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ABSTRACT

This paper presents a novel adaptive filtering approach for the
classification and tracking of the electroencephalogram (EEG)
waves. In this approach, an adaptive recursive bandpass filter is
employed for estimating and tracking the center frequency
associated with each EEG wave. The main advantage inherent
in the approach isthat the employed adaptive filter only requires
one coefficient to be updated. This coefficient represents an
efficient distinct feature for each EEG specific wave and itstime
function reflects the nonstationarity of the EEG signal.
Extensive smulations for synthetic and rea world EEG data for
the detection of deep spindles show the effectiveness and
useful ness of the presented approach.

1. INTRODUCTION

Computer-aided analysis of the electroencephalogram (EEG)
signal, especially during sleep, is of essential interest to facilitate
the analysis of over a great amount of recorded data [1]-[3].
Various computer procedures employ a first preliminarily stage
of feature extraction, followed by decison-making for
classification and segmentation tasks. A classical procedureisto
apply the Fourier transform to a successive classification of the
EEG signal, the frequency spectrum is observed to vary over
time. The main assumption associated with these procedures is
that the EEG signal recorded during sleep or awaking stage (e.g.,
performing different mental tasks) is a piecewise stationary.
However, due to strong nonstationarity property of the EEG
signal, using either stationarity-based methods or block-wise
adaptive methods are often not satisfactory for the analysis of
EEG signal.

A time-varying autoregressive (TV-AR) modeling has been
used for the analysis and segmentation of the EEG signal during
deep and during mental tasks [1], [2], [4], [8], [9]. In these
approaches, coefficients of the AR model are computed by
processing successive windows of the EEG signal which
necessitates a piecewise stationary assumption. Besides, these
approaches suffer from tedious heavy computation since they try
to update all coefficients of the AR model and to use these
coefficients for the on-line computation of the signal spectrum.

In this paper, an alternative efficient approach is proposed for
the classification and on-line tracking of the EEG waves. In this
approach an adaptive recursive bandpass filter is used to track
the center frequency of the EEG signal. The employed adaptive
filter only has one unknown coefficient. This coefficient is
updated in order to adjust the center frequency of the filter
bandpass to be matched with that of the input signa. Thus the
proposed wave classification is based on the on-line estimation

of the center frequency of the EEG signal and the classification
parameter is described by the adaptive filter coefficient.
Therefore, the advantage inherent in the presented approach isto
make the classification and the tracking process a function of
only one parameter, providing accurate and relative simple on-
line discrimination of the EEG waves.

2. BANDPASSADAPTIVE FILTER

2.1. Filter Structure

The bandpass filter applied to tracking the center frequency of a
bandpass signa could be the fourth-order Butterworth filter
whose transfer function is expressed as [5], [6]

H(2 =

ap+a,z 2 +a,z t ()
1+bw(n)z ™t + (b,w?(n) +by)z™2 +bgw(n)z 3 +byz 4
where
ag=a, =1/(k? +2k+1), a,=-2a,, a =a,=-4a,,
b =-2k(2k+v2)ag, b =4k%ay, b =2(k*-Da,
b, = 2k(-2k ++/2)a,, b, =(k?-v2k+1)a,, k = cotan(B)
and

cos(rr( f,(n) + f,(n))
coy(1TB)

with f;(n) =normalized lower cutoff frequency as a function of

discretetime n, f,(n) = normalized higher cutoff frequency as a

function of discrete time n, and B =normalized bandwidth of
thefilter.

From (1) and (2), it is obvious that with the assumption that
the bandwidth B is a constant, w(n) is the only-center frequency
dependent parameter. Therefore, the bandpass adaptive filter
H(2) has only a center frequency dependent coefficient to be
updated. It is worthwhile to mention that the stability
constraintson H(2) are

w(n) =

@
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2.2. Adaptive Algorithm

Maximizing the output power of the filter H(2) makes the filter
be self-adjusted to the center frequency of the input signal [5],
[6]. The adaptive filter coefficient w(n) is then updated for the
maximization of the expected output power E{y?(n)}. A
standard gradient ascending approach could be used for



achieving such maximization. The resulting algorithm, called
the recursive maximum mean-square (RMXMS) algorithm for
updating w(n), can be described as follows. The update

equation in order for w(n) to maximize E{ yz(n)} isgiven by:
w(n +1) = w(n) +0.50,0(E{y*(n)}) @
where u, >0 isanormalized step-size and O(E{ y2(n)}) isthe

gradient with respect to the adaptive coefficient w(n). Using the

instantaneous gradient D{yz(n)} as a stochastic approximate
for the true gradient in (4), we obtain
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The normalized step-size p,, isgiven by
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where u is a fixed positive step-size and r(n) is a recursive
estimate of the power of the gradient given by

r(n)=Ar(n-1) +a?(n) 9

with 0 << A <1 isso-caled forgetting factor. Finaly, it should
be mentioned that for stability guarantee if the update
|w(n+1) |=1, then w(n +1) =w(n).

3. PRACTICAL IMPLEMENTATION OF
THE PROPOSED APPROACH

To track the center frequency of the EEG waves, the EEG signal
could be filtered by the adaptive bandpass filter described in the
previous section. The adaptive filter coefficient w(n) is then
function of the center frequency (f1(n) + f,(n))/2 of each EEG

wave since the filter bandwidth is chosen constant. Then the
time function of w(n) reflects the nonstationarity behavior of the
EEG signal and could be used as a classification parameter. It
should be noted that the employed adaptive filter is a bandpass
filter while the EEG signd is lowpass signal. This causes that
for some low frequency waves w(n)=1, making the filter

unstable. To overcome this problem, a high frequency shifting
process is proposed to shift the actua EEG frequencies to
highest ones before adaptive bandpass filtering. A simple high-
frequency shifter is by modulating the amplitude of a single tone
using the actual EEG signal and to pass only the lower sideband
modulated signal. We assume that the EEG signal is observed in
additive white noise. In practice, for some specific time

windows, the observed signal could be rather white noise and
they don't represent any specific EEG waves. In such case we
need another procedure to classify this signal-free noise
hypothesis. This classifier can be realized by passing the raw
EEG signa through an Mth-order adaptive linear predictor. The
output of the linear prediction error (LPE) filter is given by
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The coefficients {g; (n)} are updated using the normalized least-
mean square (NLMS) agorithm written as
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where y is a positive step-size. If the measured EEG signa

contains only random white noise then the L PE filter coefficients
{g;(n)} arecloseto zero and a parameter G(n) expressed as
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is taken as a whiteness detector. If G(n) is less than a small
positive threshold value €, x(n) can be considered as white
noise. Figure 1 shows a conceptual scheme for the proposed
adaptive filtering approach for classification and tracking of the
EEG waves.

4. SIMULATION AND EXPERIMENTAL
RESULTS

4.1. Simulation Results

To evaluate the adaptive approach presented for the
classfication and tracking of the EEG waves, we track 20
simulated realizations of the EEG signal. Each EEG signd is
composed of different waves such as Alpha, Beta, etc. (see Table
1 and 2). Each wave is generated by passing a zero-mean white
Gaussian noise through a Hamming weighted FIR filter of length
64 whose bandwidth is equa to the corresponding wave
bandwidth.

Example 1- (Tracking Different Waves): In this Example
each EEG readlization is composed of the waves given in Table 1.
The sampling and normalized carrier frequencies are 160 Hz and
0.34, respectively. The normalized bandwidth B is 0.1. The
forgetting factor and the step size of the adaptive agorithm are
0.95 and 0.9, respectively. The initial values for r(0) and w(0)
are 100.0 and 0.0 respectively. The step-size ' and the order M

of the whiteness detector are 0.01 and 2, respectively. Theinitia
coefficients of the LPE filter are zero. Figures 2 and 3 show
results for noise-free (i.e.,, 00 dB SNR) and 10.0 dB SNR cases,

respectively. In these Figures one realization of the EEG signals,
the tragjectory of w(t) and the trgjectory of G(t) are depicted
respectively from up-to-down. It is obvious that trajectory of the
coefficient w(t) can efficiently classify the different waves of the
EEG signa. Comparing the values of w(n) with the true values
computed using (2) and given in Table 1 shows that the
presented approach provides efficient tracking properties. It is
also obvious that G(t) is greater than a very small threshold
vaue even in the 10.0 dB SNR case.

Example 2- (Sleep Spindles detection): In this example,
each redlization of simulated EEG signal is generated asgiven in
Table 2. The wave whose bandwidth is 6-15 Hz is corresponding
to the deep spindle. All the parameters and initia values of the



scheme are adjusted as in the previous examples. The sampling
and the normalized carrier frequency are 100.0 Hz and 0.29,
respectively. Figure 4 shows the results of this example for the
10.0 dB SNR case. It is obvious that the adaptive scheme is
capable of detecting the sleep spindles even in the case of 10.0
dB SNR. It isworth to mention that the presented approach also
provides reliable classification capability for the 0.0 dB SNR
case.

4.2. Experimental results

Sleep spindles detection: To examine the capability of the
proposed adaptive approach for the detection of sleep spindles
from rea world EEG signa, we carry out the following
experiment. About 12 seconds recording of 18 channels of EEG
(Fpl, F8, F4, Fz, F3, F7, T4, C4, Cz, C3, T3, T6, P4, Pz, P3, T5,
02, 01) was used for demonstrating the performance of the
presented approach for the detection of deep spindles.
Electrodes were placed according to the international 10-20
system. The data were sampled with a sampling frequency 102.4
Hz. The measured signals are filtered by a Butterworth bandpass
filter between 10 and 20 Hz The signals are passed forward and
backward through the filter to avoid phase distortion [7]. The
normalized carrier frequency, the forgetting factor, the step-size
are 0.29, 0.9, 0.95, respectively. The initia values for r(0) and
w(0) are 100.0 and 0.0 respectively. The normalized frequency
bandwidth B is 0.15. Figure 5 shows the first 10 channels of the
measured EEG signals and the trajectory of the adaptive
coefficient w(n) for each channel. Investigating the results
confirms that the presented adaptive approach can be applied for
a reliable detection and tracking sleep spindles of rea world
EEG signal.

5. CONCLUSION

In this paper an adaptive approach for the classification and
tracking of the EEG waves has been presented. In this approach
an adaptive recursive bandpass filter implemented as a fourth-
order Butterworth filter is employed for tracking the center
frequency of each EEG wave. The time function of only one
adaptive filter coefficient is taken as a distinct feature to
represent the spontaneous behavior of each specific wave. The
main advantage of the approaches is then due to using only one
classfication parameter, which facilitates the analysis of the
EEG signal. A white noise classifier is aso introduced to
distinct the only noise hypothesis. The proposed approach has
been successfully applied to real world EEG data for the
detection of deep spindles. Classification of different kinds of
deep spindlesis also possible.
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Figure 1. A conceptua adaptive filtering scheme for
classification and tracking of EEG waves.

Table 1. The EEG waves used in Example 1 and the
corresponding true value of the adaptive coefficient w(n).

Wave Bandwidth Timerange Truevalue of
(H2) (sec) w(n)
Delta 0.5-35 0-5 -0.4920
Sigma 12.5-15 5-9 -0.0268
Gamma 20-40 9-13 0.6046
Alpha 7.5-12 13-16 -0.1909
Sigma 12.5-15 16-20 -0.0268

Table 2. The EEG waves used in Example 2 and the
corresponding true value of the adaptive coefficient w(n).

Wave Bandwidth Timerange Truevalue of
(H2) (sec) w(n)
0-4,7-11,14-18,
Theta 4-7 2105 0.0990
Sleep 4-7,11-14,18-
Spindles 6-15 21 0.4298
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Figure 2. Results of Example 1 for the noise-free case: one
exemplary redization of the 20 EEG signds; the adaptive
coefficient of the 20 realizations;, and the whiteness detector
G(t), from top-to-bottom respectively.
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Figure 3. Results of Example 1 for the 10.0 dB SNR case.

(0]

-O - -

E l

2 0

£

Z 2
-4

5 10 15 20 25
Time, msec

w (1)

5 10 15 20 25
Time, msec

G (1)

5 10 15 20 25
Time, msec

Figure 4. Results of Example 2 for the 10.0 dB SNR case, the
noise-free case is omitted for space limitation.
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Figure 5. Results of the experimental example: above, the
signals of the 10 EEG channels, and bottom, the adaptive
coefficient w(t) for al channels.



