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ABSTRACT

A class of computationally efficient adaptive algorithms
for transversal filters is discussed. The algorithms,
which are based on the so-called general parameter
method, use typically one or a few dynamically ad-
justed parameters, each to be added to a block of co-
efficients of a fixed basis FIR filter. Thus the overall
filter is adapted so that the output error is minimized.
The adaptive extension can be constructed as an ’add-
on’ element to be used in parallel with fixed-coefficient
filters. An efficient implementation structure is pro-
posed, and the stability and convergence properties of
the multiple-parameter algorithm are analyzed.

1. INTRODUCTION

Adaptive filters are widely used in signal processing
when the filtering task cannot be completely specified
in advance. For example, the characteristics of the sig-
nal and noise may vary, or the system parameters may
change in time. If the possible variations are large, a
fully adaptive filter is needed, in order to achieve sat-
isfactory system performance. Such a filter often has a
high computational complexity, especially in adaptive
transversal filters where a large number of coefficients
may be needed due to the length of the impulse re-
sponse of the system.

Among the most popular adaptation methods are
the LMS and RLS algorithms [1],[2]. The RLS algo-
rithm has excellent convergence characteristics, while
the LMS algorithm is relatively simple to implement.
The coefficient update equation in LMS is given by

w(n+ 1) = w(n) + 2ue(n)x(n), (1)

where w(n) is the coefficient vector, x(n) is the data
vector within the filter window, and e(n) = r(n) —y(n)
is the difference between the desired value r(n) and
the filter output y(n). When the processes z(n) and
r(n) are jointly stationary, this algorithm converges to
coefficients which, in average, follow the Wiener-Hopf
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solution. Coefficient updates in the LMS algorithm re-
quire N + 1 multiplications for an N-tap transversal
filter.

Simplified versions of the basic LMS algorithm have
been developed by replacing in (1) either e(n) or x(n)
or both by their signs [2]. If the gain parameter u is
then chosen as a power of two, the coefficients can be
updated without multiplications. However, even those
simplified algorithms require an arithmetic operation
to be done on all of the N coefficients. Furthermore,
it has been proposed to filter the gradient estimate, to
arrive at a higher order algorithm for faster convergence
[3].

In this paper, we discuss an adaptive filtering ap-
proach, where the filter coefficients consist of a fixed
part and an adjustable part. Typically the fixed basis
filter is designed assuming some nominal signal char-
acteristics, such as the frequency of a sinusoidal signal
[4]. The adjustable part is adapted to tune the overall
filter so that the output error is minimized. The pro-
posed adaptation approach has a low computational
complexity, as the number of arithmetic operations de-
pends only on the number of adaptive parameters but
not on the overall filter length.

2. GENERAL PARAMETER-BASED
ADAPTIVE FILTERS

Ashimov and Syzdykov [5] have proposed a class of
algorithms, called the general parameter method, for
system identification. Digital signal processing appli-
cations of the method have been considered recently
in [6],[7], where a single general parameter was used,
implementing the filtering algorithm

um) = Y lo(n) + h(Bz(n— k), (2)

where the h(k)’s are the coefficients of a fixed basis
filter.
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Fig. 1. Implementation of the adaptive extension with
multiple general parameters.

The general parameter g(n) is updated as

2

z(n—k), (3)

g(n+1) = g(n) + v[r(n) — y(n)]

where r(n) is the reference input against which the out-
put is compared, and v is a gain factor. The use of
several general parameters was also discussed in [53].

In this work, we consider the case of L general pa-
rameters g1(n), g2(n), - -+, gr(n), each to be related to
a group of filter coefficients. Assuming that the overall
filter length, N, is divisible by L, and M = N/L, the
filtering algorithm is of the form:

L-1M-1

y(n) =Y > [h(k+ Mj) + gjpa(n)]le(n — k — Mj),

§j=0 k=0
(4)
where the parameters g;41(n), j = 0,1,--+,L — 1, are

updated according to

gi+1(n +1) = gjy1(n)+

y[r(n) —y(n)] Z_ z(n—k— Mj). (5)

The standard LMS algorithm is seen to be a special case
of this approach, where L = N, and all the h(k) = 0
fork=0,1,---,N — 1.

In order to arrive at an efficient implementation, we
can write (4) in the form:

y(n)=
um) = 3 h(kR)e(n — k)
3 isan) Y w(n— b~ Mj). (6)

The L running sums of the data samples can be effi-
ciently computed using the recursive running sum struc-
ture [8], where the arithmetic complexity does not de-
pend on the number of samples inside of the running
window. We further notice that the subsequent run-
ning sums are simply delayed versions of the first sum.
Therefore, this computation only needs to be imple-
mented once, which is a reason for using equally sized
coefficient blocks. The resulting implementation struc-
ture of the filter with multiple adaptive parameters is
shown in Fig. 1. Altogether, implementation of the
adaptive extension requires 2L + 1 multiplications.

3. STABILITY

The algorithm can be analyzed using a similar approach
as for the LMS algorithm [7],[9]. Let us assume that
the reference data sequence is generated by the linear
time varying model

r(n) = x(n)@o(n) + v(n), (7)
where x(n) = [z(n) z(n — 1) --- 2(n — N 4+ 1)]. The

true parameter @p(n) has a model of the form

O¢(n + 1) = Og(n) +&(n). (8)



The variables v(n) and £(n) are considered as noise or
disturbances. The adaptation error is

©(n) = @(n) — O(n), (9)
where
O(n) =h+g(n) (10)
is the composite coefficient vector with
h = [A(0) h(1) +- A(N —1)]*
and

multiplicity M multiplicity M

g(n) = lgi1(n) -+ gi(n) -+ gz(n) -+ gz(n)]".
Therefore,

O(n+1) = O(n)+£(n)~h—g(n)—[r(n)—x(n)O(n)]S,
(11)

where
multiplicity M
M-1 M-1
S:[Z r(n—j) - Z 2(n—j) -
j=0 j=0
multiplicity M
N-1 N-1
Noooxn—j) o > zn—-I
j=(L—1)M j=(L—1)M

Substituting (7) into (11) we obtain

O(n+1) = O(n) +&(n) — v[x(n)O(n) + v(n)]S. (12)
This can be written in the form

O(n + 1) = [I—4Sx(n)]O(n) + &(n) — vSwv(n), (13)

where I is an N X N unit matrix. The stability of the
algorithm therefore depends on the eigenvalues of the
matrix I — ySx(n) which are equal to one except that
given by

A =1-—yx(n)S. (14)

For stability it is required that the gain factor v is
limited by
2

0<7<W, (15)

where E[.] denotes the expectation value.

4. CONVERGENCE PROPERTIES

Like any adaptive algorithm, the general parameter-
based approach is capable of adaptating to zero output
error only if there are equally many or more adaptive
parameters than there are degrees of freedom in the
underlying signal model. Another characteristic fea-
ture of the algorithm is the fact that summation of
samples in (5) corresponds to averaging, which causes
different gain for different frequencies. This is reflected
as different adaptation speed for different sinusoidal in-
puts when the algorithm gain v is kept constant. These
properties are illustrated by the following example.

In this experiment, we set r(n) = z(n) and the
input signal consists of multiple sinusoids. The fil-
ter H(z) is a notch type FIR filter of length 12 with
wo = 0.17 as the blocking notch frequency. The am-
plitude response of H(z) is shown in Fig. 2. There are
four adaptive parameters, go(n) to gz(n), initialized to
zero, and M = 3. The summation of the three samples
within each coefficient group therefore corresponds to
filtering with the frequency response shown with the
dashed line in Fig. 2. The output error and the values
of the four parameters are shown in Fig. 3 and Fig. 4,
respectively, when the input signal varies as follows.
From 0 to 300 samples, the input is a single sinusoid of
the angular frequency 0.17. As it is initially blocked by
the fixed filter, the adaptive extension adapts to pass
this signal with unity gain and zero phase shift. At
sample number 300, an additional sinusoid of w = 0.27
is switched on and the system again adapts to zero out-
put error. At sample 600, the input becomes a single
sinusoid with w = 0.557. At sample 900, the input is
switched to three separate sinusoids (w = 0.1w,0.27,
and 0.37). Full adaptation is no longer possible with
this number of parameters, but the general parameters
follow a periodical pattern.
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Fig. 2. Amplitude response of H(z) (solid) and the
running sum of length three (dashed).
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Fig. 3. Behavior of the output error for multiple sinu-
soid input.
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Fig. 4. Trace of the four adaptive parameters.

As with LMS, a normalized algorithm can be intro-
duced, adjusting the gain factor according to

B

() = 03(n = 1)+ (1~ @) s

(16)
where « and (8 are fixed. The output error shown
in Fig. 5 results from repeating the previous exam-
ple with the normalized algorithm using o = 0.95 and
B = 0.1. The settling times are seen to be more equal
after changes in the input signal.

5. CONCLUSIONS

In a typical application, the general parameter algo-
rithm allows computationally simple adaptation to be
used in parallel with a fixed basis filter. The algorithm
with several adaptive parameters can be considered in
certain cases as a simplified version of the conventional
LMS adaptive filter algorithm.
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Fig. 5. Output error from the normalized algorithm.
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