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ABSTRACT

In this paper, we propose a segment-based matching pursuit algo-
rithm where the psychoacoustical properties of the human audi-
tory system are taken into account. Rather than scaling the dic-
tionary elements according to auditory perception, we define a
psychoacoustic-adaptive norm on the signal space which can be
used for assigning the dictionary elements to the individual seg-
ments in a rate-distortion optimal manner. The new algorithm is
asymptotically equal to signal-to-mask ratio based algorithms in
the limit of infinite analysis window length. However, the new
algorithm provides a significantly improved selection of the dic-
tionary elements for finite window length.

1. INTRODUCTION

Sinusoidal coding has proven to be an efficient technique for the
purpose of coding speech signals [1, 2]. More recently, it was
shown that this method can also be exploited for low-rate audio
coding [3, 4, 5, 6]. To account for the time-varying nature of the
signal, the sinusoidal analysis/synthesis is done on a segment-by-
segment basis, with each segment being modeled as a sum of si-
nusoids. The sinusoid parameters have been selected with a num-
ber of methods, including spectral peak-picking and analysis-by-
synthesis. We focus on the matching pursuit algorithm [7], a par-
ticular analysis-by-synthesis method.

Matching pursuit approximates a signal by a finite expansion
into elements (functions) chosen from a redundant dictionary. Let
H be a Hilbert space and let D = (gγ )γ∈� be a complete dic-
tionary of unit-norm elements in H (H is the closed linear span
of the dictionary elements). The matching pursuit algorithm is a
greedy iterative algorithm which projects a signal x ∈ H onto the
dictionary element gγ that best matches the signal and subtracts
this projection to form a residual signal to be approximated in the
next iteration. Let Rm−1x denote the residual signal after iteration
m − 1. At iteration m, the algorithm decomposes Rm−1x as

Rm−1x = 〈Rm−1x, gγm 〉gγm + Rm x, (1)

where gγm ∈ D such that

|〈Rm−1x, gγm 〉| = sup
γ∈�

|〈Rm−1x, gγ 〉|. (2)
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The orthogonality of Rm x and gγm implies

‖Rm−1x‖2 = |〈Rm−1x, gγm 〉|2 + ‖Rm x‖2.

To account for human auditory perception, the unit-norm dic-
tionary elements can be scaled [6], which is equivalent to scal-
ing the inner products in (2). We will refer to this method as the
weighted matching pursuit algorithm. While this method performs
well, it will be shown below that it does not provide a consistent
selection measure for elements of finite time support and for ele-
ments in different signal segments.

To address these issues, we introduce a matching pursuit al-
gorithm where psychoacoustical properties are taken into account
by defining a proper norm on the signal space. The norm changes
at each iteration. In contrast to the weighted matching pursuit al-
gorithm, this new psychoacoustic-adaptive matching pursuit algo-
rithm has the desired property that if the signal is identical to one
of the dictionary elements, this element is always selected. More-
over, it is able to discriminate between peaks originating from true
sinusoidal components and peaks originating from side lobes of
the analysis window function. Using this new algorithm, the norm
of the residual signal will converge exponentially to zero when the
number of iterations approaches infinity.

This paper is organized as follows. In Section 2 we introduce
the psychoacoustic-adaptive matching pursuit algorithm and dis-
cuss its relation to signal-to-mask ratio based algorithms. Next,
in Section 3, we show that our newly proposed algorithm can be
implemented efficiently by using Fourier transforms. Finally, in
Section 4, we draw some conclusions.

2. PSYCHOACOUSTIC-ADAPTIVE MATCHING
PURSUITS

Ignoring time-domain masking phenomena, signal distortion be-
comes audible when the log power spectrum of the residual signal
Rx exceeds the log frequency masking threshold, or equivalently,
when the ratio of the power spectrum and the masking threshold
exceeds unity. This motivates us to define a perceptual distortion
measure as

‖Rx‖2 =
∫ 1

0
â( f )| ˆ(wRx)( f )|2d f, (3)

where ˆ indicates the Fourier transform operation, w is a window
defining the signal segment, and â is a weighting function rep-
resenting the sensitivity of the human auditory system which we



will generally select to be the inverse of the masking threshold.
The distortion measure (3) defines a norm onH if â( f ) is positive
and real for all f ∈ [0, 1) and wx 
= 0 for all x ∈ H. The norm is
induced by the inner product

〈x, y〉 =
∫ 1

0
â( f ) ˆ(wx)( f ) ˆ(wy)

∗
( f )d f, (4)

facilitating the use of the distortion measure in selecting the best
matching dictionary element in a matching pursuit algorithm.

The masking threshold is based on the reconstructed signal
which changes with each iteration. Therefore, the norm onHmust
be adapted with each iteration. Let âm−1 be the weighting func-
tion used at iteration m and let ‖ · ‖âm−1 denote the corresponding
norm. We thus minimize ‖Rm x‖âm−1 at iteration m, update âm−1 to
âm using the newly chosen dictionary element, and then minimize
‖Rm+1x‖âm in the next iteration. The convergence properties of
this algorithm are described by the following theorem (proven in
[8]):

Theorem 1 There exists a λ > 0 such that for all m > 0

‖Rm x‖âm ≤ 2−λm‖x‖â0 ,

if and only if for all m > 0, âm( f ) ≤ âm−1( f ) for all f ∈ [0, 1).

Note that if âm−1 is the reciprocal of the frequency masking thresh-
old at iteration m, then the condition âm( f ) ≤ âm−1( f ) for all
f ∈ [0, 1) is satisfied since the masking threshold increases with
the iteration number.

Let us consider the case where the dictionary D = (gγ )γ∈�

consists of complex exponentials,

gγ = 1√
N

ei2πγ n , n = 0, . . . , N − 1, (5)

for γ ∈ [0, 1). To find the best matching exponential at iteration
m, we compute the inner products of Rm−1x and the dictionary
elements,

〈Rm−1x, gγ 〉 = 1√
N

∫ 1

0
âm−1( f ) ˆ(wRm−1x)( f )ŵ∗( f − γ )d f.

(6)

For the case N → ∞, the function ŵ becomes a δ-function, or
Dirac, and (6) reduces to

〈Rm−1x, gγ 〉 = 1√
N

âm−1(γ ) ˆ(Rm−1x)(γ ). (7)

Hence, the matching pursuit algorithm selects gγ ∈ D such that

|〈Rm−1x, gγm 〉| = 1√
N

sup
γ∈�

|âm−1(γ ) ˆ(Rm−1x)(γ )|.

Note that since (6) reduces to a simple scaling of the dictionary el-
ements for N → ∞, the psychoacoustic-adaptive and weighted
matching pursuit methods give identical results. If âm−1 is the
reciprocal of the masking threshold at iteration m, both proce-
dures select the exponential located where the absolute difference
of the log residual signal spectrum and the log masking threshold
is largest.
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Figure 1: Example of selecting sinusoidal components using the
weighted (middle plot) and psychoacoustic-adaptive (lower plot)
matching pursuit algorithm.

The psychoacoustic-adaptive matching pursuit method has ad-
vantages over the weighted matching pursuit method when the sig-
nal segment is of finite length. To see this, we first take the sig-
nal segment to be a scaled version of one of the dictionary ele-
ments, say x = αgγ . The psychoacoustic-adaptive matching pur-
suit method will select gγ as desired (from the Cauchy-Schwartz
inequality we have that |〈x, gγ 〉| ≤ ‖x‖‖gγ ‖ = ‖x‖, with equality
if and only if x and gγ are linearly dependent). This is not true
for the weighted matching pursuit method. Figure 1 illustrates an
example where the original signal contains two sinusoids, at 1 and
1.1 kHz, respectively, with the residual signal after one iteration
consisting of the f = 1 kHz sinusoid. The upper plot shows the
projection energy (in the l2-sense) |〈x, gγ 〉|2 = 1

N | ˆ(wx)( f )|2 and
the masking threshold. The middle subplot shows the projection
energy for the weighted matching pursuit algorithm, which cor-
responds to the signal-to-mask ratio (the difference between the
log residual signal spectrum and the log masking threshold of the
upper subplot). The lower subplot shows the projection energy
|〈x, gγ 〉|2 according to the inner product defined by (4). The steep
slope of the masking threshold around f = 1 kHz causes the
weighted matching pursuit algorithm to select a suboptimal solu-
tion, whereas the psychoacoustic-adaptive matching pursuit algo-
rithm correctly selects a f = 1 kHz sinusoid.

A second advantage of the psychoacoustic-adaptive matching
pursuit method is that it discriminates between main lobes and
side lobes in a spectrum of a sum of (windowed) sinusoids, as
is illustrated in Figures 2 and 3. The upper and lower plots of
Figure 2 show the results for the weighted and psychoacoustic-
adaptive matching pursuit methods, respectively, for a rectangu-
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Figure 2: Selection of 6 sinusoidal components using the
weighted (upper plot) and psychoacoustic-adaptive (lower plot)
matching pursuit algorithm for a 20 ms long voiced speech frag-
ment.
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Figure 3: Selection of 6 sinusoidal components using the
weighted (upper plot) and psychoacoustic-adaptive (lower plot)
matching pursuit algorithm for a 20 ms long voiced speech frag-
ment plus zero-mean white Gaussian noise.

larly windowed input signal (20 ms of voiced speech sampled at
8 kHz). The plots show the power spectrum of the input signal
and the masking threshold after selecting six sinusoidal compo-
nents. The weighted matching pursuit method selects a component
at 3.8 kHz corresponding to a side lobe. This in contrast to the
psychoacoustic-adaptive matching pursuit method which selects a
peak corresponding to a true sinusoidal component. To show that
this difference does not result from a preference of selecting low-
frequency components, we added zero-mean white Gaussian noise
to the 20 ms speech fragment in the example of Figure 3. In this
case both methods perform similarly.

3. EFFICIENT IMPLEMENTATION

In general, the size of the dictionary used in the matching pursuit is
large so that the computational complexity of computing the inner
products in (2) becomes considerable. Since â changes at each
iteration, there does not exist a simple updating formula, except
for cases where â is independent of the iteration m. In that case
we have, by taking the inner products with gγ on both the left and
right-hand side of (1), that

〈Rm x, gγ 〉 = 〈Rm−1x, gγ 〉 − 〈Rm−1x, gγm 〉〈gγm , gγ 〉.

Hence, the only computations required for this update are the com-
putations of the inner products 〈gγm , gγ 〉, which can be computed
beforehand and stored in memory.

Notwithstanding the existence of an efficient updating formula
in some cases, the computational complexity of computing the in-
ner products 〈Rm x, gγ 〉 can be large for unstructured dictionaries.
However, if we take the dictionary elements as defined by (5), we
can reduce the computational load by using the Fourier transform

to compute the inner products. Indeed, we have that

〈Rm x, gγ 〉 = 1√
N

∫ 1

0
âm( f ) ˆ(wRm x)( f )ŵ∗( f − γ )d f

= 1√
N

∑
n∈Z

(∫ 1

0
âm( f ) ˆ(wRm x)( f )ei2π f nd f

)

· w∗(n)e−i2πγ n . (8)

Hence, to compute 〈Rm x, gγ 〉 for all γ , we first compute the Fourier
transform of wRm x , multiply the result by âm , compute the inverse
Fourier transform of this product, multiply this result by w∗, and
finally compute the Fourier transform of the result thus obtained
to get the desired result. By doing so, (8) can be computed using
three Fourier transforms.

In many cases, like modeling of audio and speech signals, we
want to model the signals by real-valued sinusoids, rather than
complex exponentials. Since a real-valued sinusoid can be ex-
pressed as a sum of a complex exponential and its complex con-
jugate, we can select the best matching sinusoid by using a dic-
tionary consisting of complex exponentials only. By doing so,
we have to find the best matching set of dictionary elements, say
(g∗

γ , gγ ). In order to find the optimal set (g∗
γ , gγ ), we not only

have to compute the inner products 〈Rm x, gγ 〉, but the inner prod-
ucts 〈g∗

γ , gγ 〉 as well [3, 6].
Unfortunately, the computations of 〈g∗

γ , gγ 〉 do not have an ef-
ficient implementation in terms of Fourier transforms. However,
since the dictionary elements gγ and g∗

γ have a sparse interaction,
that is, 〈g∗

γ , gγ 〉 ≈ 0 except for γ close to 0 or 1/2, it is in gen-
eral sufficient to compute these inner product for a limited set of
γ s only. This is illustrated by the result of Figure 4. The upper
plot shows the projection energy for approximating a 20 ms long
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Figure 4: Difference of using a dictionary consisting of real-
valued sinusoids or complex exponentials. The upper plot shows
the projection energy of both situations. The lower plot shows the
difference (in dBs).

Hanning windowed voiced speech fragment (sampling frequency
8 kHz) with real-valued sinusoids (solid line) and complex expo-
nentials (dashed line). The latter one can be obtained by setting
〈g∗

γ , gγ 〉 = 0 for all γ , so that the difference of the two methods,
which is depicted in the lower subplot of Figure 4, gives informa-
tion about how the dictionary elements gγ and g∗

γ interact. Clearly,
these differences are almost zero, except for frequencies aroud 0
and 4 kHz. We, therefore, conclude that the computational com-
plexity for finding the best matching set (g∗

γ , gγ ) is of the same
order of magnitude as the one for finding the best matching expo-
nential gγ , which is three Fourier transform operations.

4. CONCLUSIONS

We proposed a segment-based matching pursuit algorithm which
takes psychoacoustical properties into account. Rather than scal-
ing the dictionary elements according to auditory perception, we
define a psychoacoustic-adaptive norm on the signal space which
can be used for assigning the dictionary elements to the individual
segments in a rate-distortion optimal manner. The norm changes
with each iteration because of the change in auditory perception.
We showed that, if the analysis window length approaches infin-
ity, the algorithm becomes equal to algorithms which select com-
ponents based on signal-to-mask ratios. For finite window lengths
the algorithms behave differently. In contrast to signal-to-mask
ratio based methods, the new method selects the correct element
when the signal under consideration is a scaled version of a partic-
ular dictionary element. Moreover, we showed that the proposed
method discriminates between peaks originating from true sinu-
soidal components and peaks originating from side lobes of the
analysis window function, and that the computational complexity
is of the order of magnitude of three Fourier transform operations.
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