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ABSTRACT

In this paper, we propose a novel geometric method for the
alignment of two overlapping range images. The method
first employs the traditional ICP criterion to establish a set
of possible correspondences and then refine these corre-
spondences using geometric constraints derived from prop-
erties of reflected correspondence vectors. In this way, the
method overcomes a major limitation of the traditional ICP
criterion which is the introduction of false matches in al-
most every iteration of the alignment. For an accurate es-
timation of the geometric parameters of interest, the Monte
Carlo method is used in conjunction with a median filter. Fi-
nally, the quaternion method is used to estimate the motion
parameters based on the refined correspondences. Experi-
mental results based on both synthetic data and real images
show that the proposed method can effectively align two
overlapping range images with a small motion.

1. INTRODUCTION

With recent technological developments in optics and elec-
tronics, range image acquisition systems are becoming more
affordable and accurate. Since range images provide depth
information, their analysis has proved simpler than that of
the model based or projective images, leading to greater po-
tential for applications in a number of tasks such as com-
puter aided geometric design (CAGD), motion analysis, ob-
ject recognition [5], and reverse engineering [3]. However,
the alignment of two overlapping range images is still a fun-
damental problem in range image analysis. As a result, a
large number of techniques have been proposed to deal with
this limitation, such as techniques based on iterative closest
point algorithm (ICP) [1, 10], interactive method [8], and
triangle matching [7], among many others.

The ICP method is the most promising of the image reg-
istration methods. Its concept is simple and relatively easy
to implement. However, the problem of the ICP algorithm
is that the criterion used to establish correspondences of-
ten unavoidably introduces false matches in almost every
iteration of the alignment since it just uses the distance con-
straint to determine the position of the correspondents in

two range images, when it is known that a position in 3D
space can only be uniquely determined by three constraints.
Advances have been made through a number of proposed
techniques to improve the ICP method such as spin images
[5], bitangent curves [9], and normal and tangent informa-
tion [4]. A careful analysis reveals that these methods either
employ invariants described in a single coordinate to reduce
false matches, or use thresholds or perform the general �2

test to reject false matches. The problem still remains be-
cause invariants cannot theoretically completely eliminate
false matches, thresholds are context dependent and often
are not easily determined, and the �

2 test depends on the
estimation of the uncertainty of every point.

In this paper, we propose a novel geometric method for
the alignment of two overlapping range images represent-
ing a significant improvement to the traditional ICP method.
This novel method first employs the ICP criterion [1] to es-
tablish a set of possible correspondences between the two
range images to be aligned. Since false matches are cre-
ated by the motion, we argue that their elimination can only
be carried out using the properties of the motion. In [6], we
extended Chasles’ screw motion theory by analysing the ge-
ometric properties of reflected correspondence vectors syn-
thesised into a single coordinate frame. Such analysis has
provided an exact insight into the physical interpretation of
rigid motion constraints bridging the points described in dif-
ferent coordinate frames before and after a motion. Thus,
the novel method then employs the geometric properties of
reflected correspondence vectors to evaluate whether pos-
sible correspondences are plausible or not yielding a set
of refined correspondences. In order to improve the accu-
racy and efficiency of the geometric parameter estimation,
the Monte Carlo method in conjunction with a median fil-
ter are employed. Finally, this novel method employs the
quaternion method [1] to estimate the motion parameters
based on the refined correspondences. The proposed align-
ment model has been validated through experiments based
on both synthetic data and real images. Experimental results
have shown that the proposed algorithm is accurate and ro-
bust for the alignment of two overlapping range images with
a small motion.

The rest of this paper is organised as follows. Section 2



outlines the geometric properties of reflected correspon-
dence vectors as described in [6]. Section 3 describes the
proposed algorithm. Section 4 presents experimental results
and finally, some conclusions are drawn in Section 5.

2. OUTLINE OF GEOMETRIC PROPERTIES OF
REFLECTED CORRESPONDENCE VECTORS

In this section, the geometric properties of reflected cor-
respondence vectors as presented in [6] are outlined with
the purpose of formalising additional constraints for false
match elimination. A rigid motion can be represented by
the following relationship:

p0 = Rp+ t (1)

where R and t are the rigid rotation matrix and translation
vector. The point pair (p;p0) represents a correspondence
where p is a point described in one coordinate frame be-
fore a motion and p0 is its corresponding point described
in another coordinate frame after a motion. The reflected
correspondence (RC) of (p;p0) is defined as: (p;p00) =

(p;�p0).
Given two sets of correspondence data (pi;p0

i) where i =
1; 2; � � � ; n j n � 3, the geometrical properties of reflected
correspondence vectors: RCVi = pi�p00i which have been
synthesised into a single coordinate frame were analysed
and assuming that the rotation angle � is defined as: � 2

[0; �), the following theorem has been put forward in [6]:

Theorem 1 A motion (R; t) is a 3D rigid motion if and
only if there exists a fixed axis h = (hx; hy; hz)

T and a
fixed point e, such that:

jjp� ejj = jjp00 � ejj (2)

(p� e)T (p00 � e)

(p� e)T (p� e)
= cos(� � �) (3)

h
T (p+ p

00) = 2hTe (4)

where cos(� � �) is constant uniquely determined by the
rigid motion and (p;p00) is the projection of an arbitrary
RC (p;p00) in the plane perpendicular to h.

The fixed axis h and the fixed point e in this theorem
are called the rotation axis and the essential point respec-
tively. This theorem provides an exact insight into the physi-
cal interpretation of rigid motion constraints about distance,
angle, and projection information. It says that once a set
of points undergo a rigid motion, then their correspond-
ing RCs must satisfy the constraints represented by Equa-
tions 2, 3, and 4. If a pair of points do not satisfy any con-
straint represented by one of Equations 2, 3, and 4, then
they cannot represent a RC. From this theorem, we have
the following corollary:

Corollary 1 Both an arbitrary RC (p;p00) and its projec-
tion (p;p00) in the plane perpendicular to the rotation axis
h are equidistant to the essential point e:

jjp� ejj = jjp00
� ejj (5)

jjp� ejj = jjp00
� ejj (6)

Thus, the theorem and its resulting corollary have provided
a number of useful rigid motion constraints bridging the
points described in different coordinate frames before and
after a rigid motion. These constraints can be used to eval-
uate whether a point pair is really a correspondence or not
without a complete calibration of motion parameters as de-
scribed below.

3. THE NOVEL RCV-ICP ALGORITHM

In this Section a novel method to align two overlapping
range images is presented. The method is based on relative
gap constraints derived from the above geometric proper-
ties. The algorithm is called geometric ICP algorithm based
on reflected correspondence vectors (RCV-ICP). First, the
ICP criterion is used to find a set of possible correspon-
dences p0

i (i = 1; 2; � � � ; n1) for a set of transformed points
pi (i = 1; 2; � � �; n1). Motion properties represented by the
essential point e and the rotation axis h are then estimated
such that relative gaps relative to each possible correspon-
dence can be computed. The essential point e and the ro-
tation axis h whose direction is not important here can be
estimated by Equations 5 and 4, respectively, as:
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where (pi;p
00

i ) (i = 1; 2; 3) are three arbitrary possible
RCs. Equations 7 and 8 are linear equation groups which
can be robustly solved using the total least squares method
[2].

For a more accurate and efficient estimation of the ro-
tation axis h and the essential point e, the Monte Carlo
method is employed. Assuming that a subsample contains
m (m � 3) correspondences, the whole set of image data
are corrupted by false matches with probability �, and the
expected probability to obtain an accurate solution is P ,
then the number N (N � 1) of required subsamples can
be estimated as:

N =
log(1� P )

log(1 � (1� �)m)
+ 1

In the experiments described below, the following values
were used: let m = 4, � = 0:7, and P = 0:99, then



N = 567. For each subsample, Equations 8 and 7 are
used to estimate a candidate tohj and ej respectively where
j = 1; 2; � � � ; N . The calibrated rotation axis ĥ and es-
sential point ê are estimated by median filtering the corre-
sponding components of hj and ej. False matches are then
eliminated as follows:

1. Use Equations 6 and 2 to compute the relative gaps g1
and g2 relative to each possible RC:

g1i =
j jjpi � êjj � jjp00i � êjj j
max (jjpi � êjj; jjp00i � êjj)

g2i =
j jjpi � êjj � jjp00i � êjj j
max (jjpi � êjj; jjp00i � êjj)

where pi = (I � ĥĥT )pi , p00i = (I � ĥĥT )p00i , and
ê = (I� ĥĥT )ê .

2. Compute the mean � and standard deviation � of the
gaps g1 and g2:

�g1 =
1

n1

n1X
i=1

g1i; �g1 =

vuut 1

n1

n1X
k=1

(g1i � �g1)2

�g2 =
1

n1

n1X
i=1

g2i; �g2 =

vuut 1

n1

n1X
i=1

(g2i � �g2)2

3. Eliminate false matches: If jg1i � �g1j > � �g1 or
jg2i � �g2j > � �g2, then the possible correspondence
(pi;p

0

i) is regarded as a false match.

As a result of this procedure, a set of refined correspon-
dences is obtained. Finally, we adopted the quaternion
method as described in [1] for motion calibration based on
the refined correspondences. The above procedure can be
iterated and the criterion as described in [10] was adopted
for the algorithm to terminate.

4. EXPERIMENTAL RESULTS

We applied the RCV-ICP algorithm to the image data
P and P0 with the following initial values: q (0) =

(
p
99=10; 0:1; 0; 0)T , t(0) = �p0 � �p, � = 1:5, and maximum

iteration number M = 40 where �p and �p0 are the centroids
of the point sets P and P0. The experiments are based on
both synthetic and real image data.

First, 75 correspondences were created based on a para-
metric curve [10]. Then zero mean Gaussian noise with
standard deviation �1 = 0:03 was added to each coor-
dinate of these correspondences in one series of experi-
ments and �2 = 0:06 in another. Then two sets of im-
age data with appearing and disappearing points were set

Table 1. The average m and standard deviation � of relative
calibration errors in percentage of rotation axis ĥ, rotation angle
�̂, and translation vector t̂ and the number k of iterations using
synthetic points data.

Noise Error ĥ(%) �̂(%) t̂(%) k

�1 m 0.062 0.011 0.050 7.643
� 0.045 0.005 0.001 1.630

�2 m 0.128 0.022 0.101 7.286
� 0.088 0.009 0.003 1.385

Table 2. The calibrated rotation matrix R̂, rotation axis ĥ, rota-
tion angle �̂, and translation vector t̂ using bunny range images.

R̂ ĥ �̂ t̂

0.951 -0.153 0.269 -0.006 179.314
0.153 0.988 0.019 -0.869 18.021 13.478
-0.269 0.023 0.963 -0.494 -25.775

as P = fp1;p2; � � � ;p70g and P0 = fp06;p07; � � � ;p075g. The
experimental results are presented in Figure 1 and Table 1.

The bunny range images (Figure 2) used in this paper
were downloaded from a publicly available range image
database currently hosted by the Signal Analysis and Ma-
chine Perception Laboratory at Ohio State University. The
sizes of the first and second images were 200 � 200 and
200�200 which include 6870 and 6874 points, respectively.
The images were directly used for experiments without any
feature extraction and pre-processing and any knowledge
about the distribution of points, occlusion, appearance and
disappearance of points, and motion information. The ex-
perimental results are presented in Figure 3 and Table 2.
The algorithm converges at iteration 17, with average align-
ment error of 0.515593 and standard deviation of 0.567644.
Of 6870 points, the algorithm finds 5964 correspondences
in the second image. The time for alignment is 160.0 sec-
onds on a Pentium III, 500MHz, 128MB RAM, 4GB HD
computer.

For a clearer visualisation, 200 points were randomly se-
lected with uniform distribution within the first image to
show the evolution of alignment as depicted in Figure 3. At
iteration 1, these 200 points before and after a rigid motion
are relatively far apart in 3D space. But after alignment, 171
of them approximately superimpose with average alignment
error of 0.499636 and standard deviation of 0.476130.

An overall analysis of the experiments reveals that the
RCV-ICP algorithm is accurate, robust and efficient. The
experiments also show that the parameter �, the distribution
of points, and the percentage of appearing and disappearing
points included in the image data generally play a vital role
in accurate image alignment.
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Fig. 1. The plots show calibration errors in percentage for var-
ious rotation angles on the horizontal axis against on the ver-
tical axis: the rotation axis (top row), rotation angle (second),
translation vector (third), and the number of required iterations
(bottom).

Fig. 2. Two bunny range images from different viewpoints.

5. SUMMARY AND CONCLUSIONS

In this paper, a novel method for aligning two overlapping
range images has been presented. Comparing the RCV-ICP
algorithm with that described in [1], it has been shown that
RCV-ICP can deal with occlusion, appearance and disap-
pearance of points. Comparing the RCV-ICP algorithm with
that described in [10], it has been shown that RCV-ICP does
not require the user to initialise the maximum tolerance for
distance. Thus, it has been demonstrated by a number of ex-
periments based on both synthetic data and real images that
the RCV-ICP algorithm is accurate, robust, and efficient for
the alignment of two overlapping range images with small
motions. Further work involves the investigation of accu-
rate estimation of the parameters of interest from highly cor-
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Fig. 3. The evolution of alignment for the 200 randomly se-
lected points with uniform distribution from the first image.
Top: alignment at iteration 1; middle: alignment at iteration
8; bottom: after alignment.

rupted data by outliers. Research is under way and results
will be reported in the future.
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