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ABSTRACT

In this paper a novel transversal split filter configuration is
proposed and the split optimum Wiener filter is
introduced, as well as the symmetric and antisymmetric
linear phase Wiener filter. The approach consists of
combining the idea of split filtering with a linearly-
constrained optimization scheme. Then, the continuously
split procedure is introduced and the multi-split adaptive
filter is derived. It is also shown that such structure can be
viewed as a Hadamard-domain adaptive filter when the
number of coefficients is set to a power of two. Simulation
results obtained with the normalized LMS algorithm are
presented and compared with DCT-domain adaptive filter.

1. INTRODUCTION

In order to improve the convergence rate and reduce the
computational burden, the split adaptive filter has
emerged as an interesting solution. The fundamental
principles were introduced when Delsarte and Genin
proposed a split Levinson algorithm for real Toeplitz
matrices in [1]. By identifying the redundancy of
computing the set of the symmetric and antisymmetric
parts of the predictors, they reduced by half the number of
multiplications in the standard Levinson algorithm.
Subsequently, they extended the technique to classical
algorithms in linear prediction theory (Schur, lattice and
normalized lattice algorithms) [2].

An LMS adaptive split filter for AR modeling (linear
prediction) was proposed in [3] and generalized to a so-
called unified approach [4], by the introduction of the
continuously split and the corresponding application in a
general transversal filtering problem.

An alternative representation of the split FIR filtering
theory has been provided in [5], based on the linearly-
constrained optimization approach. It consists of imposing
the symmetry and the antisymmetry conditions to the
impulse responses of two filters connected in parallel, by
means of an appropriate set of linear constraints
implemented with the so-called GSC structure.

The present paper applies the continuously split
process in the novel approach proposed in [5], giving rise
to a multi-split adaptive filtering structure. Such scheme
differs from the work in [4] in two important aspects: i) as
far as the theoretical derivation is concerned, the proposed

GSC representation allows us to introduce the split
optimum Wiener filter, as well as its symmetric and
antisymmetric parts; and ii) the adaptive procedure is
more general, since it can be carried out for any number of
filter coefficients N. In the particular case of N=2M, where
M is assumed to be an integer, our solution can also be
implemented by a Hadamard (or Walsh) transform
scheme.

The paper is organized as follows. In the next section
the principles of the split transversal filter is recalled and
the linearly-constrained approach is presented together
with the GSC structure. The split Wiener filter and the
linear-phase Wiener filter are then introduced. Section 3
proceeds with the continuous split in the proposed
approach and states its connections with a transformed
structure using a Hadamard mapping of the input signal
when N=2M. The multi-split adaptive filter is considered in
Section 4, where the previous structure is updated with a
normalized LMS algorithm. Simulation results and some
comparisons with a DCT transformed adaptive filter are
provided in Section 5. Finally, Section 6 presents our
conclusions.

2. SPLIT TRANSVERSAL FILTERING

Let us consider the classical scheme of an adaptive
transversal filter as shown in Figure 1, in which the N-by-
1 tap-weight vector of the filter w(n)=[w0(n), ..., wN-1(n)]t

has been split into its symmetric and antisymmetric parts:
w(n) = ws(n) + wa(n),                        (1)

where ws(n) = ½ [w(n) + Jw(n)], wa(n) = ½ [w(n) – Jw(n)]
and J is the reflection matrix. Without loss of generality,
all the parameters have been assumed to be real valued.

Figure 1: Split adaptive transversal filtering.
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The symmetry and antisymmetry conditions of ws(n) and
wa(n) can be easily introduced through a linearly-
constrained approach as follows [5]. It consists of making:
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fs=fa=0K, for N even (K=N/2), and of imposing:
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in a constrained optimization process of the mean-square
value of the estimation error e(n), which is defined as the
difference between the desired response d(n) and the filter
output y(n).

Now, using the GSC structure with the symmetry and
antisymmetry constraints, the split filtering scheme in
Figure 1 turns into the form represented by Figure 2 (N
even). This simple structure arises from the fact that: i)
since fs=fa=0N/2, the filters of the GSC structure which
satisfy the symmetric and antisymmetric constraints are
equal to zero; and ii) one of the possible signal blocking
matrices of the symmetric part is the antisymmetry
constraint matrix Ca itself (Ca

tCs=0N/2xN/2), and vice versa
for the antisymmetric part.

Figure 2: GSC implementation of the split filter.

It is interesting to observe that the vectors w⊥s(n) and
w⊥a(n) are merely composed of the first N/2 coefficients of
ws(n) and wa(n). The pre-multiplication of w⊥s(n) by Ca

yields ws(n) and of w⊥a(n) by Cs yields wa(n). The
estimation error is then given by
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where x(n) = [x(n), ..., x(n-N+1)]t denotes the N-by-1 tap-
input vector. In the mean-squared-error sense, the vectors
w⊥s(n) and w⊥a(n) are chosen to minimize the following
cost function:
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where σd
2 is the variance of d(n), R is the N-by-N

correlation matrix of x(n), and p is the N-by-1 cross-
correlation vector between x(n) and d(n). Taking into
account that R is centrosymmetric, it is easy to show by
direct substitution of (3) (or (2) if N is odd) that the last
two terms in (6) fall to zero. In other words, y⊥s(n) and
y⊥a(n) are totally uncorrelated and, consequently, the
symmetric and antisymmetric parts can be optimized
separately. Thus, the optimum solution is given by

pCRCCw t
a

1
a

t
a

opt
s )( −

⊥ =  and pCRCCw t
s

1
s

t
s

opt
a )( −

⊥ = ,  (7)
and the scheme of Figure 2 corresponds to the split
Wiener filter:
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The filter opt
sw  is the true optimum linear phase Wiener

filter, having both constant group delay and constant
phase delay (symmetric impulse response). On the other

hand, the filter opt
aw  is a second type of optimum “linear

phase” Wiener filter (affine phase filter), having only the
constant group delay (antisymmetric impulse response).

3. MULTI-SPLIT AND HADAMARD TRANSFORM

For ease of presentation, let N=2M, where M is an integer
number greater than one. Now, if each branch in Figure 2
is considered separately, the transversal filters w⊥s(n) and
w⊥a(n) can also be split into their symmetric and
antisymmetric parts. By proceeding continuously with this
process and also splitting the resulting filters, we arrive,
after M steps with 2m-1 splitting operations (m=1, 2, …,
M), at the multi-split scheme shown in Figure 3. Csm and
Cam are 2M-m+1-by-2M-m matrices such as in (3) and w⊥i(n),
for i=0, 1, …, N-1, are the single parameters of the
resulting zero-order filters.

Figure 3: Multi-split adaptive filtering.
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The above multi-split scheme can be viewed as a linear
transformation of x(n) denoted by
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It can be verified by direct substitution that T is a matrix
of +1’s and –1’s, in which the inner product of any two
distinct columns is zero. However, at this stage, it is worth
pointing out that T does not transform the vector x(n) into
a corresponding input vector of uncorrelated variables.
This is true only between the N/2 first and last variables of
x⊥(n), as a consequence of the split process in step 1.
Therefore, the single parameters in Figure 3 cannot be
optimized separately by the mean-squared error criterion.

An interesting point to mention is that the columns of
T can be permuted which amounts to a re-arrangement of
the single-parameters in Figure 3 in different sequences.
Then, there are N! possible permutations. The remarkable
result is that one of them turns T into the N-order
Hadamard matrix HN, so that the multi-split scheme can
be represented in the compact form shown in Figure 4.

Figure 4: Hadamard transform of the input x(n).

4. MULTI-SPLIT ADAPTIVE FILTERING

In the adaptive context, due to its stochastic nature, the
LMS algorithm can be directly applied for updating the
single parameters, with no increase in the computational
complexity. Furthermore, it can be done in the normalized
form of Table I, as in the case of DCT-LMS algorithm [6].

The Hadamard matrix of order 2M can be constructed
from HM as follows:
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Starting with H1=[1], such expression provides H2 H4 H8,
and all Hadamard matrices the orders of which are powers
of two.

Table 1: MS-LMS algorithm.

Ø Selection of parameters:

N2

1
=µ  (step-size) and 0<γ <1 (forgetting factor)

Ø Initialization:

For i=0,1, …, N-1, set: w⊥i(0)=0 and ri(0)=0
Ø Updating:

For i=0,1, …, N-1 and n=1,2, …, compute:
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As regards the linear phase adaptive filtering, the input
samples for updating the N/2 single-parameters are given

by )()( t
a12s 1 nn M xCHx −=⊥ , for symmetric impulse

response constraint, or by )()( t
s12a 1 nn M xCHx −=⊥  for

antisymmetric impulse response constraint.
It is important to stress that the use of the Hadamard

transform is conditioned to N=2M. Otherwise, T is not
composed only of +1’s and –1’s. Nevertheless, the
representation of the multi-split filtering in Figure 4 holds
with T instead of H, which requires a number of
multiplication operations proportional to N.

It is also worth pointing out that all split and multi-
split transversal filtering theory developed above can be
applied in linear prediction making d(n)=x(n) or
d(n)=x(n-N).

Finally, the procedure can be extended to complex
parameters by considering, from (1), that the reflection
matrix J also operates the complex conjugation.
Furthermore, the operations of transposition in the
corresponding equations may be substituted by Hermitian
transpositions.

5. SIMULATION RESULTS

To evaluate the performance of the multi-split (MS)-LMS
algorithm, the same adaptive equalization system in [6,
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chap.9] (Figure 5) is used. The input channel x(n) is
binary, with b(n)=±1, and the impulse response of the
channel is described by the raised cosine:
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where S controls the eigenvalue spread χ(R) of the
correlation matrix of the tap inputs in the equalizer, with
χ(R)=6.0782 for S= 2.9 and χ(R)=46.8216 for S= 3.5. The
sequence v(n) is an additive white noise that corrupts the

channel output with variance 001.02 =vσ , and the
equalizer has N=11 coefficients.

Figure 5: Adaptive equalizer for simulation.

Figure 6 show a comparison of the ensemble-averaged
error performances of the DCT-LMS, MS-LMS, standard
LMS and RLS algorithms for χ(R)=6.0782 and
χ(R)=46.8216. The good performance of the MS-LMS
algorithm can be observed in terms of convergence rate,
compared with the standard LMS algorithm. Furthermore,
it can be observed that the MS-LMS algorithm is
somewhat sensitive to variations in the eigenvalue spread
(more than the DCT tranform). This shows clearly that the
multi-split approach does not orthoganalize the input data
vector. Nevertheless, its simplicity justifies its application,
rather than that of the DCT transform.

6. CONCLUSIONS

It has been shown that the split transversal filtering is an
exact solution of a linearly-constrained optimization
problem and can be implemented by means of a parallel
GSC structure. Thus, the split Wiener filter can be
introduced together with its symmetric and antisymmetric
linear phase parts. Based on this result, the multi-split
adaptive filter is proposed as an alternative technique for
improving the convergence rate and reducing the
computational burden. The novel approach is generic
since it can be used for any value of filter order N, for
complex and real parameters and can be extended to the
linear prediction case. For a power of two value of N this
proposition corresponds to a Hadamard transform domain
adaptive filter. Simulation results illustrate its good
performance when compared with a similar scheme based
on DCT when the normalized LMS algorithm is employed
in both cases.

Figure 6: Learning curves.
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