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ABSTRACT

This paper investigates the problem of inserting an addi-
tional hidden variable into a standard HMM. It is shown
that this can be done by introducing a continuous feature
which is used to calculate the probability of observing the
different states of the hidden variable. The posteriors are
modelled by softmax functions with polynomial exponents
and an efficient method is developed for reestimating their
parameters. After analysing a two dimensional reestimation
example on artificial data, the proposed HMM is evaluated
on the 1997 Broadcast News task with a particular focus
on spontaneous speech. To derive a good indicator vari-
able for this purpose, classification experiments are carried
out on fast and slow classes of phones on the 1997 Broad-
cast News training data. Finally, recognition experiments on
the test set of this task show that the proposed model gives
an improvement over a standard HMM with a comparable
number of parameters.

1. INTRODUCTION

Most HMM-based speech recognition systems use hidden
states to model exclusively segments of phones. This ig-
nores the fact that there are many other hidden states which
influence the performance of a speech recogniser. Such
states are, for instance, the current speaker, the acoustic
background condition and the dynamics of speech like speak-
ing rate. This paper describes a method of incorporating
such hidden states into a standard HMM by introducing
continuous posterior probability functions for a finite set of
discrete hidden variables. The model discussed in this pa-
per is a special case of the general framework developed in
[1]. In contrast to [1], however, this paper makes use of
softmax functions with polynomial exponents as posteriors
and derives an efficient algorithm for the reestimation of the
softmax parameters.
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2. POSTERIOR PROBABILITIES OF HIDDEN
STATESINSIDE A STANDARD HMM

In the following discussion d stands for a continuous feature
which is used to calculate the posterior probability p(v|d)
of observing a discrete hidden variable v and o is a fea-
ture vector whose statistics are modelled by the output pdf’s
of the hidden states s of the HMM. One might think of o
as a standard feature as used in most speech recognisers
(PLP,MFCC, ... ) and d as a feature which contains some
additional information about the hidden variable v. For ex-
ample, d should be a good measure of speaking rate if v is
meant to be related to this hidden variable. Such measures
have been discussed in [2] and [3]. In order to make use of
the additional information contained in d and v the output
probability for state s is altered as follows

b(o,d,v|s) = b(o|v, s)p(v|d, s)b(d|s) 1)

Here b(o|v, s) is the output pdf of feature o given states s
and v, p(v|d, s) is the posterior probability of observing v
given feature d and state s and b(d|s) is the output pdf of
feature d and state s. Since v indicates which output pdf
for feature o should be chosen for a given state s, v will
be called an indicator variable. The posterior probabilities
p(v|d, s) are modelled by softmax functions S, s which are
defined as follows
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Here K is the number of hidden states of v and the g, are
polynomials, i.e.
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where [ can be a multi-index if d has dimension greater than
one.



2.1. Reestimation

The parameters of the model introduced in (1) can be rees-
timated with the EM algorithm. The auxiliary function for
this model is given by

Q(\,X) =Y Lx(0,D,5,7)log L5 (0, D, 5,3)  (4)

where
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To simplify the notation, the following abbreviations are in-
troduced

’)’t(i, k) = L(O,D, St = i,’Ut = k) (6)
’Yt(kl’b) = L(O,D,’Ut = k'St = ’L) (7)
() = L(O,D,s =1) (8)

Note that these values can be efficiently calculated with the
forward-backward algorithm. Now, omitting the term for
the transition probabilities, (4) can be rewritten as
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where I is the number of hidden states s. This shows that
the parameters of the output pdf’s b(o|v, s) and b(d|s) can
be reestimated in the usual way. To reestimate the parame-
ters of the polynomial gy, ; the following equation has to be
satisfied
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This means that the moments up to order L of the error of
the approximation to the true posterior +;(k|:) by the soft-
max function Sy ; weighted by the state likelihood v, (7)
have to vanish. Although this is not an explicit reestima-
tion formula, the parameters of .Sj, ; can be reestimated ef-
ficiently from (10) by using Newton’s method with a line
search and backtracking algorithm. Equation (10) is a nec-
essary but not sufficient condition for the maximisation of
the auxiliary function. In order to ensure that the estimated
parameters are associated with a local maximum the sec-
ond order derivative of the auxiliary function at this point

has to be a negative definite matrix. This holds true because
in the case of softmax functions with polynomial and more
general exponents the error surface can be shown to be con-
cave [4]. Figures 1 and 2 give an example of a softmax pa-
rameter reestimation in two dimensions for a two-posterior
problem. The feature d is located in a plane and v can have
two different values. The state likelihood in this example
was assumed to be uniform over the training region. Fig-
ure 1 shows one of the two true posterior probabilities (they
both sum to one at each point in the d plane) and the initial
guess for the approximating softmax function. The polyno-
mial of degree 4 for the initial guess was chosen randomly
to be ¢(d1,d2) = di + d2. The number of parameters that
had to be reestimated in this case were therefore 15. Figure
2 shows different stages of the reestimation procedure. As
can be seen the approximating softmax function converges
to the proper solution. The fact that the softmax functions
were initialised with a random polynomial illustrates the in-
sensitivity of the reestimation procedure to bad initialisa-
tion. This robust behaviour of the reestimation algorithm
was observed throughout the experiments.
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Fig. 1. Input posterior and initial guess in two dimensions.
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Fig. 2. Sequence of approximations to posterior probability
in two dimensions.



2.2. Recognition

The models in (1) can be used for recognition in several
different ways. Firstly, one can take the sum over the hidden
variables v and therefore obtain

K
b(o,d|s) = Eb(o,s,v = k|s) (11)
k=1

In this case, the only states in the model are the s-states,
and the v-states are integrated out. Alternatively, one can
expand the topology of the model to distinguish between
different v-states as well. Figures 3 and 4 show two differ-
ent ways of expanding a 5 state left-to-right HMM with two
v-states. The S and E nodes in these figures are the non-
emitting start and exit nodes. For the other nodes the first
number refers to the s state and the second number refers to
the v state. Therefore, figure 3 shows an HMM which has
transitions from each (4, k) node to each other (j,1) node
for which the transition probability a; ; is not zero. Figure
4, on the other hand, shows an HMM topology where tran-
sitions between different v-states have been removed. The
reason why one would want to consider such a model is that
the v-states might be expected to vary much slower than the
s-states. This is, for instance, the case for hidden states as-
sociated with speaking rates which are usually not measured
for each s-state separately and are defined on more macro-
scopic levels such as phones, words or utterances. Each
of these three models was tested in the recognition experi-
ments described in section 4.

Fig. 3. Expanded 5 state left-to-right HMM with full topol-
ogy

3. FEATURESAND INDICATOR VARIABLES

As mentioned in section 2 the feature d has to be a measure
that distinguishes well between the hidden states of v. In or-
der to obtain a model with a tractable number of parameters,
however, the dimensionality of d has to be small. Since the
feature d in this paper was directly derived from the feature
vector o the aim was therefore to find a good dimensional-
ity reduction of o that still contained most of the relevant
information about the indicator variable v. As the main in-
terest in the recognition experiments discussed in section 4
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Fig. 4. Expanded 5 state left-to-right HMM with parallel
topology

full static
slow fast slow fast
dow | 16915 | 4184 | 14962 | 6137
fast 5615 | 16388 | 8168 | 13835
1st derivative 2nd derivative
dow fast slow fast
dow | 15588 | 5511 | 16362 | 4737
fast 8764 | 13239 | 5675 | 16328

Table 1. Classification results for phone “eh”.

was to develop a system that performed well on spontaneous
speech, the quality of the feature d had to be evaluated on
hidden states that were associated with different hidden dy-
namics. For this purpose each phone in the training data
of the 1997 Broadcast News task was labelled as fast or
slow depending on whether its duration was above or below
a phone dependent threshold. The duration of the phones
were determined by a forced alignment on the manual tran-
scriptions of the training data. The statistics of feature d
were determined on both the slow and fast instances of a
phone and were subsequently used to classify the phones
according to a MAP criterion. Table 1 shows the results of
classification experiments that were carried out for phone
“eh” on parts of the 39 dimensional feature vector. The fea-
ture vectors in these experiments consisted of 13 PLP fea-
tures and first and second order derivatives. The columns
in table 1 give the number of phones that were classified as
fast or slow and the rows show which of the phones were
truly fast or slow. As can be seen from table 1, using the
full 39 dimensional feature vector gives a classifier with an
error rate of 22.7 %, using only the static components re-
sults in an error rate of 33.2 %, and for the first and second
order derivatives the error rates of the classifiers are 33.1 %
and 24.2 %, respectively. This shows that the PLP features
themselves are reasonable features for determining a speak-
ing rate indicator variable and that the full feature vector can
be reduced to the second order derivative with an increase
in error rate by only 1.4 %. To decrease the dimensionality
of d even further, the squared Euclidean norm of the sec-
ond order derivatives was investigated. For this feature the
corresponding classifier gave an error rate of 28.7 %. This
was felt to be a reasonable performance and this feature was



therefore used in the recognition experiments in section 4.
4. RECOGNITION EXPERIMENTS

The following recognition experiments were conducted on
the 1997 Broadcast News task [5] by rescoring tri-gram lat-
tices. This task consists of 72 hours of training data and 3
hours of test data. The feature vectors had 39 dimensions
and consisted of 13 PLP coefficients and first and second
order derivatives. The squared Euclidean length of the sec-
ond order derivatives was used for feature d. Their output
pdf’s were modelled by Gamma densities as described in
[3]. There are two different base line systems with 12 and
24 Gaussian mixtures, respectively. The 24 mixture system
was created from the 12 mixture system by a conventional
mixture splitting procedure that was applied iteratively to
increase the number of mixtures by two at a time. The mod-
els introduced in this paper were initialised in two different
ways. Firstly, each HMM in the 12 mixture model set was
duplicated to give a slow and a fast instance of the model.
These models were then trained on the training data which
were relabelled with fast and slow tags for each triphone
as described in section 3. The fast and slow instances of
the HMM were then combined into a single HMM and the
output pdf’s of d and the posterior probabilities were added.
Six reestimation iterations were performed on all the param-
eters of this model. For the second method of initialisation
the output pdf’s of d were added to the original HMM. The
parameters of the resulting model were trained and subse-
quently the posterior probabilities were prescribed to inter-
sect at the median of the trained pdf’s of feature d. This
method ensured that the training sets for the two states of
the indicator variable had the same size. Both initialisa-
tion methods gave a model set with a number of parame-
ters that is comparable to the 24 mixture baseline model.
Table 2 shows the results of the recognition experiments
on average and for the different F-conditions of the 1997
Broadcast News task [5]. As can be seen the models that
were trained initially on the relabelled training data per-
formed worse than the models that were initialised by split-
ting the indicator variable at the median of the pdf of fea-
ture d. This is due to the fact that by splitting phones into
fast and slow instances by a duration criterion the size of
the two classes can sometimes be rather different. As a re-
sult one of the posteriors that were trained for these HMM’s
was sometimes almost identically one while the other was
almost identically zero. Consequently, some of the output
pdf’s for the PLP features were unreliable. The results in ta-
ble 2 show that the full HMM topology as described in fig-
ure 3 and the standard HMM topology with the v states in-
tegrated out gave the same performance. The parallel topol-
ogy described in figure 4 had an error rate that was worse
than the 12 mixture baseline. The reason for the bad perfor-
mance of this model might be the result of the small num-

ber of v-states which prevents smooth transitions between
them. Finally, table 2 shows that the first two models that
were trained with the median split method give a small im-
provement over the 24 mixture baseline.

avg.| FO| F1 | F2 | F3 | F4 | F5 | FX
12mix base | 21.8{12.4|20.5|31.5(31.5|24.3|27.5| 43.9
24mix base|21.3|12.2]20.3|29.9|32.0|24.4|25.7| 41.7

relabelled training data
sum 21.41125(20.1{30.2(31.2{24.7|25.1| 42.2
full 21.41125|20.1{30.6(31.0|24.6(24.8|42.4
par 22.7(131(21.7|324|32.7|25.2|27.4|45.1
median split

sum 21.0(12.2|119.9{29.5(31.4({24.1|25.9|41.1
full 21.0(12.2|19.9|29.6|31.5(23.8(25.9|41.2
par 22.6(13.2|21.0{32.4(325(26.1(28.1|44.1

Table 2. Recognition experiments on the 1997 Broadcast
News task

5. CONCLUSIONSAND FURTHER WORK

This paper has described a method of including information
about hidden states into a standard HMM using continuous
posteriors that are modelled by softmax functions. As an
example of the use of this technique, speaking rate was in-
troduced in a large vocabulary speech recognition system
using a binary hidden variable. Different topologies of the
model were evaluated on the 1997 Broadcast News task and
some small improvements were obtained. Future work will
include the use of indicator variables other than the one
discussed here and application to the modelling of hidden
states other than speaking rate.
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