
CONFIGURABLE VARIABLE LENGTH CODE FOR VIDEO CODING
Ngai-Man Cheung and Yuji Itoh

E-mail: cheung@ti.com, yitoh@ti.com

Tsukuba Research & Development Center, Texas Instruments Japan Ltd.

ABSTRACT

The variable length code (VLC) tables in the MPEG-1/2/4 and
H.263 are fixed and optimized for a limited range of bit-rates, and
they cannot handle a variety of applications. The universal
variable length code (UVLC) is a new scheme to encode syntax
elements and has some configurable capabilities. It is also being
considered in the ITU-T H.26L. However, the configurable
feature of the UVLC has not been well explored. In this paper we
propose configuring the UVLC with the additional code
configuration (ACC). The ACC is used to adapt UVLC to
different symbol distributions by adjusting the partitioning of the
symbols into different categories, and the code size assignment to
different categories. Experimental results show that the UVLC
with ACC outperforms the current proposed scheme in H.26L and
the VLC tables of existing standards, while drastically simplifying
the encoding and decoding process, and is applicable to a variety
of applications.

1. INTRODUCTION

The variable length coding is a statistical coding technique that
assigns symbols to code words based on the occurrence frequency
of the symbols. Symbols that occur more frequently are assigned
short code words while those that occur less frequently are
assigned long code words. Compression is achieved by the fact
that overall the more frequent shorter code words dominate. The
variable length code (VLC) tables in MPEG-1/2/4 and H.263 are
fixed and optimized for a limited range of bit-rates, and they
cannot handle a variety of applications. For example, in the
MPEG-2, the VLC tables for DCT coefficients are designed for
broadcast quality video applications, and they cannot readily
handle low bit-rate applications. Therefore, it is desirable to have
a type of configurable VLC that can handle a wide range of
applications and coding conditions. The universal variable length
code (UVLC) was proposed in [1] as a new scheme to encode
syntax elements and offers such advantage. The UVLC tables are
constructed by a dozen of coarse codes and additional codes.
The UVLC can handle a wide range of applications and different
syntax elements by changing the construction rules. Figure 1
depicts the UVLC for DCT coefficients coding. The UVLC also
drastically simplifies the encoding and decoding process.
Furthermore, a look-up table is not essential for either the encoder
or decoder. With these advantages, the UVLC is being
considered in the ITU-T H.26L [2] to code all the syntax
elements, and will potentially become an important technique in
video coding. Details about UVLC can be found in [1].

Although the UVLC can be adapted to handle a variety of
applications and coding conditions, the configurable feature has
not been well explored. In [3], we presented some works using

the code length of the end of block to adapt the UVLC to different
bit-rate applications. In [4] the Dynamic Symbol Reordering
(DSR) method was proposed to automatically re-configure the
UVLC. The DSR uses the probability of each symbol to construct
a mapping table that re-orders the assignments of symbols to code
words. The method is suitable for coding syntax elements which
have only a few different symbols, e.g. the macroblock type in
H.26L, which has only 9 different symbols. It is not practical for
syntax elements like transform coefficients or motion vectors,
which consist of a lot of different symbols. Since the transform
coefficients and motion vectors make up a significant portion of
the total encoded bits, it is foremost important to be able to
encode these syntax elements optimally in different types of
applications.

In this paper we propose configuring UVLC with the additional
code configuration. The method is applicable to code the syntax
elements with many different symbols like the transform
coefficients and motion vectors. Section 2 of this paper describes
the method. The additional code configuration is used to tune the
UVLC to different symbol rates and symbol types. The additional
code configuration can be determined on the fly during video
encoding, or off-line during training of code tables. Section 3
presents the experimental results, and shows that the method can
achieve very good coding efficiency while drastically simplifying
the encoding and decoding process, and is widely applicable.
Finally, we conclude the work in Section 4.

2. CONFIGURABLE VARIABLE LENGTH CODE

In this section we describe configuring UVLC using the
additional code configuration. As shown in Figure 1, the
universal variable length coding divides the symbol into different
categories, and assigns different coarse code to each category.
Within a category, the additional code identifies individual
symbol. The length of the end of block (EOB) can be used to
adjust the UVLC tables for different bit-rates applications. For
example, it is found that for the luminance level symbols, we
should set EOB length=2 for inter picture and EOB length=3 for
intra picture, since intra picture has more symbols per block and
EOB happens relatively less often. In [3], the code sizes of the
additional codes are fixed for all bit-rates.

Suppose we try to divide the symbols into L categories. The
additional code configuration, ACC, is a one-dimensional array of
L integers, [rk : k=0 to L-1], where rk is the code size of the
additional code for the kth category. For example, the ACC for
the runs in Figure 1 is [0,0,1,2,3,4,5]. Instead of having a fixed
ACC, we propose to have several different ACCs for different bit-
rates and symbol types.

Figure 1. The UVLC for DCT coefficient coding.

The coding performance of the UVLC can be improved with ACC
as follows. First of all, the universal variable length coding
should try to optimally divide the symbols into different
categories. As the symbols within a category have the same code
size, they should have similar occurrence probabilities, 2(-code size),
for optimal performance. In other words, the universal variable
length coding should try to partition the symbols such that
symbols within a category have similar occurrence probabilities.
Since the symbol distributions at different bit-rates may be quite
different, and the same symbol may have quite different
occurrence probabilities across different bit-rates, so a fixed
partition will not work optimally for all bit-rates. Using ACC we
can adjust the partition of symbols to fit different symbol
distributions. Let integer j, MIN_J, MAX_J denote the value, the
minimum and the maximum of the symbols respectively, i.e.,
MIN_JFjFMAX_J, and t0, t1, …, tL-1 denote the boundary values
of the categories. The kth category is [tk, tk+1-1]. The range of

each category is k r2 , and the boundary values are expressed as

k r
kk t t 21 +=+ (1)

JMINt _0 = (2)

110 222 k-rrr
k MIN_J t +…+++= (3)

Also we have

))) (

MIN_J (MAX_J ceil(r

Lrrr

L

1222

log

210

21

++…++

−−=
−

−
(4)

So we can use the ACC, [rk], to adjust the boundary values tk, and
hence the way we partition the symbols, according to the symbol
distributions.

Moreover, the universal variable length coding should try to
assign optimal code size to each category. If the average

occurrence probability of the symbols in the kth category is pk,
then the code size of symbols in that category should be –log2(pk)
for optimal performance. As the occurrence probabilities of
symbols may be different for different bit-rates, we should adjust
the code sizes correspondingly, instead of having fixed code sizes
for all bit-rates. Let ck, csk be the coarse code size and the code
size of the kth category respectively. As rk is the code size of the
additional code, we have

kkk r c cs += (5)

We assign short coarse codes to small symbols, which appear
more frequently in general. Let ck=k+1, then

1++= kr cs kk (6)

For optimal code size assignment, the ACC, [rk], and pk is related
by

)1(log2 ++−= kpr kk (7)

The above issues are not independent, since how we assign the
code sizes to the categories will affect the way we partition the
symbols. This makes the problem of determining the optimal
ACC difficult. In this paper we determine the ACC by examining
the symbol distributions. Let Nj be the number of occurrences of
the symbol j. The total bits used to encode the symbols, B, is

∑ ∑
−

=

−

=

+

×=
1

0

11

)(
L

k

t

tj

jk

k

k

NcsB (8)

An optimal ACC should minimize B.

Figure 2 shows the UVLC with ACC. The proposed coding
scheme has a very regular structure, and requires very simple
encoding and decoding process. The coding scheme can assume
different probability distributions and be instantiated to several
popular coding schemes. For example, when [rk] =
[0,1,2,3,4,…,k,…,L-1], then it resembles the Elias Gamma code,
which is suitable for proportionally decreasing symbol
distributions. When [rk] = [1,1,1,1,…,1], then it resembles the
Golomb codes G(2). In general, for any integer ψV0, when [rk] =
[ψ,ψ,ψ,…,ψ], then the UVLC resembles Golomb codes G(2ψ).
Figure 3 shows several examples.

codeword:

kth

coarse
code

additional
code

code size: value:

category: 00…01 xrk-1…x1x0 k+1+rk [tk,tk+1-1]

number of
bits:

Figure 2. The UVLC with ACC.

level_vlc code
size

absolute value of level

1 s 2 1
01 2 EOB

001 x0s 5 “x0”+2 (2:3)
0001 x1x0s 7 “x1x0”+4 (4:7)

00001 x2x1x0s 9 “x2x1x0”+8 (8:15)
000001 x3x2x1x0s 11 “x3x2x1x0”+16 (16:31)

0000001 x4x3x2x1x0s 13 “x4x3x2x1x0”+32 (32:63)
00000001 x5x4x3x2x1x0s 15 “x5x4x3x2x1x0”+64(64:127)

‘s’ denotes the sign of level. ‘0’ for positive and ‘1’ for negative

coarse code additional code

UVLC table for level configured with EOB (end of
block) length = 2.

value of run

code

EOB run_vlc

code

level_vlc

run_vlc code
size

1 1 0
01 2 1

001 x0 4 “x0”+2 (2:3)
0001 x1x0 6 “x1x0”+4 (4:7)

00001 x2x1x0 8 “x2x1x0”+8 (8:15)
000001 x3x2x1x0 10 “x3x2x1x0”+16 (16:31)

0000001 x4x3x2x1x0 12 “x4x3x2x1x0”+32 (32:63)

coarse code additional code

k+1 rk

(a) Additional Code Configuration:

ACC: [rk] rkV0 k:0 to L-1

(b) Regular Codeword Structure:

k r
kk t tJMINt 2;_ 10 +== +

Figure 3. The UVLC with ACC can assume different
probability distributions and be instantiated to several popular
coding schemes.

The value of L can vary from 1 to the number of different values
of symbols. For example, L can vary from 1 to 64 for run.
Consider the two extreme cases. When L=1,

∑ ×=
j

jNcsB 0 (9)

where cs0=6 by Equations (4) and (5), and we do not need a
coarse code. This is not optimal, as we should assign shorter
codes (instead of csk=6) to the small runs, which occur more
frequently in general. When L=64,

∑ ×+=
j

jNjB)1((10)

as we need different coarse codes for each symbol. This is also
not optimal, as the long code words for large runs (can up to 64)
will significantly increase B. In the experiment we choose some
values of L that are good compromise between the above issues.

3. EXPERIMENTS

In this section we presented the comparison results between the
proposed coding scheme and the entropy coding scheme in H.26L
TML-4 [2], and the VLC tables in MPEG-1/2.

The current test model in H.26L uses an entropy coding scheme
based on the UVLC. A single code structure is used to code all
syntax elements. The codewords are constructed by interleaving
fixed-length codes (FLC) into symmetric variable length code [2].
The codewords are numbered from 0 and upwards. For each type
of syntax element, table is used to map each symbol into the
codeword number. It is found that while the coding performance
of the current scheme at middle range quantization scales (QP) is
very competitive, there is still room for improvement at low and
high QP, in particular for the transform coefficients corresponding
to the TCOEFF_Luma_SimpleScan syntax element, which makes
up a significant portion of the total encoded bits [5].

We performed some simulations using the UVLC with ACC to
code the TCOEFF_Luma_SimpleScan syntax element, using the
Telenor software TML4.3. We did not change the mapping from
symbol to codeword number, but only the codeword itself. Figure
4 shows the results for the ‘foreman’ sequence (QCIF 10fps) and
the ‘mobile’ sequence (CIF 30fps). The redundancy is calculated
by dividing the total number of bits by the total number of
symbols. The improvement is calculated by the formula

%100
 UVLCH.26Lby used Bits

ACC with by UVLC used Bits - UVLCH.26Lby used Bits

tImprovemen

×

=

We used different ACCs for different QP determined by
examining the symbol distributions, and the same ACC
throughout the sequence. The number of categories L was set to
10. As shown in the figure, the UVLC with ACC outperforms the
current H.26L UVLC in every QP, and by as much as 12.77% in
some case. It is expected that we can further improve the results
by changing the ACC throughout the sequence.

Figure 4. Comparing the UVLC with ACC to the H.26L
UVLC.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15

codeword

p
ro

b
ab

ili
ty

ACC=[0,1,2,…]

Elias Gamma

ACC=[1,1,1,…]

Golomb code G(2)
ACC=[3,3,3,…]

Golomb code G(8)

1.5
2

2.5

1 5 9 13 17 21 25 29

3
3.5

4
4.5

5
5.5

UVLC with ACC

entropy

H.26L UVLC

0

5

10

15

1 5 9 13 17 21 25 29

QP

2.5

3

3.5

4

4.5

5

5.5

6

1 5 9 13 17 21 25 29

QP

entropy

H.26L UVLC

UVLC with ACC

(a) foreman (QCIF 10fps)

(b) mobile (CIF 30fps)

(c) Improvement

mobile

foreman

QP

redundancy

redundancy

Improvement (%)

To investigate how the UVLC with ACC can outperform the
H.26L UVLC, we examine the probability distributions of the
UVLC with ACC, H.26L UVLC, and the distribution of symbols.
The results are shown in Figure 5. As shown in Figure 5(a), the
UVLC with ACC can effectively match the symbol distribution,
especially at the region with small codewords, thanks to the
improved flexibility in symbol partition and code size assignment.
Also the UVLC with ACC can readily adapt to a different symbol
distribution as shown in Figure 5(b), which has a much lower bit-
rate.

Figure 5. Probability distributions of the H.26L UVLC,
UVLC with ACC, and symbols, at different bit-rates.

We also compared the UVLC with ACC to the VLC tables in
MPEG-1/2 [6]. We compared the bits used in coding DCT
coefficients. For the UVLC with ACC, we used the symbol-to-
codeword mappings similar to Figure 1, i.e., the runs and levels
are coded separately. Figure 6 shows the improvement. As
shown in the figure the UVLC with ACC outperforms the MPEG-
1/2 VLC in every case when coding DCT coefficients, and by as
much as 6.77% in some case. Also the UVLC with ACC
outperforms the one with only EOB length configuration as in [3].

4. CONCLUSIONS

We have proposed a configurable variable length coding scheme
based on adjusting the UVLC with ACC. The ACC is used to
adapt the UVLC to different symbol distributions by adjusting the
partitioning of the symbols into different categories, and the code
size assignment to different categories. The method is applicable
to code the syntax elements with a lot of different symbols like the
transform coefficients and motion vectors. We have presented the
experimental results and showed that the method consistently
outperforms the entropy scheme in H.26L TML-4 [2], and the
VLC tables in MPEG-1/2, and by as much as 12.77% in some
case. The UVLC with ACC can achieve very good coding
efficiency while drastically simplifies the encoding and decoding

process, and is applicable to a variety of applications. With these
advantages it will be very useful for video coding.

Figure 6. Comparing UVLC with ACC to the VLC tables in
MPEG-1/2.

5. REFERENCES

[1] Yuji Itoh, “Bi-directional motion vector coding using
universal VLC,” Signal Processing: Image
Communication, Vol. 14, pp. 541-557, May 1999.

[2] G. Bjontegaard, “H.26L Test Model Long Term Number 4
(TML-4),” ITU-T Q.15/16, Doc. #Q15-J72, June 2000.

[3] Yuji Itoh and N.-M. Cheung, “Universal variable length
code for DCT coding,” in Proc. IEEE Int. Conf. Image
Processing (ICIP), Vancouver, Canada, Sept. 10-13, 2000.

[4] K.-Y. Yoo, B.-S. Choi and Y.-Y. Lee, “Improvements to
the Telenor proposal for H.26L: Preliminary results on
Dynamic Symbol Reordering (DSR) method for Universal
VLC encoding/decoding,” ITU-T Q.15/16, Doc. #Q15-H19,
August, 1999.

[5] Louis Kerofsky, “Entropy coding of transform coefficients,”
ITU-T Q.15/16, Doc. #Q15-K45, August 2000.

[6] ISO/IEC 13818-2, “Generic coding of moving pictures and
associated audio information – Part 2: Video,” November
1994.

-1

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

0

1

2

3

4

5

6

7

0 2 4 6 8 10

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2

UVLC with ACC

UVLC with EOB length configuration

UVLC with ACC

UVLC with EOB length configuration

UVLC with ACC

UVLC with EOB length configuration

(b) MPEG-2 ‘football’ (150 frames; 704×480; 2.5Mbps – 8.5Mbps)

(c) MPEG-1 ‘foreman’ (300 frames; 352×288; 0.5Mbps – 1.9Mbps)

(a) MPEG-2 ‘flower’ (150 frames; 704×480; 8Mbps – 20Mbps)

0

0.1
0.2

0.3
0.4

0.5
0.6

1 4 7 10 13 16 19 22 25 28 31 34

(b) mobile (CIF, 30fps; QP=25; 592 kbps)

0
0 .1
0 .2
0 .3
0 .4
0 .5
0 .6

1 6 11 16 21 26 31 36
H.26L UVLC

symbol distribution
 UVLC with ACC

symbol distribution

 UVLC with ACC, H.26L UVLC overlapped

codeword

codeword

probability

probability

(a) mobile (CIF, 30fps; QP=5; 7.7 Mbps)

Improvements (%)

Bit Rate (Mbps)

Bit Rate (Mbps)

Bit Rate (Mbps)

