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ABSTRACT

In the motor control industry, DSP systems offer major improve-
ments over analog designs, enabling notably to replace speed or
position sensors by the implementation of sensorless control algo-
rithms. In this paper, we propose a new viable method which esti-
mates the rotor velocity from the “rotor slot harmonics” included
in the stator current signals. This approach is based on both an
adjustable digital filter, which is fitted to this particular applica-
tion, and an extended Kalman filter whose computational burden
has been reduced thanks to an additionnal virtual state.

1. INTRODUCTION

Process industries use more and more induction motors instead of
DC motors, because of their higher robustness, higher reliability,
and lower price [21, 20]. One way to control the speed and torque
of these motors is to include tachometers or position transducers
in a feedback loop. But these sensors and their wirings are a sig-
nificant source of failure and cost. When they are mounted on the
driving shaft of a single-shaft motor, they are also located at a place
which should preferably be assigned to the load. Therefore, their
elimination is an attractive prospect, which can be achieved by es-
timating speed from the stator terminal current measurements (see
Fig. 1). This is what is commonly called the sensorless control of
induction machines [21].
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Fig. 1. Block diagram of a sensorless motor drive.

At least three classes of solutions exist to estimate the rotor
speed without mechanical sensor. The first one relies on a speed
dependent phenomenon called back emf [21, 10], which can be
described by a dynamic model. This non-linear model can be used
to design an adaptive observer, which both estimates the states and
the rotor velocity. But this observer is inherently parameter de-
pendent, making the estimation sensitive to parameter uncertain-
ties and to parameter variations caused by internal heating. These
parameters may also be tracked [2], but the resulting non-linear
model may loose the observability conditions, mainly in steady
state and at low speed.

The second kind of solution is based on an active injection of
an additionnal carrier-signal voltage [14, 6]. This voltage com-
ponent produces a carrier-signal current which is modulated by
position-dependent leakage inductances. This approach is a promis-
ing way, but it may require a modification of the rotor slots, which
may also induce torque pulsations. It also requires a voltage source
inverter with a high switching frequency.

The third kind of solution, to which our approach belongs, is
based on a passive monitoring of the rotor slot harmonics [12, 13].
Mechanical and magnetic saliencies in the rotor (unbalances, ec-
centricities, variations of the air-gap permeance) generate spectral
lines in the current signals whose frequencies and amplitudes do
not depend on the motor parameters [8]. This approach is compli-
cated however by the weakness of these harmonics compared to
the fundamental frequency, and by the presence of many spectral
lines arising both from the voltage source inverter and the motor
itself.
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Fig. 2. Estimated power spectral density of the current in one
phase of an induction motor in steady-state. The rotor velocity
can be recovered from the dashed spectral lines.

To illustrate this, Fig. 2 shows a spectral analysis of the cur-
rent in one phase of a three-phase 0.7 kW squirrel-cage induction
motor operating at 3 Hz (180 rpm) from a sinusoidal (50 Hz) sup-
ply (this rather queer operating mode has only been chosen for the
readability of the figure). This spectrum includes spectral lines
not only at multiples of the fundamental stator frequency (solid
lines), but also at frequencies of the form fs;, = ns fs + n, % fr
(dashed lines), where ns and n, are two signed integers, and fs,
fr.» N and p are respectively the stator frequency, the mechanical
rotor frequency, the total number of rotor slots and the number of
stator pole pairs. The magnitude of these harmonics can vary with
the load [8] and with rotor aging [3].



So as to estimate the rotor frequency f, from these spectral
lines, non parametric (FFT based) approaches can not be used, be-
cause of the trade-off between high frequency resolution (obtained
with long data records) and quick time response to speed varia-
tions (obtained with short data records). Besides, from a statistical
point of view, peak picking periodograms yields biased frequency
estimates, since the signal includes more than one sinusoid [15].
Other approaches seem to have a large computational burden [12],
or to use a very little of the informations available in the current
signals [8].

Therefore, we propose in this paper a new approach which
tries to comply with most of the practical requirements. This ap-
proach, which uses both an efficient adjustable digital filter and
a Kalman filter based frequency estimator, is presented in §2. Its
good accuracy and fast response are demonstrated in §3. Experi-
mental results are shown in §4.

2. PROPOSED ESTIMATOR

As can be seen on Fig. 2 around 150 Hz, the PSD of the mea-
sured currents reveals weak spectral line pairs at frequencies of
the form ns fs + n, % fr, where f5 is known a priori and f, is
the rotor frequency to be estimated. When sampled with a sam-
pling period T, these components become located at the normal-
ized frequencies Ao — dA and Ao + 0\, with A\g = ns fs Ts and
oA =n, % fr Ts. Our approach consists in removing everything
except these two components thanks to an adjustable two-band fil-
ter, and in estimating 6\ (and hence f,) by a frequency estimator.
To this aim, the proposed speed estimation algorithm shown Fig.
3 is made of three building blocks:
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Fig. 3. Schematic diagram of the proposed frequency estimator.

2.1. Clarke transform

This linear transformation builds from the stator currents measured
on two phases, 51 and 4,2, the coordinates is, and ¢,g of the stator
current in an orthogonal stationary reference frame [21]. Under
balanced conditions, the resulting signals are in quadrature. Using
these perpendicular signals instead of just one measured current
will feed the frequency estimator with more information, and will
therefore improve its accuracy and its tracking capability.

2.2. Adjustable two-band filters

The two signals is, and isg are then filtered by two identical IIR
multi-band filters, which have two pass-bands centered on Ao — A
and Ao + d, so as to enhance the two information-bearing sig-
nal components, and to remove as much as possible the irrele-
vant stator harmonic Ao and the neighbouring rotor slot harmonics
Ao £ 26\, So as to track varying frequencies, the coefficients of
these filters must be deduced from the design parameters Ao and
d A by analytic expressions. Several approaches can be used to de-
sign such adjustable filters. We used a simple scheme using two

second order all-pass sections [18], shown Fig. 4. The resulting
transfer function is
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When % > 1, A\ is the bandwidth in both frequency bands.
The main justifications of our choice are an appropriate behaviour
at low speed (when 6\ = 0, Hop(2) is a band-pass filter centered
on \p), and the existence of an efficient implementation whose
robustness against truncation errors allows its use on fixed point
processors [18].
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Fig. 4. Block diagram of the adjustable two-band filter.

2.3. Frequency estimator

Extended Kalman filters (EKF) [1, 9] are privileged tools to es-
timate the amplitude, phase and frequency of a single sinusoid
[16, 5] or of multiple sinusoids [17] from noisy measurements.
Their design proceeds from a linear state space model of the sig-
nal, the frequencies being considered as known a priori. The state
space model is then extended to the vector © of the unknown fre-
quencies, which are supposed to be slowly varying, and the model
describing the evolution of this extended state becomes nonlinear.
The conventional equations of these filters are summarized in Ta-
ble 1.

In our case, if the state is made of four in-phase and quadrature
signals (as in [16]) and the unknown (angular) frequency parame-
ter @ = 2mw § A, the computational cost of a conventional extended
Kalman filter will be large, requiring one matrix inversion and sev-
eral matrix sums and products. However, it should be pointed out
that the transition matrix A4 and the observation vector C' of the
linear model both include 2 x 2 submatrices with equal terms on
the diagonal and opposite terms on the anti-diagonal.
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State and parameters prediction

X[k + 1|k] Aglk] X[kl|k]
Ok + 1]k] Olk|k]

A priori covariance matrix computation

Plk+1lk] = F[k] P[k[k] F[£]' + Q
Flk] = [ A%[k] a5 (Aalk] )g[klk])@[kﬂc]
Kalman gain computation
Klk+1] = Plk+1|k]H*(HP[k+1|k]H +R)"!
H = [ C 0]

State and parameters correction
X[k +1lk+1] _ X[k + 1]k]
Ok + 1|k + 1] - Ofk + 1|k]
+ K[k+1](Y[k+1] - C X[k + 1]k])

A posteriori covariance matrix computation

Plk+ 1|k + 1] = P[k + 1|k] — K[k + 1] H P[k + 1|k]

Table 1. Conventional extended Kalman filter equations

So as to force the F' matrix to also satisfy this structural property,
we propose to include in the parameter vector © a virtual parame-
ter 6, (© = (# ,)"). This new parameter is supposed to be nearly
constant (6, [k + 1] = 6, [k] + ve[k], where vg[k] is a zero-mean
noise process) and to be virtually bound to the signal model so that
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The main theoretical innovation brought by this paper is that if )
and R are chosen so as to also satisfy this structural property, then
the two covariance matrices P[k + 1|k] and P[k + 1|k + 1] and
the correction gain K[k + 1] have the following structure:

P 0 Pi3 Py P15 Pig
0 Py —Pig Pz —Pig Pis

P — Pz —Pia Ps3 0 P35 Psg (14)
- Py Pi3 0 P33 —P3s  Pss
Pi5  —Pig P35 —Psg Pss 0
Pig Pis Psg Pss 0 Pss

Kt = K11 —Kia Ki3 Kia Ki5 Kis as)
- Kia Ki1 —Kis Kiz —Kis Kis

This result reduces the number of distinct values in these matrices,
and allows the extended Kalman filter to be implemented by scalar
recurrence equations. This also forces the estimation errors on
the in-phase and quadrature components to be uncorrelated, since
P, = P34 = Ps¢ = 0. Since the Kalman gain is not changed
when both ) and R are multiplied by the same scalar, and since
there is no reason to consider differently the two signal compo-
nents, we chose Q = diag (q1,q1,¢1,q1,93,93) and R = I». So
as to comply with the four-page limit of these proceedings, the

complete equations of the Kalman filter are not presented here, but
can be found in an internal report available on the web [11], where
supplementary informations can also be found.

Finally, so as to track time-varying frequencies, the frequency
deflection 4\ estimated by the EKF is used at the next time sample
to update the two-band filter coefficients.

Table 2 shows the number of arithmetic operations required at
each time sample by our algorithm, compared to a straightforward
matrix-based implementation of a 5-state extended Kalman filter,
as the one obtained with an automatic C code generator. The com-
plexity and the memory requirements are significantly lowered by
the use of an additionnal virtual state, as already shown in [10]
for another application. For the evaluation of the total number of
arithmetic operations, the trigonometric functions required by the
estimator are supposed to be computed by fifth degree polynomi-
als, as done for example on DSP’s [19]. The three trigonometric
functions are therefore equivalent to 15 multiplications and 15 ad-
ditions.

Computation of number of multiplications Number of
and inversions additions
| two-band filters || 22 | 30 |
A, 24 (40) | 24 (49)
F 0 (8) 0 4)
X[k + 1|k] 8 (16) 7 (12
Plk+ 1]K] 45 (250) | 33 (225
K[k +1] 7 (146) 7 (11D)
Plk+ 1|k + 1] 16 (165) 22 (145)
[ ety 0 Q0| 14 o
Total 109 (645) | 104  (566)

Table 2. Number of operations by iteration for the two-band filters
and for an efficient (or a rough) implementation of the extended
Kalman filter.
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Fig. 5. Mean square error versus signal noise ratio in steady state.
3. STATISTICAL AND TRACKING PROPERTIES

Since the proposed estimator is highly nonlinear, numerical simu-
lations are an important part of evaluating its performance. We first
examined the estimation accuracy in steady state. Fig. 5 shows the
mean square error versus the signal noise ratio (both in decibels)
of the EKF output oA computed during 5 seconds (with sampling
frequency F, = 2500 Hz) over 50 independant Monte Carlo ex-
periments. The signal is made of 5 equal amplitude components at



frequencies Ao, Ao £ 6\ and Ao = 26 \. The threshold of satisfac-
tory performance is around —10 dB, which is completely in accor-
dance with the industrial context. Computer simulations were also
performed to evaluate the tracking behaviour of the proposed al-
gorithm. After an initialisation of the algorithm in steady state, we
performed either abrupt changes or linear variations of frequency.
The signal has the same structure as in Fig. 5, and the SNR is 0
dB. The central frequencies of the two-band filters are frozen (open
loop estimator) during the first 250 points. Fig 6 shows some of
the obtained results. Future works will try to compare these results
with some previous approaches.

4. EXPERIMENTAL RESULTS

An experimental validation of the proposed algorithm was carried
out on a 0.7 kW squirrel cage induction motor connected to an in-
ertial load. Fig. 7.a shows the speed estimation error obtained with
the signals already used for Fig. 2, and with a speed initialization
9 rpm above the real value. A correct estimation is reached after
nearly 1 s (Fs = 2500 Hz). Fig 7.b shows a linear speed variation
from 1000 to 800 rpm, which confirms the tracking capability of
the algorithm in a real situation.
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Fig. 6. Tracking capability of the proposed algorithm evaluated on
one abrupt change and 3 linearly increasing frequencies, equiva-
lent to a speed variation from 375 rpm to 562.5, 750, 937.5 and
1125 rpm respectively.
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Fig. 7. Experimental results obtained during a steady state (a) and
a speed variation (b).
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