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ABSTRACT

Theory for jointly optimizing nonuniform analysis and synthesis
FIR filter banks with arbitrary filter lengths and an arbitrary delay
through the filter bank is developed. The FIR subband coder is op-
timized with respect to the minimum mean square error between
the output and the input signals under a bit constraint. The sub-
band quantizers are modeled as additive noise sources. Theoreti-
cal comparisons are made against a well-known 5_3 wavelets used
in a tree-structure. The proposed filter banks, which are both rate
and source dependent, have a better distortion rate performance.
Equations for finding jointly optimized analysis and synthesis fil-
ter banks under a power constraint are also presented.

1. INTRODUCTION

Filter banks are widely used in source coding. Thus, it is important
to optimize the filter banks. In this paper, the problem of jointly
optimizing the analysis and synthesis FIR nonuniform filter banks
is studied.

The subband coding model is shown in Figure 1. The objective
is to minimize the mean square error (MSE) between the input and
the output of the system under a bit constraint with respect to the
bit allocation as well as the analysis and synthesis filter banks.

For a given uniform analysis FIR filter bank, the optimal uni-
form FIR synthesis filter bank has been derived in various ways [1,
2, 3] in the case where all the synthesis filters are of the same
length and the overall filter bank delay can be expressed as kM�1
where k is a positive integer and M is the decimation factor. These
synthesis filter banks can also be called uniform FIR Wiener filter
banks. In [3], the joint optimization of the uniform synthesis fil-
ter bank and the bit allocation was studied. The first stage of a
tree-structured synthesis filter bank was optimized in [4]. Jointly
optimized analysis and synthesis bit constrained uniform FIR fil-
ter banks were treated in [5]. For unknown input signals, the prob-
lem of optimizing the nonuniform synthesis filter bank was studied
in [6].

This paper was inspired by the work described in [7], and the
same way of treating the non-stationarity introduced by the deci-
mators/expanders is used here. The nonuniform case has not been
studied in details, and one of the contributions of this paper is to
derive the Wiener filter bank for nonuniform FIR filter banks.

This rest of this paper is organized as follows: The assump-
tions and the problem under consideration are stated in Section 2.
In Section 3, the equations required for the optimization are dis-
cussed and a technique for optimizing nonuniform filter banks with
arbitrary filter lengths is described. Results and comparisons with
other filter banks are given in Section 4, while conclusions are
drawn in Section 5.
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Fig. 1. Nonuniform filter bank system model.

2. PROBLEM FORMULATION

Figure 1 shows the system under consideration. The delay through
the system is �. The maximum number of quantizers receiving a
positive number of bits is Mmax, but the number of quantizers ac-
tually receiving a positive number of bits is denoted by M . Obvi-
ously, 0 � M � Mmax, and M has to be found through a discrete
optimization.

Let the nonuniform integer decimation factors be denoted by
�i, and let the least common multiplier of the M factors that
are used be denoted by � , which in general depends on M . The
M �M diagonal matrix � is defined to have the element �i as
its diagonal element number i. The decimation factors do not nec-
essarily have to result in critically decimated filter banks, because
the theory developed here is general including the critically dec-
imated case. Systems having so-called block decimation and ex-
pansion [7] are also included in the theory. Since the filter bank
system is linear periodically time varying with period � [7], this
has to be taken into account when finding the performance expres-
sions for the system.

Let the followingM�N matrix contain the impulse responses
of the synthesis filter bank:

R = [r(0)jr(1)j : : : jr(N � 1)]; (1)

where r(k) is an M � 1 vector. Row number k in the matrix R
contains the synthesis impulse response number k. The numbering
of the indices start at zero in the first column of R. Similarly, let
the M�N matrixE contain the impulse responses of the analysis
filters Hi(z).

2.1. Decimators and Expanders
The combination of the decimators and expanders can be treated
by multiplying the M � 1 vectors containing the subband samples
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Fig. 2. Time frequency lattice for (�0; �1; �2) = (4; 4; 2).

with periodic time varying diagonal matrices [7]. These M �M
matrices are denoted by�(i).

Figure 2 shows a time frequency lattice of how one period
of the matrices �(i) can be found. In the figure, n is the time
index and M is the number of subbands that are used in the sub-
band coder. The decimation factors are given by (�0; �1; �2) =
(4; 4; 2) in the example shown in the figure. From the figure, it is
seen that the M �M matrices taking care of the cyclo wide sense
stationarity are given by:

�(0) = I;

�(1) = �(3) = 0; (2)

�(2) =

2
4 0 0 0

0 0 0
0 0 1

3
5 :

The noise samples that are added to the subband samples be-
tween the decimators and expanders can be moved in front of the
decimators without altering the input-output relationship of the
system. The reason for this is that exactly the same quantization
samples are found after the expanders in both cases.

The diagonal matrix�(i) is periodic with period � , i.e.,

�(i+ �) = �(i): (3)

Define the diagonal matrix� as the following sum:

� =

��1X
i=0

�(i): (4)

It can be shown that� = ���1.

2.2. Correlation Matrices and Quantization Model
An additive signal-dependent colored quantization noise model is
assumed. Correlation matrices that are used in order to express the
performance of the system are introduced next.

The following N � N and M �M autocorrelation matrices
are defined as

�
(N)
x (l) = E[x(l + n)xT (n)];

�
(M)
u (l) = E[u(l + n)uT (n)]; (5)

where the N � 1 vector x(n) and the M � 1 vector u(n) are
defined as:

x(n) = [x(n); x(n� 1); : : : ; x(n� (N � 1))]T ;

u(n) = [u0(n); u1(n); : : : ; uM�1(n)]
T
: (6)

Here, the input time series of the filter banks is denoted by x(n)
and the additive quantization noise after analysis filter number i
and before decimating by �i is denoted by ui(n).

An N � 1 autocorrelation and an M � 1 cross-correlation
vector are also needed. These vectors are defined as

�
(N)
x

(l) = E[x(n+ l)x(n)]; (7)

�
(M)
u;x (l) = E[u(n+ l)x(n)]: (8)

In addition, the following N �M cross-correlation matrix:

�
(N;M)
x;u (l) = E[x(l + n)uT (n)]; (9)

is used.
If high rates are assumed, the variance of the noise in quantizer

number i 2 f0; 1; : : : ;M � 1g can be modeled as [8]

�
2
qi

= ci�
2
yi
2�2bi ; (10)

where �2yi is the variance of the corresponding subband signal
yi(n) and ci is the coding coefficient that depends on the coding
technique and the probability density function of the subband sig-
nal. Since bi, the number of bits used in quantizer number i, is de-
cided by the relationship between �2yi and �2qi , the choice �2qi = 1
can be made without loss of generality, provided that ci is known.

2.3. MSE and Bit Expressions
By expressing the output of the synthesis filter bank x̂(n) in the
same way as in [7], and also including the additive quantization
noise it can be shown that the MSE per source sample �N;M (�)
can be written as:

�N;M (�) =
1

�

��1X
i=0

E
�
(x̂(n+ i)� x(n+ i��))2

�

= �
2
x +

1

�

(
N�1X
k=0

N�1X
p=0

r
T (k)

��1X
i=0

�(i)

�
E�

(N)
x (p� k)ET

+�(M)
u (p� k) +E�(N;M)

x;u (p� k)

+
�
E�

(N;M)
x;u (k � p)

�T�
�(i� (p� k))r(p)

�2

N�1X
k=0

r
T (k)�

�
E�

(N)
x

(�� k) + �(M)
u;x (�� k)

�)
; (11)

where �2x is the variance of the input time series x(n), which is
assumed to be wide sense stationary and having zero mean.

By using Equation (10), the bit constraint
M�1X
i=0

bi

�i
= b can be

expressed as

M�1X
i=0

ln�2yi
�i

= ln�; (12)

where � = 22b
M�1Y
i=0

�
�2qi
ci

� 1

�i

is a constant.

The problem is to find the optimal values of the bit distribution
as well as analysis and synthesis filter banks which minimize the
MSE given by Equation (11) subject to the bit constraint of Equa-
tion (12). Since the choices �2qi = 1 have been made, the opti-
mal bit distribution is decided when the subband variances �2

yi
are

known. These are known when the analysis filter bank is found.
Therefore, the optimization of the analysis filter bank also indi-
rectly finds the optimal bit distribution.



3. OPTIMIZATION ALGORITHM

In order to derive the equations for finding the jointly optimized
analysis and synthesis filter banks, the operator vec is used. This
operator places the columns of a matrix into a long vector where
the first column is placed in the top of this vector. The constrained
optimization problem is converted to an unconstrained problem by
means of the Lagrange multiplier method. Then necessary condi-
tions for optimality are found by differentiating the unconstrained
objective function with respect to the unknown parameters. When
deriving the optimization equations, results from [9] are used.

3.1. Equal Filter Lengths
It can be shown that for a fixed analysis filter bank the equations
for the optimal synthesis filter bank having equal filter lengths can
be expressed as

vec(R) = A
�1
D; (13)

where the matrix A is a symmetric NM � NM block Toeplitz
matrix. Therefore, the whole matrixA can be found from the first
block row. The block element number l of dimension M �M in
the first row is given by

al =

��1X
i=0

�(i+ l)

�
E�

(N)
x (l)ET +�(M)

u (l)

+E�(N;M)
x;u (l) +

�
E �

(N;M)
x;u (�l)

�T�
�(i); (14)

where l 2 f0; 1; : : : ; N � 1g. The NM � 1 vector D can be
expressed in terms of the sub-vectors of dimension M � 1, and
they are denoted by dl, where l 2 f0; 1; : : : ; N � 1g. These sub-
vectors can be expressed as

dl = �
�
E�

(N)
x

(�� l) + �(M)
u;x (�� l)

�
: (15)

It can be shown that for a fixed synthesis filter bank the equa-
tions for the optimal analysis filter bank having equal filter lengths
can be written as

vec(E) =

"
N�1X
k=0

N�1X
p=0

�
(N)
x (p� k)
Ck;p

+�(N)
x (0)


�
���

�1
y

� #�1
vec

 
�RJ�

(N)
x (N � 1��)

�

N�1X
k=0

N�1X
p=0

Ck;p

�
�
(N;M)
x;u (p� k)

�T!
; (16)

where the N � N matrix J is the counter identity matrix and the
operator 
 is the Krönecker product. The M �M matrixCk;p is
given by

Ck;p =

��1X
i=0

�(i)r(k)rT (p)�(i� (p� k)): (17)

The matrix�y is an M �M diagonal matrix containing the sub-
band variance �2yi as diagonal element number i. � is a Lagrange
multiplier for the bit constraint in Equation (12). Equation (16)
is nonlinear because the matrix �y depends in the analysis ma-
trix E. This is the only term on the right hand side that depends

on the analysis filter bank. Equation (16) can be solved by fix-point
iteration [10].

An alternative constraint used in communication problems is
the power constraint. This constraint can be expressed for nonuni-
form filter banks as:

��1X
i=0

�2yi
�i

= P; (18)

where P is the average power used per source sample. If this con-
straint is used instead of the bit constraint in the optimization, then
the synthesis filter bank equations are unchanged, but the analy-
sis filter bank equations are the same except that the matrix �y

becomes the identity matrix.

3.2. Arbitrary Filter Length Optimization

Theory for jointly optimized FIR analysis and synthesis filter
banks with analysis and synthesis filter lengths N was developed
earlier in this section. Here, this theory is extended to include the
case where the filters can have arbitrary given filter lengths.

Row number i from left to right in the matrices E andR rep-
resents the impulse response of analysis filter number i, Hi(z),
and synthesis filter number i, Fi(z), respectively. Since the filter
lengths in the filter banks are not necessarily equal, the matricesE
and R may contain impulse response coefficients that are forced
to be zero-valued.

Let E and R be M � N matrices containing ones at the po-
sitions corresponding to where the analysis filter bankE and syn-
thesis filter bank R contain free parameters and zeros where E
andR must contain zeros, respectively.

By using Lagrange multipliers [11], it can be shown that the
equations for finding jointly optimized analysis and synthesis filter
banks with arbitrary given filter lengthscan be found by picking
out the equations from Equations (16) and (13), respectively, cor-
responding to the positions where vec(E) and vec(R) are differ-
ent from zero. In addition, in the positions corresponding to where
vec(E) and vec(R) are equal to zero, the old equations in these
positions are replaced with equations stating that the correspond-
ing filter coefficients are equal to zero. In this method, the fixed
filter coefficients could be set to an arbitrary constant value, not
only zero, and this can be done for any coefficients in the impulse
response.

Since the matrices E and R may contain zeros and ones at
arbitrary positions, the above procedure can be used to find jointly
optimized analysis and synthesis filter banks with arbitrary given
filter lengths. This is done by choosing an appropriate shape of the
matrices E and R. While choosing the shape of these matrices,
it is important to remember that the delay through each branch of
the analysis/synthesis filter bank combination must be the same if
the filter banks are desired to have the perfect reconstruction (PR)
property. At high rates, it is asymptotically optimal to have PR
filter banks, so the structure of the matrices E and R should be
chosen carefully.

The theory developed in this section also includes the uniform
case if the �(i) matrices are chosen properly. In this case, the
same results are achieved as in the uniform case considered in [5].
This fact can be used as a verification of the formulas.

The optimization of the filter banks is performed by first
choosing the initial values that are required. Then, Equations (13)
and (16) are alternatingly solved until convergence is reached.
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Fig. 3. Comparison are made to the following tree-structured filter
bank. Only the analysis filter bank is shown.

4. RESULTS AND COMPARISONS

The PR filter banks used as an alternative solution is first intro-
duced. Figure 3 shows the analysis filter bank of the PR system.
The length of the filters H0(z) and H1(z) is 5 and 3, respectively,
and the corresponding filters on the synthesis side have lengths 3
and 5, respectively. The filters are found from [12], and the bit
allocation used is optimal bit allocation for PR filter banks [13]
when using a white signal-independent quantization noise model.
The optimal rate allocation is achieved when the product of the
quantization noise variance and the squared norm of the synthe-
sis filter in the same subband is constant for all subbands. This is
actually the same criterion that is used for uniform filter banks.

With the decimation factors used in the tree-structure in Fig-
ure 3 the decimation factors found in the equivalent structure
shown in Figure 1 are given by �0 = 4, �1 = 4, and �2 = 2.
This means that � = 4. One period of the periodic diagonal matri-
ces �(i) taking care of the decimation and expansion has already
been given in Equation (2).

If the noble identities are used and the convolution of the fil-
ters shown in Figure 3 are calculated, then the structures of the
matrices E andR can be decided to be

E =

2
4 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0

3
5 ;

R =

2
4 1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0

3
5 :
(19)

This example was selected such that linear phase is possible in the
optimized filter bank, since, in this case, the delay through each
subband branch is the same.

It is assumed that a signal-independent white quantization
noise model is used. This means that the matrix �(N;M)

x;u (l) is a
zero matrix and the matrix �(M)

u (l) is diagonal. From the above
matrices, it is seen that N = 13, � = 9, and Mmax = 3. It is
assumed that entropy constrained scalar quantizers are used and
that the input signal is a Gaussian AR(1) signal with correlation
coefficient equal to 0.95, implying that ci = e�

6
[8]. Figure 4

shows the performance of the PR system, the proposed optimized
system, and the distortion rate function [8].

In order to improve the quantization model, the constraints
�2yi � �2qi are included in the optimization when using the white
uncorrelated noise model used in this example.

5. CONCLUSIONS

The problem of finding jointly optimized analysis and synthesis
nonuniform FIR filter banks was studied. This problem was solved
by finding equations for optimal analysis filter banks for a given
synthesis filter bank and vice versa. From Figure 4, it is seen that
the proposed filter banks outperform the PR filter bank for all rates.
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Fig. 4. Theoretical rate distortion performance of the proposed
system (solid line), the PR system based on a tree-structure with
the 5_3 filter bank (dotted line), and the distortion rate func-
tion (dash-dotted line). The parameters described in the text are
used.
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