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ABSTRACT

Support Vector Machines (SVMs) have been successfully
applied to classification problems. The difficulty in
selecting the most effective error penalty has been partly
resolved with wSVM. However, the use of uneven
training class sizes, which occurs frequently with target
detection problems, results in machines with biases
towards the class with the larger training set. We propose
an extended »-SVM to counter the effects of the
unbalanced training class sizes. The resulting Dual
w»SVM provides the facility to counter these effects, as
well as to adjust the error penalties of each class
separately. The parameter v of each class provides a lower
bound to the fraction of support vector of that class, and
the upper bound to the fraction of bounded support vector
of that class. These bounds allow the control on the error
rates allowed for each class, and enable the training of
machines with specific error rate requirements.

1 INTRODUCTION

Support Vector Machine (SVM) is a classification
paradigm based on statistical learning [1][3][6]. It is
relatively new in the pattern recognition area and has only
been researched extensively for the past few years. One
major advantage of SVMs over more traditional classifiers
is that pre-processing, or feature extraction, of the data is
not essential before training or classifying. This removes a
large variable in the search for the best performing
classifier.

The training of an SVM requires the setting of an error
penalty for training vectors that lie beyond the margins
that provide a generalised specification of the decision
regions. However, the choice of error penalty is not
intuitive and largely depends on the problem at hand. The
error penalty is usually determined iteratively by choosing

an arbitrarily small value, and adjusting it from the
resulting SVM, and retraining until the required
performance is obtained from the SVM.

The formulation of »~-SVM by Schélkopf er al. [5]
removes the error penalty factor, and replaces it with a
new parameter v. With v limiting the maximum number
bounded support vectors, as well as the minimum number
of total support vectors, the selection of v is more
intuitive. In this paper, we show that when training sets
with uneven class sizes are used, the resulting v-SVM is
undesirably biased towards the larger class.

We introduce a modification of »SVM with two vs,
one for each class, that we termed Dual v-SVM. The use
of two vs allows the adjustment of bounds of support
vectors for each class separately. This adjustment can
counter the effects of uneven training class sizes, and
allows the flexibility of specifying a different error rate for
each class. In classification problems, target detection in
particular, it is essential to have the ability to vary the
error rate for each class to suit the situation as there is
always a compromise between error rates, performance
and cost. With the modified Dual v~-SVM, the error rates
can be easily chosen without the usual iterative steps
required with the original SVM. This means fewer
machines need to be trained, and thus less time is required
to obtain the final SVM. For large training sets, the
computational time for each training is long, and with
fewer SVMs to train, time saving is significant.

By having the salient feature of setting the lower
bound on the number of support vectors, the resulting
SVM is able to generalise better. This implies that the
machine will perform well, not only on the training data
set.

2 »SVM

The original SVM algorithm, proposed by Vapnik [6],
seeks the hyperplane that best separates two classes of
data vectors.



Consider a set of / data vectors
{x,vit, i=1,...0, yef{ll}, x¢e€ R
where x; is the /-th data vector that belongs to a binary
class y;. We seek the hyperplane that best separates the
two classes with the widest margin.

More specifically, we want to find the hyperplane
w-x+b=0
subject to the constraints
vix;-w+b)=21-¢4
&>0
to minimise

S cTe (1)

This is equivalent to maximising the margin 2/{|w||, while
minimising the cost of the errors C(X &), where w is the
normal vector and b is the bias, describing the hyperplane,
and & is the slack variable.

Scholkopf et al. [5] proposed »SVM by incorporating
a change from C in the original SVM algorithm with v.
The optimisation problem is minimised, with respect to w,
b and ¢, taking the form

.1 1
mm{E T — 72_;} o
subject to
Vitxi-wtb)zp-—4
£>0
p=0. 3)

This changes the width of the margin to 2o/||w||, which is
to be maximised while minimising the margin errors, and
p is the position of the margin.

The primal Lagrangian formulation is
. 1 2 1
mm{ L, = 5||W|| —vp +7Z§,.
_Zai(yi(xi'w"'b)_p""fi) 4)
- 2 Hé, - 5,0}

with Lagrangian multipliers «;, 1,,6 2 0.
In its dual Lagrangian form, we have

maX{LU E—%;a[ajy,yj[((x,,xj)} ®))
subject to “

0<a, < % (6)

Yy, =0 %)

da,zv ®)

where K(:,-) is the kernel function to map the data to
another space. With a trained SVM, support vectors (SVs)
are data vectors with «; > 0, and bounded support vectors

(BSVs) are support vectors with ¢; = 1// and & > 0. The
resulting decision function is

fl(x)= sgn(Za, v, K(x,,x)+ bj 9)

2.1 Characteristics of v

When we consider a trained wSVM, the width of the
margin would, in most cases, not be zero; that is p> 0. By
the Karush-Kuhn-Tucker (KKT) conditions [4], if p> 0,
then 6= 0. This means that constraint (8) reduces to an
equality condition

da,=v. (10)

Since the BSVs have ;= 1/, the contribution of
BSVs to «; is Nggy/l, where Nggy is the number of BSVs.
In other words,

Moy ). (an

Since SVs have a maximum ¢; = 1/I, there is a minimum
number of SVs, Ngy, to contribute to «;

TZV (]2)

That is, v is the fraction of data vectors limiting the
maximum number of BSVs and the minimum number of
SVs.

These bounds seem to perform well, but how the
bounds hold for each class should be investigated.

2.2  Effects of vin each class
We can see from constraint (7) that

zaiyi = zai - zai =0

iy, =+1 iy, =1

Za,.: 20{, . (13)

iy, =+1 iy=-1
This leads to (10) becoming

Yo = Ya+ Ya

iy, =+1 iy, =1
=2 2(1,.:2 205,.:1/ (14)
iy, =+1 iy =1
Applying (14) it to the bou;ds (11) and (12), we obtain
2N gy << 2Ny, as)
l l
s qv g2t (16)

where Npsys (Mpsy-) is the number of bounded support
vectors in the positive (negative) class, and Ngy, (Ngy-) is
the number of support vectors in the positive (negative)
class.

Let R, be the ratio between the positive class size /.,
and negative class size /.. Multiplying (15) by /L., and
substituting

1= |14
R+/—




yields

Nggv. SK 1+ | SNSW (17)
I 20 R, ) L
and similarly for the negative vectors
Npgv- _V Ngv_
———<—(1+R,, Js——. 18
P eRr, )<= (18)

With a class size ratio of other than one, the bounds for
each class are different, and there is a bias towards less
BSVs in the class with a larger training size. This
translates to the SVM having fewer training errors, with
& 2 p, in that class.

This biasing behaviour is usually not desirable,
particularly in the case of target detection, where there is
usually a lack of target data vectors. When there is a lack
of target data vectors, the resulting SVM has a high target
misdetection rate, and this is opposite the desired SVM
with low target misdetection rate and low false detection
rate. The error penalties need to be different for each class
to counter the biasing behaviour.

3 DUAL »SVM

We build on the optimisation problem by introducing the
error penalties back into the problem. Scholkopf er al.
have shown that »~-SVM results in functionally the same
machine as

min{% ||W||2 - C(vp - ch J} (19)

where C is the error penalty.

We propose to incorporate an error penalty to each
vector as

min{%"w"z Y-k )} o)

subject to the same constrains

yilxi-wtb)zp-4&,

&20,p20. 2n
By replacing C; with the error penalty C for positive
vectors (y; = +1), and the error penalty C for negative
vectors (y; = —1), the error penalties for each class can be
controlled individually.

In the primal Lagrangian formulation, we have

L= 2 -Xcbp-2)
—Za 3 lx wb)-p+) 22)
- Zﬂ/é:i _5,0
with «,, 1,,6 > 0. We can determine the equivalent dual

Lagrangian to maximise with respect to o, 1, o, by
equating the corresponding partial derivatives to 0; viz

oL,

=% Z Y

aa%:cl —a, M=

aaiz—vzc, +Y a,-5=0 (23)
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which results in
W= zaiyixi
zaiyi =0
a + :Lll = Ci

Z(x —VZC +5. 24)

Substltutmg (24) into (20), we obtain the same dual
Lagrangian formulation

max{ Za oy K, x )} 25)

subject to
0<a, <C, (26)
Z(x,.y,. =0 @7)

Da,zvy G, (28)

with the decision function being
f(z):sgn{Za,y,K(x,,z)+bJ. (29)

Since b does no appear in the dual Lagrangian, we
compute it from the resulting SVM by using two
unbounded support vectors with ;>0 and & =0, and
solving for b and pin

(Wb =p. (30)
3.1 Characteristics of dual vs

Again, we consider a trained SVM, with o> 0, and by the
KKT conditions, §=0. This means that constraint (28)
reduces to the equality condition

Za =2 Za =2 Z(x _vzc 3D

iy;= iy;=—

Thus we have the bounds (c.f. bounds (15), (16))
2Npsy.C, <V C, <2Ng,,C, (32)

2Ny C. < ch[ <2Ng, C_. (33)

Dividing (32) by 2C./. and substituting

ZC,.:CJ{HC— ! j
p C. R
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yields
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/ 2 C

+



or NBSV+ < v, < lev+ (34)
where
o=t L (35)
2 C+/—R+/—
C+
- = C_, ) (36)
Similarly for the negative vectors
NBSV— < V. < NSV— (37)
I [
where
v = g(l +C, R, ). (38)

The introduction of v and 1., and bounds (35) and
(37), provides better control of the error rates and
generalisation properties of the SVM required. We obtain
the SVM by calculating C, and C_, and solving for the
optimisation problem.

It should also be noted that v, (v-) set upper bounds to
the training error rates for the positive (negative) class,
since training errors are all BSVs.

3.2 Biasing for uneven training class sizes

When training sets have different class sizes, we will
require the positive and negative bounds to be similar.
This is achieved by setting v, =v_ giving

1
[l + ﬁj =(1+C,R,)

which results in

1 [
= —= 39
TR [ (39)
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This relationship concurs with the results obtained by
Chew et al. [2] in setting the ratios of Cs in the context of
the original SVM. With Dual 1»-SVM, the selection of
error penalties is based on the training class sizes and does
not require a large number of iterations to determine. Thus
the effectiveness and efficiency of generating SVMs are
improved further by reducing the number of trainings
required.

4 CONCLUSION

We have shown that »~-SVM does have undesirable effects
with trained with set of uneven class sizes. The effects are
similar in the original SVM algorithm with a single error
penalty.

We introduced the Dual ~-SVM allowing different
bounds for each of the classes, as well as compensating
for the uneven training class size effects.

As with the 1~-SVM, the reparameterisation of C to v
enables the error factor to be chosen easily as it is just a
factor of the number of training data points. This reduces
the number of trainings required because there is no need
to search for the absolute value of C that works for the
problem at hand. The lower bound on the number of
support vectors provided by v ensures the resulting SVM
will be able to generalise well.

With the error factor separated to each class, we can
vary the performance of the resulting SVM by adjusting
relative error factor to account for the costs involved with
errors. In particular, in target detection, we would want to
set the maximum false alarm rate to a certain value, which
is selected by using ..

Again with a different v for each class, we have shown
that we can remove the effects of training sets with
adifferent set size for each class. By setting the ratio of Cs
to the inverse ratio of training class sizes, the obtained
SVM will exhibit the desired performance of similar error
rates in both classes.

The modification to obtain the Dual +~SVM provides a
substantial improvement in training an SVM quickly and
effectively, while still retaining the ability to fine-tune the
required error weights.
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