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ABSTRACT

We have developed a new-generation, general-purpose dig-
ital signal processor (DSP) core with low power dissipation
for use in third-generation (3G) mobile terminals. The DSP
core employs a 4-way VLIW (very long instruction word)
approach, as well as a dual-multiply-accumulate (dual-MAC)
architecture with good orthogonality. It is able to perform
both video and speech codec for 3G wireless communica-
tions at 384 k bit/sec with a power consumption of approxi-
mately 50 mW. This paper presents an overview of both the
DSP core architecture and a DSP instruction set, and it also
gives some application benchmarks.

1. INTRODUCTION

3G wireless standards will make it possible to achieve multimedia
communications at faster bit rates, up to 2 M bit/sec. In Japan, new
wireless communication systems based on 3G wireless standards
will be launched into service by the year 2001, and their initial
transmission services will support up to 384 k bit/sec unrestricted
digital data [1]. This wide bandwidth will allow us to deliver audio
and visual entertainment and to communicate via both video im-
ages and voice. Although voice communications are the dominant
service in existing mobile phone systems, video communications
(e.g., MPEG-4) and fast digital data transmission through the In-
ternet may be expected to be the leading services in 3G systems.

MPEG-4 is a promising standard for audio and visual com-
munications over wireless networks [2]. For efficient implemen-
tation of this standard, subsets of the MPEG-4 systems have been
grouped into profiles, and a number of approaches to the imple-
mentation of a low-resolution profile (simple profile level 1, SP@L1,
176x144pixels) have been reported for use in MPEG-4 video com-
munications on low-power mobile terminals [3–6]. While the small
display size supported by SP@L1 may be satisfactory for a small
number of initial users, the need for a larger display size, e.g., sim-
ple profile level 2 (SP@L2, 352x288 pixels), can surely be antic-
ipated. Further, noise suppression and echo cancellation will also
be required for comfortable video communications.

Moreover, in addition to multimedia applications, 3G mobile
terminals will need to be able to perform modem processing (e.g.,
rake combining, channel equalization, and forward error correc-
tion (FEC)), and all this will require a larger amount of signal pro-
cessing power than can be provided by existing terminals, at the

same time that 3G terminals will have to keep power dissipation
as low as that of existing terminals.

In low power applications, while dedicated-design approaches
may produce more efficient implementation than do programmable-
DSP approaches, programmable DSPs have an advantage in their
flexibility and shorter development periods. Since 3G wireless
standards are still evolving, the advantage of DSP programmabil-
ity is very important, as is the need to be able to support low power,
high performance, and high flexibility [7,8].

To meet this demand, we have developed SPXK5 (a develop-
ment code name), a new-generation 4-way VLIW-type DSP core
with low power dissipation for use in 3G mobile terminals. In this
paper, we present an overview of both the new DSP core archi-
tecture and a DSP instruction set, and we also give examples of
possible multimedia and modem processing applications: specifi-
cally, MPEG-4 codec, Viterbi decoding, and adaptive filtering. Fi-
nally, we describe the results of an evaluation of the core in actual
implementation.

2. ARCHITECTURE

Over the past few years, a number of manufacturers have
announced the development of high performance DSPs that em-
ploy a VLIW-type architecture [8]. While a VLIW-type architec-
ture provides their DSPs with the high performance needed for
multimedia and modem processing applications, power dissipa-
tion is not low enough to be practical for mobile terminals. We,
however, have succeeded in designing a VLIW-type architecture
for a DSP capable that is practical for use in 3G mobile termi-
nals. The newly developed DSP core, SPXK5, has the advantage
of well-balanced instruction level parallelism based on a VLIW-
type, general-purpose register architecture.

Figure 1 illustrates SPXK5’s seven functional units: two MAC
units, two arithmetic logical units (ALUs), two data address units
(DAUs), and a system control unit (SCU). Up to four units among
these seven units can work during the same clock cycle. The
MACs execute 16- x 16-bit multiply and 40(16)-bit + 16- x 16-bit
multiply-accumulate operations. The ALUs execute add/subtract,
shift, and logical operations. Most of the arithmetic operations on
the MACs and ALUs can be performed using saturation functions.
The DAUs move data between the local memory and general-
purpose registers. The SCU controls branch and zero-overhead
loop program sequences, as well as conditional-execution instruc-
tions. SPXK5 has eight 40-bit general-purpose registers (R0, R1,
..., R7), eight 32-bit address registers (DP0, DP1, ..., DP7), and
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Fig. 1. SPXK5 block diagram showing seven functional
units and four buses.

eight 16-bit offset registers (DN0, DN1, ..., DN7) that individually
correspond, respectively, to each of the address registers. Each of
these general-purpose registers (R0, R1, ..., R7) can be used as a
40-bit accumulator, and each of both the high and low 16-bit por-
tions of these resisters (e.g., R0H, R0L) can also be used both as
an operand in multiplication and as a 16-bit accumulator. This
increases the processor’s orthogonality.

In conventional DSPs, the instruction memory space and data
memory spacesare separate and have distinct addresses. In SPXK5,
however, these two kinds of memory spaces have been unified into
one large memory space with a 32-bit address. This unified mem-
ory space consists of several banks, each of which is connected to
three buses: two 32-bit data buses (X bus and Y bus) and a 64-bit
instruction bus. Through these three buses, the core can access
three different banks.

For faster operational frequency, SPXK5 has a six-phase pipe-
line: instruction fetch, dispatch queue, decode, address register
update, execution phase 1, and execution phase 2. All ALU op-
erations are executed in execution phase 1. MAC operations are
executed in both execution phases 1 and 2, and their results only
become valid for other units after the completion of phase 2.

To fabricate SPXK5, we used a 0.13-micron logic process.
The DSP core measures 2 square millimeters and can operate at
250 MHz (1000 MIPS), with a power consumption of 0.05
mW/MIPS at 0.9 volts.

2.1. Application example: LMS adaptive filter

Since SPXK5 has two MAC units, it can perform finite impulse re-
sponse (FIR) filters twice as fast as DSPs with only one MAC unit.
Here, let us consider the example of a least mean square (LMS)
adaptive filter to illustrate how the 4-way VLIW-type architecture
and the two MAC units on SPXK5 are efficiently exploited. The
LMS algorithm employed in transversal filter structures is widely
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Fig. 2. Update filter coefficients in LMS on SPXK5. RdL
and RdH denote, respectively, the low and high 16-bit por-
tions of register Rd.

used in many digital signal processing applications (e.g., echo can-
cellation, channel equalization, etc.). We define the input, output,
and desired signals at time index i as, respectively, x i, yi, and di,
and the jth filter coefficient as w j . The LMS adaptive filter can
then be formulated as

yi = ∑T -1
j=0 wjxi- j (1)

ei = µ(di-xi) (2)

wj = wj+eixi- j , j=0,1,...,T -1 , (3)

where µ is a small positive constant referred to as step size and T
is the number of filter taps. While FIR filtering represented in Eq.
(1) includes load and MAC operations, the updating of filter co-
efficients represented in Eq. (3) needs store operations as well as
load and MAC operations. We can implement this adaptive filter
efficiently on SPXK5 by using 16-bit + 16- x 16-bit MAC instruc-
tions. These 16-bit MAC instructions round a 32-bit result of the
muliplication into a 16-bit value and add it to a 16-bit value in
an accumulator. These instructions make it possible to use 32-bit
load/store instructions in order to reduce the number of load/store
operations for filter coefficients. As shown in Figure 2, w j and
wj+1 are updated in accord with Eq. (3), where each value is as-
sumed to be a signed 16-bit value. First, a 32-bit load instruction
reads two 16-bit data, w j and w j+1, from the local memory into
register R4. Next, a 16-bit MAC instruction calculates w j+eixi- j ,
using the low 16-bit portion of R4. Another 16-bit MAC instruc-
tion then calculates w j+1+eixi- j-1, using the high 16-bit portion of
R4. Finally, a 32-bit store instruction is used to store two 16-bit
data, updated w j and w j+1, into the local memory from register
R4. Since yi can be calculated in parallel with the updating of w j

and w j+1, SPXK5 operates the LMS adaptive filter at 1 cycle/tap.

3. INSTRUCTION SET

SPXK5 instructions are either 16- or 32-bit wide and can be grouped
into up to 64-bit instruction packets to be executed within a cy-
cle. This gives SPXK5 small code sizes for most programs, even
though VLIW-type DSP designs usually result in large code sizes.

Our instruction set has been designed for use with high-level
language compilers, such as C compilers, so as to be able to gen-
erate efficient codes in addition to enabling efficient parallel exe-
cution of digital signal processing algorithms. Such efficiency de-



pends on the orthogonality of the instruction set and on the use of
certain instructions that are particularly helpful to compilers. Most
MAC and ALU instructions require 3 operands, each of which
can be equally chosen from among eight general-purpose regis-
ters. This increases the orthogonality of the instruction set.

Futher, each destination register in most MAC/ALU instruc-
tions has an automatic saturation mode. This allows effective im-
plementation of speech codec standards. Conditional execution
is employed for all ALU operations. A C-like algebraic assem-
bly language helps programmers to understand and develop pro-
grams more easily. Moreover, we have introduced a number of
special purpose instructions to accelerate specific 3G terminal ap-
plications, including video codec and Viterbi decoding. Features
of the instruction set include:

• Single-instruction multiple-data (SIMD) type instructions
for better data parallelism in ALU operations.

• Format-conversion instructions between unsigned 8-bit data
and unsigned 16-bit data, for video codec.

• Minimum and maximum operations, for Viterbi decoding.

3.1. Application examples and benchmarks

Let us consider the examples of video codec and Viterbi decod-
ing to illustrate how the SIMD-type instructions can be used to
implement such applications efficiently. After that, let us look at
benchmark results for basic applications.

3.1.1. Motion estimation (ME)

ME is one of the most heavily demanding operations in video en-
coders. It uses block-matching techniques to search a motion vec-
tor for a desired macroblock. Though either the sum of square
difference (SSD) or the sum of absolute difference (SAD) might
be used as a matching criterion, SAD is more commonly used be-
cause no multiplication is needed in SAD calculations. Between
current and reference macroblocks, SAD may be expressed as

SAD = ∑M-1
m=0∑

N-1
n=0

∣
∣am,n-bm,n

∣
∣ , (4)

where am,n and bm,n are pixel values in, respectively, current and
reference macroblocks. SIMD-type instructions, PSUB and
PADDABS, can be used to calculate SAD on SPXK5. Figure 3
shows an SAD calculation flow diagram. Here, for the sake of sim-
plicity, we assume that pixel values are stored in the local memory
as unsigned 16-bit values. First, a 32-bit load instruction reads
two pixel values (a0,0,a0,1) for the current macroblock, and an-
other 32-bit load instruction reads two pixel values (b0,0,b0,1) for
the reference macroblock. a0,0 is placed in the low 16-bit portion
of a register; a0,1 is placed in the high 16-bit portion of the same
register. This is also done for b0,0 and b0,1 in a different register.
PSUB then calculates the differences between a 0,0 and b0,0 and
between a0,1 and b0,1. PADDABS adds the absolute of those dif-
ferences into a subsequent register. By repeating these operations,
SPXK5 obtains an SAD value.

3.1.2. MPEG-4 codec

Let us next estimate the operational frequency required to imple-
ment MPEG-4 video codec SP@L2 (352x288 pixels, 15 frame/sec)
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Fig. 3. An SAD calculation flow diagram

on SPXK5. We have already implemented H.263 video codec
on µPD7701x at 50 MHz [3] and MPEG-4 video codec SP@L1
(176x144 pixels, 15 frame/sec) on the same architecture at 75 MHz
[4]. The main components in MPEG-4 video codec are ME, dis-
crete cosine transform (DCT), inverse DCT, motion compensation,
quantization, and inverse quantization. Estimated perfomance for
ME is 2.5 times faster on SPXK5 than that on µPD7701x. Either
an 8-point DCT or IDCT can be implemented in 17 cycles (twice
as fast as µPD7701x [9]). Other components can also be oper-
ated roughly twice as fast as those on µPD7701x. Therefore, a
200-MHz SPXK5 is sufficient to implement MPEG-4 video codec
SP@L2. Further, a 250-MHz SPXK5 will possess the processing
power required for both the video codec and speech codec, and it
will consumes 50 mW at 0.9 volts.

Let us compare power consumption between a dedicated-
design approach and our programmable-DSP approach for MPEG-
4. The dedicated MPEG-4 video codec LSI reported in [6] con-
sumes 240 mW at 60-MHz clock frequency when it executes both
SP@L1 video codec and speech codec. The power consumption of
250-MHz SPXK5 is dramatically lower than that of the dedicated
MPEG-4 LSI, where a 250-MHz SPXK5 can handle both SP@L2
video codec and speech codec. While the dedicated MPEG-4 LSI
includes a 16-Mbit DRAM, the power consumption of our DSP
core would be significantly lower even if the consumption of the
LSI’s 16-Mbit DRAM were ignored.

3.1.3. Viterbi decoding

The Viterbi decoding algorithm is a maximum-likelihood decod-
ing algorithm for convolutional codes and is commonly used in
FEC because it is simple to implement and offers large coding
gain [10]. The trellis diagram for an R=1/n convolutional code
can be subdivided into a number of basic modules because of
the inherent symmetry in the trellis structure. These basic mod-
ules can be represented as state transitions between two old states
(m,m+M/2) in stage k and two new states (2m,2m+1) in stage k+1,
where m=0,1,...,M/2-1 (see Figure 4). We define a path metric at
state m in stage k as pm,k , and also define a branch metric as bm.
The path metric is a likelihood ratio between the original encoder
input and a recreated set of state transitions. The branch metric is a
likelihood ratio of a state transition. The two path metrics in stage
k+1, p2m,k+1 and p2m+1,k+1, may be expressed as

p2m,k+1 = max[pm,k+bm,pm+M/2,k-bm] (5)

p2m+1,k+1 = max[pm,k-bm,pm+M/2,k+bm] , (6)
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where max[x,y] represents a larger value of either x or y. The op-
erations represented by Eqs. (5,6) are referred to as add-compare-
select (ACS) operations. The speed of ACS operations is crucial
to the successful implementation of a Viterbi decoder on a DSP.

SPXK5 uses SIMD-type instructions, PADD/PSUB/PMAX,
to calculate path metrics efficiently. Figure 5 illustrates how to
use SIMD-type instructions to perform two ACS operations. Here,
both path metrics and branch metrics are assumed to be signed 16-
bit integers. First, PADD and PSUB, respectively, calculate two
candidate values for one of two path metrics at stage k+1 in Eqs.
(5,6). The first two candidates are placed into, respectively, the
high and low 16-bit portions of R0; the same is done for the sec-
ond two candidates with respect to R1. Next, PMAX compares
the two candidates in each register, respectively, and selects the
largest from each. PMAX also stores two 1-bit selection flags in
the viterbi history register (VHR) for use later in determining the
maximum-likelihood surviving path after calculating path metrics
in all stages. The VHR is a system register and is 32-bit wide.
The flags, which are either 0 or 1, indicate comparisons between
each pair of candidates placed in R0 and R1, respectively. SPXK5
can execute PADD, PSUB and PMAX instructions in two cycles
to perform two ACS operations (i.e., 1 ACS/cycle).

3.1.4. Basic application performance

Finally, let us look at performance results on SPXK5 for an FIR
filter, an infinite impulse response (IIR) filter, an LMS adaptive fil-
ter, and a 256-point complex fast fourier transform (FFT). SPXK5
can operate an FIR filter at 0.5 cycles/tap, an IIR filter (five coef-
ficients per biquad) at 3 cycles/biquad, and an LMS adaptive filter
at 1 cycle/tap, where each performance result is given per sample.
SPXK5 can also operate a 256-point complex FFT at 4200 cycles.

4. SUMMARY

We have developed SPXK5, a new-generation 4-way VLIW-type
DSP core with low power dissipation for use in 3G terminals.
SPXK5 employs a register architecture with good orthogonality
and is designed so that compilers and programmers are able to
generate codes easily and efficiently. For low power dissipation, a
DSP to employ SPXK5 core has been designed to operate at low
voltages (under 1.0 volt). As has been shown here, the DSP core
allows efficient low-power implementation of video codec, Viterbi
decoding, and adaptive filtering, which are important applications
for 3G terminals.
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