by iteration for the two-band �lters

and for an ef�cient (or a rough) implementation of the extended

Kalman �lter.
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Fig. 5. Mean square error versus signal noise ratio in steady state.

3. STATISTICAL AND TRACKING PROPERTIES

Since the proposed estimator is highly nonlinear, numerical simu-

lations are an important part of evaluating its performance. We �rst

examined the estimation accuracy in steady state. Fig. 5 shows the

mean square error versus the signal noise ratio (both in decibels)

of the EKF output bÆ� computed during 5 seconds (with sampling

frequency Fs = 2500 Hz) over 50 independant Monte Carlo ex-

periments. The signal is made of 5 equal amplitude components at



frequencies �0, �0 � Æ� and �0 � 2Æ�. The threshold of satisfac-
tory performance is around�10 dB, which is completely in accor-

dance with the industrial context. Computer simulations were also

performed to evaluate the tracking behaviour of the proposed al-

gorithm. After an initialisation of the algorithm in steady state, we

performed either abrupt changes or linear variations of frequency.

The signal has the same structure as in Fig. 5, and the SNR is 0
dB. The central frequencies of the two-band �lters are frozen (open

loop estimator) during the �rst 250 points. Fig 6 shows some of

the obtained results. Future works will try to compare these results

with some previous approaches.

4. EXPERIMENTAL RESULTS

An experimental validation of the proposed algorithm was carried

out on a 0:7 kW squirrel cage induction motor connected to an in-

ertial load. Fig. 7.a shows the speed estimation error obtained with

the signals already used for Fig. 2, and with a speed initialization

9 rpm above the real value. A correct estimation is reached after

nearly 1 s (Fs = 2500 Hz). Fig 7.b shows a linear speed variation

from 1000 to 800 rpm, which con�rms the tracking capability of

the algorithm in a real situation.
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Fig. 6. Tracking capability of the proposed algorithm evaluated on
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