
ON-LINE EEG CLASSIFICATION AND SLEEP SPINDLES 
DETECTION USING AN ADAPTIVE RECURSIVE BANDPASS FILTER 

R. R. Gharieb and A. Cichocki 

Lab. for Advanced Brain Signal Processing 
Brain Science Institute, RIKEN, Wako-Shi, Saitama, 351-0198, JAPAN  

E-mail: rrgharieb@ieee.org, Fax: + 81-48-467-9694 
      

ABSTRACT 

This paper presents a novel adaptive filtering approach for the 
classification and tracking of the electroencephalogram (EEG) 
waves.  In this approach, an adaptive recursive bandpass filter is 
employed for estimating and tracking the center frequency 
associated with each EEG wave.  The main advantage inherent 
in the approach is that the employed adaptive filter only requires 
one coefficient to be updated.  This coefficient represents an 
efficient distinct feature for each EEG specific wave and its time 
function reflects the nonstationarity of the EEG signal.  
Extensive simulations for synthetic and real world EEG data for 
the detection of sleep spindles show the effectiveness and 
usefulness of the presented approach. 
 

1. INTRODUCTION 
 
Computer-aided analysis of the electroencephalogram (EEG) 
signal, especially during sleep, is of essential interest to facilitate 
the analysis of over a great amount of recorded data [1]-[3].  
Various computer procedures employ a first preliminarily stage 
of feature extraction, followed by decision-making for 
classification and segmentation tasks.  A classical procedure is to 
apply the Fourier transform to a successive classification of the 
EEG signal, the frequency spectrum is observed to vary over 
time.  The main assumption associated with these procedures is 
that the EEG signal recorded during sleep or awaking stage (e.g., 
performing different mental tasks) is a piecewise stationary.  
However, due to strong nonstationarity property of the EEG 
signal, using either stationarity-based methods or block-wise 
adaptive methods are often not satisfactory for the analysis of 
EEG signal. 

A time-varying autoregressive (TV-AR) modeling has been 
used for the analysis and segmentation of the EEG signal during 
sleep and during mental tasks [1], [2], [4], [8], [9].  In these 
approaches, coefficients of the AR model are computed by 
processing successive windows of the EEG signal which 
necessitates a piecewise stationary assumption.  Besides, these 
approaches suffer from tedious heavy computation since they try 
to update all coefficients of the AR model and to use these 
coefficients for the on-line computation of the signal spectrum. 

In this paper, an alternative efficient approach is proposed for 
the classification and on-line tracking of the EEG waves. In this 
approach an adaptive recursive bandpass filter is used to track 
the center frequency of the EEG signal.  The employed adaptive 
filter only has one unknown coefficient. This coefficient is 
updated in order to adjust the center frequency of the filter 
bandpass to be matched with that of the input signal. Thus the 
proposed wave classification is based on the on-line estimation 

of the center frequency of the EEG signal and the classification 
parameter is described by the adaptive filter coefficient. 
Therefore, the advantage inherent in the presented approach is to 
make the classification and the tracking process a function of 
only one parameter, providing accurate and relative simple on-
line discrimination of the EEG waves. 

 
2. BANDPASS ADAPTIVE FILTER 

 

2.1.    Filter Structure 
The bandpass filter applied to tracking the center frequency of a 
bandpass signal could be the fourth-order Butterworth filter 
whose transfer function is expressed as [5], [6] 
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with =)(1 nf normalized lower cutoff frequency as a function of 

discrete time n, =)(2 nf normalized higher cutoff frequency as a 

function of discrete time n, and =B normalized bandwidth of 
the filter. 

From (1) and (2), it is obvious that with the assumption that 
the bandwidth B is a constant, w(n) is the only-center frequency 
dependent parameter. Therefore, the bandpass adaptive filter 
H(z) has only a center frequency dependent coefficient to be 
updated.  It is worthwhile to mention that the stability 
constraints on H(z) are 

1)(and0 <> |n|wk         (3) 

2.2.    Adaptive Algorithm 

Maximizing the output power of the filter H(z) makes the filter 
be self-adjusted to the center frequency of the input signal [5], 
[6].  The adaptive filter coefficient w(n) is then updated for the 

maximization of the expected output power )}.({ 2 nyE  A 
standard gradient ascending approach could be used for 



achieving such maximization.  The resulting algorithm, called 
the recursive maximum mean-square (RMXMS) algorithm for 
updating )(nw , can be described as follows. The update 

equation in order for w(n) to maximize )}({ 2 nyE  is given by: 

)})({(5.0)()1( 2 nyEnwnw n∇+=+ µ   (4) 

where 0>nµ  is a normalized step-size and )})({( 2 nyE∇  is the 

gradient with respect to the adaptive coefficient w(n).  Using the 

instantaneous gradient )}({ 2 ny∇  as a stochastic approximate 
for the true gradient in (4), we obtain 
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where )).(()( nyn ∇=α  The filter output y(n) is given by 
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The normalized step-size nµ  is given by 

)(/ nrn µµ =    (8) 

where µ  is a fixed positive step-size and r(n) is a recursive 
estimate of the power of the gradient given by 
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with 10 <<< λ  is so-called forgetting factor. Finally, it should 
be mentioned that for stability guarantee if the update 

,1|)1(| ≥+nw then ).()1( nwnw =+  

 

3. PRACTICAL IMPLEMENTATION OF 
THE PROPOSED APPROACH 

 

To track the center frequency of the EEG waves, the EEG signal 
could be filtered by the adaptive bandpass filter described in the 
previous section. The adaptive filter coefficient w(n) is then 
function of the center frequency 2/))()(( 21 nfnf + of each EEG 

wave since the filter bandwidth is chosen constant.  Then the 
time function of w(n) reflects the nonstationarity behavior of the 
EEG signal and could be used as a classification parameter.  It 
should be noted that the employed adaptive filter is a bandpass 
filter while the EEG signal is lowpass signal.  This causes that 
for some low frequency waves 1)( ≥nw , making the filter 

unstable. To overcome this problem, a high frequency shifting 
process is proposed to shift the actual EEG frequencies to 
highest ones before adaptive bandpass filtering.  A simple high-
frequency shifter is by modulating the amplitude of a single tone 
using the actual EEG signal and to pass only the lower sideband 
modulated signal. We assume that the EEG signal is observed in 
additive white noise. In practice, for some specific time 

windows, the observed signal could be rather white noise and 
they don’t represent any specific EEG waves. In such case we 
need another procedure to classify this signal-free noise 
hypothesis. This classifier can be realized by passing the raw 
EEG signal through an Mth-order adaptive linear predictor. The 
output of the linear prediction error (LPE) filter is given by 
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The coefficients )}({ ngi  are updated using the normalized least-

mean square (NLMS) algorithm written as 
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where γ  is a positive step-size.  If the measured EEG signal 
contains only random white noise then the LPE filter coefficients 

)}({ ngi  are close to zero and a parameter )(nG  expressed as 
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is taken as a whiteness detector.  If G(n) is less than a small 
positive threshold value ε , x(n) can be considered as white 
noise. Figure 1 shows a conceptual scheme for the proposed 
adaptive filtering approach for classification and tracking of the 
EEG waves.  

4.   SIMULATION AND EXPERIMENTAL 
RESULTS 

4.1.   Simulation Results 

To evaluate the adaptive approach presented for the 
classification and tracking of the EEG waves, we track 20 
simulated realizations of the EEG signal.  Each EEG signal is 
composed of different waves such as Alpha, Beta, etc. (see Table 
1 and 2).  Each wave is generated by passing a zero-mean white 
Gaussian noise through a Hamming weighted FIR filter of length 
64 whose bandwidth is equal to the corresponding wave 
bandwidth. 

Example 1- (Tracking Different Waves):  In this Example 
each EEG realization is composed of the waves given in Table 1. 
The sampling and normalized carrier frequencies are 160 Hz and 
0.34, respectively. The normalized bandwidth B is 0.1.  The 
forgetting factor and the step size of the adaptive algorithm are 
0.95 and 0.9, respectively.  The initial values for r(0) and w(0) 
are 100.0 and 0.0 respectively.  The step-size γ  and the order M 

of the whiteness detector are 0.01 and 2, respectively. The initial 
coefficients of the LPE filter are zero.  Figures 2 and 3 show 
results for noise-free (i.e., ∞ dB SNR) and 10.0 dB SNR cases, 

respectively. In these Figures one realization of the EEG signals, 
the trajectory of w(t) and the trajectory of G(t) are depicted 
respectively from up-to-down. It is obvious that trajectory of the 
coefficient w(t) can efficiently classify the different waves of the 
EEG signal.  Comparing the values of w(n) with the true values 
computed using (2) and given in Table 1 shows that the 
presented approach provides efficient tracking properties.  It is 
also obvious that G(t) is greater than a very small threshold 
value even in the 10.0 dB SNR case. 

Example 2- (Sleep Spindles detection): In this example, 
each realization of simulated EEG signal is generated as given in 
Table 2. The wave whose bandwidth is 6-15 Hz is corresponding 
to the sleep spindle. All the parameters and initial values of the 



scheme are adjusted as in the previous examples. The sampling 
and the normalized carrier frequency are 100.0 Hz and 0.29, 
respectively.  Figure 4 shows the results of this example for the 
10.0 dB SNR case. It is obvious that the adaptive scheme is 
capable of detecting the sleep spindles even in the case of 10.0 
dB SNR.  It is worth to mention that the presented approach also 
provides reliable classification capability for the 0.0 dB SNR 
case. 

4.2.   Experimental results 

 Sleep spindles detection: To examine the capability of the 
proposed adaptive approach for the detection of sleep spindles 
from real world EEG signal, we carry out the following 
experiment.  About 12 seconds recording of 18 channels of EEG 
(Fp1, F8, F4, Fz, F3, F7, T4, C4, Cz, C3, T3, T6, P4, Pz, P3, T5, 
02, 01) was used for demonstrating the performance of the 
presented approach for the detection of sleep spindles.  
Electrodes were placed according to the international 10-20 
system. The data were sampled with a sampling frequency 102.4 
Hz. The measured signals are filtered by a Butterworth bandpass 
filter between 10 and 20 Hz. The signals are passed forward and 
backward through the filter to avoid phase distortion [7]. The 
normalized carrier frequency, the forgetting factor, the step-size 
are 0.29, 0.9, 0.95, respectively.  The initial values for r(0) and 
w(0) are 100.0 and 0.0 respectively.  The normalized frequency 
bandwidth B is 0.15. Figure 5 shows the first 10 channels of the 
measured EEG signals and the trajectory of the adaptive 
coefficient w(n) for each channel. Investigating the results 
confirms that the presented adaptive approach can be applied for 
a reliable detection and tracking sleep spindles of real world 
EEG signal. 

 

5. CONCLUSION 
 
In this paper an adaptive approach for the classification and 
tracking of the EEG waves has been presented.  In this approach 
an adaptive recursive bandpass filter implemented as a fourth-
order Butterworth filter is employed for tracking the center 
frequency of each EEG wave. The time function of only one 
adaptive filter coefficient is taken as a distinct feature to 
represent the spontaneous behavior of each specific wave. The 
main advantage of the approaches is then due to using only one 
classification parameter, which facilitates the analysis of the 
EEG signal.  A white noise classifier is also introduced to 
distinct the only noise hypothesis. The proposed approach has 
been successfully applied to real world EEG data for the 
detection of sleep spindles. Classification of different kinds of 
sleep spindles is also possible. 

 
6. REFERENCES 

 
[1] N. Amir and I. Gath, “Segmentation of EEG during sleep 

using time-varying autoregressive modeling,” Biol. 
Cybern., 61, pp. 447-455, 1989. 

[2] C. W. Anderson et al., “Multivariate autoregressive models 
for classification of spontaneous electroencephalographic 
signals during mental tasks,” IEEE Trans. Biomed. Eng., 
vol. 45, pp.277-286, Mar. 1998. 

[3] E. Niedermeyer and F. Lopes da Silva, 
Electroencephalography: Basic Principles, Clinical 

Applications and Related fields, Fourth Edition, 1999, 
Williams &Wilkins 

[4] M. Arnold et al, “Adaptive AR modeling of nonstationary 
time series by means of Kalman filtering,” IEEE Trans. 
Biomed. Eng., vol. 45, pp.553-562, May 1998. 

[5] R. V. Raja Kumar and R. N. Pal, “A gradient algorithm for 
center-frequency adaptive recursive bandpass filters,” Proc. 
IEEE, vol. 73, pp. 371-372, Feb. 1985. 

[6] R. V. Raja Kumar and R. N. Pal, “Tracking of bandpass 
Signals using center-Frequency adaptive filters,” IEEE 
Trans. Acoust. Speech, Signal Processing, vol. 38, pp. 
1710-1721, Oct. 1990. 

[7] Rosipal R., Dorffiner G. and Trenker E., “ Can ICA 
improve sleep spindles detection?  Neural Networks World, 
5:539-547, 1998. 

[8] S. Goto, M. Nakamura and K. Uosaki, “On-line spectral 
estimation of nonstationary time series based on AR model 
parameter estimation and order selection with a forgetting 
factor,” IEEE Trans. Signal Processing, vol. 43, pp. 1519-
1522, June 1995. 

[9] Wright, R. R. Kydd and A. A. Sergejew, “Autoregressive 
models of EEG,” Biol. Cybern., 62, pp. 201-210, 1990. 

[10] X. Kong, A. Brambrink, D. F. Hanley and N. V. Thakor, 
“Quantification of injury-related EEG signal changes using 
distance measures,” IEEE Trans. Biomd. Eng., vol. 46, pp. 
899-901, July 1999. 

Frequency-Shifter
Bandpass Adaptive

Filter

White Noise
Detctor

Pre-processor

x (n )

y (n )

fc

noisewhite

isnxnGIf )(,)( ε<

)(nG

 

Figure 1. A conceptual adaptive filtering scheme for 
classification and tracking of EEG waves. 

Table 1. The EEG waves used in Example 1 and the 
corresponding true value of the adaptive coefficient w(n). 

Wave Bandwidth 
(Hz) 

Time range 
(sec) 

True value of  
w(n) 

Delta 0.5-3.5 0-5 4920.0−  

Sigma 12.5-15 5-9 0268.0−  
Gamma 20-40 9-13 0.6046 
Alpha 7.5-12 13-16 1909.0−  

Sigma 12.5-15 16-20 0268.0−  

Table 2. The EEG waves used in Example 2 and the 
corresponding true value of the adaptive coefficient w(n). 

Wave 
Bandwidth 

(Hz) 
Time range 

(sec) 
True value of 

w(n) 

Theta 4-7 
0-4,7-11,14-18, 

21-25 
0.0990 

Sleep 
Spindles 

6-15 
4-7,11-14,18-

21 
0.4298 
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Figure 2. Results of Example 1 for the noise-free case: one 
exemplary realization of the 20 EEG signals; the adaptive 
coefficient of the 20 realizations; and the whiteness detector 
G(t), from top-to-bottom respectively. 
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Figure 3.  Results of Example 1 for the 10.0 dB SNR case. 
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Figure 4. Results of Example 2 for the 10.0 dB SNR case, the 
noise-free case is omitted for space limitation. 
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Figure 5. Results of the experimental example: above, the 
signals of the 10 EEG channels; and bottom, the adaptive 
coefficient w(t) for all channels. 


