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ABSTRACT

A generalmethodis examined,which unifiesthe eigenvoice
approach[1, 2, 4] andMAP adaptation.Thea priori distribution
for MAP is chosento be anisotropicwith theeigenvoicesaspre-
ferreddirectionswhile still allowing adaptationinto all otherdi-
rections.This allows theexploitationof a priori knowledgeabout
typical speaker variability within the MAP framework. This ap-
proachhastwo advantages:longtermadaptationleadsto thesame
goodresultsastheMAP method,whereasfor ultra-shortadapta-
tion in the rangeof 1–2 secondsan overfitting as for maximum
likelihoodtechniquesis avoided.

Themethodis appliedto largevocabulary continuousspeech
recognition.Resultsareto becomparedwith ourrecenttransferof
themaximumlikelihoodeigenvoicemethodto LVCSR[4].

Evenafteronlyonerecognizedwordsignificantimprovements
of theWERof up to 6% relativeareobservedfor genderindepen-
dentrecognition.14%improvementareobtainedafter

�
seconds.

1. INTRODUCTION

The exploitation of a priori knowledgeof typical speaker varia-
tions canconsiderablyimprove the fastadaptationof speaker in-
dependentmodels[1, 2].

In this paper, theeigenvoicemethodis revisitedin theframe-
work of ageneralizedmaximumaposterioriadaptationtechnique,
whichincludesasspecialcasesthewell known MAP-procedureas
well asthemaximum-likelihoodalgorithmusedso far for eigen-
voices.

The transferof eigenvoice adaptationto continuousspeech
with a large vocabulary hasbeendescribedin a previous article
[4].

The generalaim is to characterizespeaker adaptedmodels
with a million andmoreparametersby someten or hundredco-
efficients, which is only a fraction of the numberof degreesof
freedomof other fast adaptationmethodslike MLLR. The goal
is a robustandgenerallyapplicablespeaker adaptationwithin the
first secondsor eventhefirst spokenphonemesof continuous,un-
supervisedspeech.

Themainideabehindtheeigenvoicemethodis therepresenta-
tion of speakersandtheir combinedaccousticmodelsaselements
of a linear, affine space.A simpleandsuccessfulapproachis the
concatenationof all parametersdescribingthe speaker to a high
dimensionalvector. This is doneherefor all densitymeansof
all mixturedistributionsof a continuousHMM recognizer, hence
leadingto hugevectorsof e.g.onemillion dimensions.

All speaker modelsof sometrainingmaterialbeingpointsin
this space,it is now feasibleto look for theprincipleaxesof their
distribution. Thesedirectionswill describethe correlatedvaria-
tionsof all modelparametersfor differenttypes(e.g. thegender)
of speakers. After somedensityobservationsfor a yet unknown
speaker all parameterscanbeadaptedalongthesea priori known
vectors.

However, trying to useahandfulof recognizedphonemeswith
their respectiveHMM densitiesto adaptmillions of modelparam-
eterswith amaximumlikelihoodcriterionsometimesleadto con-
siderableoverfitting. On theotherhand,by adaptingonly within
theeigenvoicesubspace,theWERnearlylowersto its optimumaf-
ter 10–20s— further improvementshave to beobtainedby com-
bining other long-termadaptationtechniquessuchasMAP with
theeigenvoices.

This is the reasonto develop a MAP method,which incor-
poratesa priori knowledgeasrepresentedby eigenvoices: it will
allow avery fastandcorrelatedmovementof densitymeansalong
somespecial(eigenvoice)directions,while still allowing arbitrary
transformationsinto all otherdirections.

For thispurposetheMAP adaptationformulahasto begener-
alizedfor anisotropicgaussiana priori probabilitydistributionsin
thehighdimensionalspaceof all densitymeanparameters.

2. ANISOTROPIC MAP ADAPTATION

Only the adaptationof the densitymeansis examinedhere. The
variancesareassumedto beglobally fixed,diagonaland— only
for simplicity — equal.

Notation:��� is thenumberof usedeigenvectors(eigenvoices).��� is the numberof parameters(featurecomponents)of one
densitymean.���	��

is theindex of therecognizeddensityat time

�
.� 
 : observation at time

�
. This and the following vectorsare

interpretedasvectorsin the high-dimensionalspaceof all
adaptedparameters.�� � : meanof all observationsof thedensity

�
.� �� : meanof the densityin the final vector, i.e. the adaptation

result.� �� : meanof the densityin the a priori vector, i.e. the speaker
independentvector.� �

: ‘eigenvoice’ � .



�������� : � is thedensityvariance(heregloballyconstant).� � �� �� : adaptationparameterfor all transformationswhich are

orthogonalonthe‘eigenvoices’. � � is theassumedvariance
of speakersin thisdirectionandshouldthereforebesmaller
thanall observedeigenvoicevariances. � � �� �! : adaptationparameterfor transformationsparallel to
theeigenvoice

� �
.

TheMAP formulaeto estimatemeansareknown. Herethey
arederived in sucha way, that it doesnot becomenecessaryto
make useof a completebaseof thegiant spaceof all parameters
whereany coordinatetransformationis impracticable.The rela-
tionsarederivedexactly for thecaseof gaussiandensities.

Applying MAP meansthesearchfor anelement� � of thepa-
rameterspace" which maximizesthea posterioriprobabilityof
the observations # . The a priori distribution is definedby the
eigenvoices
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andvariances� � :$&%'� �)(+* , � � -/.10� %32 45 . 2 �5 (76 %32 45 . 2 �5 ( tr 8

(1)9 � �;: <>= � � tr�1�  �@? � 
 � � (2)

Therefore:� �
MAP

�BADCFE;GHAJI2 4 $ % #LK � � ( $ % � � ( (3)�BADCFE;GNMPO2 4 =
Obs.


RQ � ��	SP
JT ? � 
VU � : Q � ��'SP
JT ? � 
�U tr< = � % � �� ? � �� ( 9 % � �� ? � �� ( tr
(4)

A necessaryconditionfor thesearchedminimumis, thatthederiva-
tion with respectto avariationalparameterW vanishs:� �1X � � < WVY � �DZ (5)

at W �\[ for all densities
�

andarbitrary Y � � .
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into theseconditionsleadsto vectorequations:= �Bk ] � � %l� �� ? � 
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At first anarbitraryvectorwhich is orthogonalon all eigenvoices
is chosenfor Y � � : r s � r t : ? = � � tr� � �iuv wJx yz {}| (9)

The operator" projectsonto thespaceorthonormalto all eigen-
voice vectors. Henceit eliminatesall contributionsin (7) which
containthe projector ~ � � tr�V� � . The residuecan be separated
into componentsasusual.

Soit follows for eachdensity, asin thecaseof standardMAP
with exceptionof theadditionalprojector" :� ] � � % � �� ? �� � ( <m� % � �� ? � �� ()� " �\[�� ���

(10)

Thesolutionof (10) is uniqueup to theconstituentsparallelto the� �
. Onechoiceis theMAP-solution:�� �� � :] � � <L� % ] � � �� ��<m�}� �� ( (11)� � ��/<���: ? ::;<��� ] �)� % �� � ? � �� ( (12)

Theprojectionontotheeigenvoicespaceis separatedfrom thisex-
pression,consequentlythe completesolutionof the original sys-
temof equations(7) canbewrittenas:� � � � � < % �� � ? � � ( " <>= ��� � � � (13)

Todeterminetheremaining� � unknowns � � , thevariationalequa-
tions(7) arenow projectedontoaneigenvoice

� �
. Onceagainthe

projectionexpressionsaresimplified,but now thesystemdoesnot
separateinto independentcomponentsfor singledensities:= � � ] � � % � �� ? �� � ( <  � % � �� ? � �� ()� � tr� �q[����

(14)

Heretheansatz(13) is included,resultingin asystemof equations
for � � unknowns.Let

]
bethediagonalmatrixwhichcontainsin

its componentsthenumberof observations
] �

of thecorrespond-
ing densities
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Combining the unknowns to a (only � � -dimensional)vector �
leadsto anexpressionfor thesolution:� � � ¡ . � (16)

Theequations(11),(13)and(16) allow theexplicit determination
of thereferenceswhichmaximizetheobservationprobabilitytak-
ing into accounttheknown (gaussian)speaker variability.



3. EXPERIMENTS

Theexperimentsareconductedusingacombinationof Wall Street
Journaldataandacollectionof trainingandtestspeakersdictating
generaltexts from an internal database.This materialcontains
moredataperspeaker thanWSJandis well suitedfor thetraining
of adaptedmodelsfor eachspeaker.

SignalanalysiswasdoneapplyingLDA (LinearDiscriminant
Analysis)in orderto obtain33 featuresperframe.Theframeshift
of 10msresultsin 100framespersecondavailablefor adaptation.
All testsaredonewith context dependentphonemes,generalized
with CART. UsingHMM-mixture modelswith laplaciandensities
this resultsin : [7¢ densitymeanparametersavailablefor the de-
scriptionandadaptationof speakers.

3.1. The determination of eigenvoices

For training,50speakerspergender, eachwith onehourof speech,
arecombinedwith 200 speakers from WSJ1( £ 15 minutesper
speaker). Themeansof 26.838laplaciandistributions,describing
1.975mixturemodels,areobtainedaftera genderandspeaker in-
dependent(‘SI’-) training.

In thesecondstep,optimizedreferencesfor eachtrainingspea-
ker aredetermined:three(WSJspeakers)resp. seven (additional
speakers)iterationsof supervised,combinedMAP andMLLR adap-
tationaredone,startingwith theSI-modelsobtainedbefore. For
thefinal 300(‘SD’)-results,eachlaplaciandensitycanberelated
to its counterpartsfor theotherspeakerswhichhave theirorigin in
thesameSI-density.

Theprincipalaxesof thedistributionof these300vectorsare
determinedwith standardmethods.

Theobtainedeigenvectorsarerelatedto themeanof theadap-
ted modelsastheir origin, not to the SI-models. Note that even
if all speakersspoke the sametexts thesemeanswill differ from
the SI means,which arefoundasmaximumlikelihoodsolutions
for thecombinationof all speakers.Consequently, adaptationwill
result in a densityshift away from this origin. It will be shown
below thatthesemeanmodelsarealreadysuperiorto theSI ones.
Becausein thispaperthebehaviour of theeigenvoicemethoditself
is examined,WER improvementsareto be given relative to this
lower rate.

3.2. Tests with unknown speakers

For thetests,samplesof eightspeakersnot includedin thetraining
setareused,five femalesandthreemales.Theadaptationis done
with thefirst partsof varying length,500ms–10s,of thefirst sen-
tencesof the testmaterial. A lexicon with 34.000entriesis used
for recognition.

Thedependency of theWERontheamountof adaptationma-
terial is examinedby extractingthemodelsadaptedsofarafterthe
first secondof input speechandeachfollowing seconduntil the
tenth.Becauseonly completelyrecognizedwordsareusedfor the
adaptation,the exact amountof dataavailable for the first itera-
tionsdiffersfrom speaker to speaker.

Error ratesaredeterminedon the following 1.294wordsper
speaker. This resultsin a statisticalincertaintyof the given error
ratesof atmost0.35%if theerrorswereindependent.

4. RESULTS AND DISCUSSION

The WER without adaptationareshown in tab.1 both for gender
dependentandindependentmodels.Theinitial eigenvoicemodels
— themeansof all modelsadaptedto thetrainingspeakers— are
alreadysuperiourto themaximumlikelihootrainedones.Conse-
quentlythe formeroneshave beenchosento startthe eigenvoice
adaptationwith.

Initial WER(%)
Max.-lik. train. Origin of ev. rel. (%)

genderindep. 20.23 18.90 -6.58
genderdep. 17.19 16.49 -4.04

Table 1. WER without adaptationfor standardmaximumlikeli-
hoodtrainingcomparedto theinitial modelsfor eigenvoiceadap-
tation.All otherresultsarecomparedto thebettersecondones.

Tostudyitsshort-timebehaviour theadaptationwasperformed
in a quasicontinuousmanner:every 100frames(1s)theuniquely
recognizedwords up to that time have beenusedto updatethe
eigenvoicecoefficients.

GI GD
EV: 10 100 10 100
w: ¤ 300 100 300 100 300 300

0s 18.90 16.49
1s 19.31 17.99 17.72 18.13 17.74 16.70 16.61
2s 17.62 17.57 17.34 17.39 17.18 16.23 16.02
3s 17.56 17.41 17.33 17.04 16.82 16.44 15.95
4s 17.43 17.40 17.39 16.53 16.73 16.43 16.00
5s 17.31 17.24 17.33 16.27 16.66 16.38 15.79
6s 17.23 17.15 17.14 16.12 16.51 16.41 15.75
7s 17.15 17.16 17.17 16.07 16.49 16.30 15.70
8s 17.16 17.20 17.04 15.92 16.33 16.30 15.55
9s 17.36 17.22 17.13 15.81 16.17 16.38 15.46

10s 17.25 17.19 17.23 15.90 16.13 16.37 15.44

Table 2. Absoluteerror ratesfor gender(in-)dependent(GI/GD)
adaptationwith 10 or 100 eigenvoices(EV) anddifferentMAP-
adaptationweights(w, ¤ meansmaximumlikelihood) after1–10s
of unsupervisedadaptation.

The meanrelative WER for the testspeakersafter up to 10s
of adaptationwith ten eigenvoice degreesof freedomis shown
in fig.1. The absoluteerror ratesfor this and the other testsare
collectedin tab.2. The resultsfor differentsettingsof the MAP-
adaptationparametersarecompared:amaximumlikelihoodadap-
tationcriterion,obtainedbysettingall eigenvoicedependentMAP-
parameters � to valuesnearinfinity, andtwovarietiesof weighting
thePCA eigenvaluesto getMAP-parametersin theorderof : [V¥ .
For this purposetheeigenvaluesaresimply scaledby appropriate
factors.

In all casesmostof the improvementis obtainedduring the
first four seconds.But the MAP dampingsignificantlyimproves
the WER even after one and two seconds,correspondingto the
very first recognizedwords. The slow MAP adaptationinto di-
rectionsorthogonalto theeigenvoicesdoesnot playa role on this
timescale.
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Fig. 1. The meanWER for the testspeakersduring the first ten
secondsof adaptationwith teneigenvoiceswith differentweight-
ing of theMAP parameters.

The resultsfor adaptationwith 100 eigenvoices are shown
in fig.2. The exploitationof theseadditionaldegreesof freedom
improvesthe WER after 3–10sconsiderably, whereasduring the
first secondsthe resultsare comparableto thoseobtainedwith
ten eigenvoices. This reflectsthe fact, that the additionalPCA-
eigenvaluesand hencethe direction dependentMAP-adaptation
coefficientsaresmallerandmoretimeis neededto optimizethem.
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Fig. 2. The meanWER for the testspeakersduring the first ten
secondsof adaptationwith 100 eigenvoices(comparedwith the
best10-eigenvoicetest).

For genderdependentadaptation100 eigenvoicesareneces-
sary to get a significantimprovementafter 10s(fig.3). Justone
secondof speech(includingsomeinitial silence)doesnot leadto
aloweredWERasit hasbeenin thegenderindependentcase.Ob-
viously theultra-fastadaptationwithin thefirst spokenphonemes
is mostlydueto the first eigenvoices,which have beenshown to
classifyaccordingto gender[4].
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Fig. 3. ThemeanWERfor thetestspeakerswith genderdependent
initial models,10and100eigenvoices.

5. SUMMARY

MAP adaptationwith anisotropicgaussianpriorshasprovento sig-
nificantly improve therecognitionevenafter1–2secondsof unsu-
pervisedadaptationby upto 8%relative. Thisvery fastadaptation
seemsto beeffectedby anearlyinstantaneousoptimizationof the
few genderdependingeigenvoicecoefficients.

For long term(10s)adaptation,it becomesworthwhileto use
100 insteadof 10 or lesseigenvoices. Thenthe word error rate
canbe reducedby 14% relative after

�7§
for genderindependent

recognitionand16%after : [ § .
Themainadvantageof themethodascomparedwith e.g.fast

MLLR techniquesshows up duringthefirst few secondsof adap-
tation. But obviously the hugemain memoryconsumptionis a
problemfor applications.

With this combinationof MAP and eigenvoiceswithin one
adaptationmethodapriori knowledgeonspeakerdependentcorre-
latedmovementsof densitiescansuccsessfullybeappliedto con-
tinuous,largevocabularyspeechrecognitionalthoughtherearefar
moremodelparametersthanin thecaseof singlewordrecognition.
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