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ABSTRACT

An anisotropic diffusion filter contoled by fuzzy rules is
presented. The proposed filter is based in the Perona-Malik
technique, using a fuzzy reasoning to calculate de diffusion
coefficient which controls the whole diffusion. The method
has the advantage that it can be used for both smoothing
and noise cleaning, as well as edge enhancement. This
new aproach also allows ut to model the diffusion process
through a rule base to have a better performance. Some
examples are given to ilustrate the effectiveness of the pro-
posed technique.

1. INTRODUCTION

Speckle is the term used for granular patterns that appears
on some types of images, as, for example, ultrasonic im-
ages, due to the mottling, and it can be considered as a kind
of multiplicative noise. Speckle degrades the quality of the
image, and hence it reduces the ability of human observer
to discriminate fine details, and it also makes further image
processing more dificult. Ordinary filters, such as linear fil-
ters or median filters, do not work well for edge preserving
smoothing of images corrupted with noise.

Perona and Malik [1] developed a multiscale smooth-
ing and edge enhancement scheme which has proved to be
a powerful tool for noise cleaning. Their anisotropic diffu-
sion filtering method is mathematically formulated as a heat
diffusion process, which smoothes region interiors, but not
their interfaces. This work was further developed in [2, 3].

The main problem with anisotropic diffusion algorithms
is that they need a large amount of iterations to reach its
steady state. This means much time consumption and an
important influence of border effects. In addition, in a very
noisy enviroment, the resulting image after a large amount
of iterations has not a real appearance. Consequently sev-
eral proposals have appeared as feasible options to anisotro-
pic diffusion [4, 5, 6].

In the present paper we introduce a new type of edge-
preserving smoothing filter controlled by fuzzy rules. This
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proposed filter is based on Gerig’s anisotropic filter [2, 1].
Our improved method is based on calculating thediffusion
coefficient by a fuzzy inference, instead of by a decreasing
function of the gradient, which allows us to have a more
detailed control over the diffusion process.

2. ANISOTROPIC FILTERING

The basic idea of anisotropic diffusion filtering is that smooth-
ing and edge enhancement can be modelled as a diffusion
process in wich a flow exists between adjacents cells con-
taining substances such as gases or fluids. A diffusion pro-
cess of the type needed for our problem can be described by
a partial differential equation of the form:

@I(~x; t)

@t
= div(c(~x; t)rI(x; y; t)) (1)

wherediv denotes thedivergence operator andr denotes
the gradient. The functionc(~x; t) is called thediffusion co-
efficient. In conjuntion with the gradient it describes the
flow between cells:

� = c(~x; t)rI(~x; t) (2)

This coefficent is defined as a monotonically decreas-
ing function of the gradient magnitude, so that the flow in-
creases within homogeneus regions where the gradient is
small. Several functions has been proposed ([3, 2]).

In 2-D case (for simplicity) we can approximate equa-
tion 1 and write

I(x; y; t+�t)� I(x; y; t) + �t
@I(x; y; t)

@t
(3)

� It +�t(�E ��W +�N � �S) (4)

where�E , �W , �N and�S are the local flow contribu-
tions.

3. FUZZY CONTROLLED ANISOTROPIC
DIFFUSION FILTER

Fuzzy rules allow us to process directives described in terms
of human-like reasoning. So, instead of using a well-defined



function of the gradient in a certain neighbourhood to calcu-
late thediffusion coefficient, c(x; y; t), we will use a fuzzy
aproximation, which will allow us to make operations such
asIF the difference beteewn pixels gray levels is small, THEN
the diffusion coefficient is high. Such a rule, wich is ex-
presed in a plain linguistic form, can be translated into a
more formal struture by a fuzzy operator.

Tha basic idea behind our filter is to use the fuzzy rule
base to make the diffusion easier in those areas where the
difference of the pixels is small, and to make it harder in
the zones where the difference is high. By controlling the
behaviour of the diffusion coefficient we control the whole
diffusion process.

Fuzzy reasoning has proved its success in modelling the
uncertainly that tipically occurs when both noise cancella-
tion and detail preservation represent very critical issues. In
the last few years, many approaches have been proposed, in
particular, focussing in the area of nonlinear filtering [7].

3.1. Generalized Diffusion Algorithm

We define the contributions of local flow as a function of
the difference bewteen the central pixel and each of the 4-
connected pixels in every orientation, and the diffusion co-
efficient for every direction [3, 2]:

�E =
1

�x
2

2

[CE(I(x+�x; y; t)� I(x; y; t))]

�W =
1

�x
2

2

[CW (I(x; y; t)� I(x��x; y; t))]

�N =
1

�y
2

2

[CN (I(x; y +�y; t)� I(x; y; t))]

�S =
1

�y
2

2

[CS(I(x; y; t)� I(x; y ��y; t))]

whereCN , CS , CE andCW are the diffusion coefficients
for each orientation (North, South, East and West1). The
process to obtain them is explained later. Equation 4 de-
scribes the iterative process of the general anisotropic diffu-
sion, as well as of our filter. At each new time stept +�t,
a new image is generated from previous image of stept.

3.2. Fuzzy Diffusion Coefficients

To calculate the four coefficients, we make use of fuzzy op-
erators. We define two distances,D1 andD2. The for-
mer is the absolute difference between the pixel and the 4-
connected pixel in the diffusion direction, i.e. forCE ,D1 =
jI(x; y)�I(x+1; y)j. D2 is the absolute difference between
each 8-connected pixel in the diffusion direction, divided by
2, i.e. forCE ,D2 =

1

2
jI(x+1; y+1)�I(x+1; y�1)j.2 So,

for each coefficient, i.e. in the considered direction, we use
1Paradoxically, North and South are upside down (figure 1). The reason

of it, is the position of the y axis; its origin is in the top of the image.
2This last distance is obtained from the calculation of terms such as

I(x+ 1

2
; y) andI(x� 1

2
; y) from the approximation of the gradient [3]

4 pixels (see figure 1): the central one, the 4-connected and
the two 8-connected. We will use these distances to make a
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Fig. 1. Pixels involved in each flow

fuzzy inference to calculateCi. The rules that we will use
are as follows:

Rj(D1; D2): If D1 is aj andD2 is bj thenCi is cj

Though several strategies have been reported [8], we will
resort to the method proposed by Kosko [9] to carry out
the fuzzy inferences. A crisp value is simply obtained by a
defuzzification method, such as the centroid

F (y) =

P
j
aj(D1)bj(D2)cj

P
j
aj(D1)bj(D2)

(5)

whereaj andbj are the antecedent sets andcj is the centroid
of the consequent set. We define two linguistic variables:
Luminance difference anddiffusion coefficient. Their fuzzy
sets are shown in figures 2 and 3 respectively. We have cho-
sen consistent, normal and complete fuzzy sets with PTS
membership functions [10]. The distribution of the sets in
the space is the result of heuristic experiments.
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Fig. 2. Luminance differences (antecedent)
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Fig. 3. Diffusion Coefficient (Consequent)

3.3. The Fuzzy Rulebase

As we have already said, the main behaviour of the filter
depends on the behaviour of the diffusion coefficients. So,
we can control several diffusion attributes such as speed,
smoothness, and so forth, with the design of the fuzzy rule-
base. The rule construction for image enhancement largely



D1 nD2 A0 A1 A2 A3 A4 A5 A6 A7

A0 C0 C0 C1 C1 C2 C3 C4 C6

A1 C0 C1 C1 C1 C2 C3 C4 C6

A2 C1 C1 C1 C1 C2 C3 C4 C6

A3 C1 C1 C1 C2 C2 C4 C5 C7

A4 C2 C2 C2 C2 C3 C4 C5 C7

A5 C3 C3 C3 C4 C4 C5 C5 C7

A6 C4 C4 C4 C5 C5 C5 C6 C7

A7 C6 C6 C6 C7 C7 C7 C7 C7

Table 1. Rule Set for the Fuzzy Anisotropic Diffusion

depends on the application domain. We can build rules sets,
obtaining different behaviours of the same filter. For our
rulebase, we have tried to model a large diffusion for small
differences, and a strong restriction to diffusion when the
difference is large enough (table 1).

4. EXPERIMENTAL RESULTS

The proposed method has been applied to several images
of size 256x256 and 8 bits per pixel, corrupted by mul-
tiplicative noise (�2

s = 0:04) and additive gaussian noise
(�2g = 100) according to the equation

Is = I0 + I0�r(�2s ) + �(�2g) (6)

Two original images are shown in Fig. 5(a), Fig. 6(a), and
the corrupted ones in Fig. 5(b) and Fig. 6(b).

Fig. 4 shows the output image after 0, 2, 5, 8, 12 and 20
iterations respectively. In the last one, we have already got-
ten a good quality image. It shows one of the advantages of
the Fuzzy Anisotropic Diffusion (FAD) filtering: it requires
a smaller amount of iterations, which makes the influence of
the border efects smaller, and it makes the algorithm faster
as well.

To evaluate the quality of the restored images, the FAD
filter is compared to a classical median filter and to a non-
fuzzy anisotropic filter. The same noise parameters as be-
fore are used. To calculate the diffusion coefficient for the
Perona-Malik technique the next equation is used [1]:

c(x; y; t) =
1

(1 + jrI(x; y; t)j=K)2
(7)

with different values of constant K (K = 2 and K = 5).
To obtain stable solutions in all the experiments, we have
chosen a value of the time step � = 0:2 [1].

The images restored by the FDA filters are in Fig. 5(c)
and Fig. 6(c). The results of the Median filter are in Fig. 5(d)
and Fig. 6(d). Finally, the results for the anisotropic difus-
sion (AD) filter are in Fig. 5(e) and Fig. 6(e) for K = 2 and
in Fig. 5(f) and Fig. 6(f) for K = 5.

a) Corrupted Image b) after 2 iterations c) after 5 iterations 

d) after 8 iterations e) after 12 iterations f) after 20 iterations 

Fig. 4. Evolution of the Fuzzy Diffusion Algorithm. a) Cor-
rupted image. b) After 2 iterations. c) after5 iterations. d)
after 8 iterations e) after 12 iterations f) after 20 iterations

From all these images, it can be observed that the vi-
sual quality of Fig. 5(c) and Fig. 6(c) (the ones filtered by
the FAD filter) are better than the others. The new filter is
capable to eliminate the noise without distorting the edges.
Although the AD filter with K = 5 also removes noise ef-
fectively, many small details have disappeared. The whole
scene has an artificial look, which is more evident in the
shade zones, where new edges appear.

For all of them, the RMS error has been calculated,
showing again a better performance of the FAD filter. For
the first image (fig 5) the error values are: 0.1138 (corrupted
image), 0.0379 (FAD), 0.0751 (Median Filter), 0.0937 (AD,
with K=2) and 0.0523 (AD, with K=5). For the second im-
age (fig 6) the error values are: 0.4950 (corrupted image),
0.0379 (FAD), 0.0638 (Median Filter), 0.0827 (AD, with
K=2) and 0.0392 (AD, with K=5).

5. CONCLUSIONS

In this paper an improved anisotropic diffusion filter con-
toled by fuzzy rules is presented. Experimental results have
shown that the FAD filter has a better performance than the
Perona-Malik filter in images corrupted by both speckle and
aditive gaussian noise. As the diffusion is controlled by a set
of rules, it is easier to adapt this diffusion to the conditions
of the problem, without changing the whole filter. The fu-
ture work will be oriented to the introduction of techniques
for learning and tuning the rule-base from data [11].
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linear anisotropic filtering of MRI data,” IEEE Trans-
actions on Medical Imaging, vol. 11, no. 2, pp. 221–
232, June 1992.

[3] G. Lohmann, Volumetric Image Analysis, Wiley and
Teubner, 1998.

[4] T. Shiota M. Niztberg, “Nonlinear image filtering with
edge and corner enhancement,” IEEE Transactions on
Pattern Analysis ans Machine Intelligence, vol. 14, no.
8, pp. 826–833, Aug. 1992.

[5] E.L. Schwartz B. Fischl, “Learning an integral equa-
tion approximation to nonlinear anisotropic diffusion
in image processing,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 19, no. 4, pp.
342–352, Apr. 1997.

[6] E. L. Schwartz B. Fischl, “Adaptive nonlocar filtering:
a fast alternative to anisotropic diffusion for image en-

a) Original Image b) Corrupted image 

c) FAD (40 iterations) d) Median filter 

e) AD, K=2 (200 iterations) f) AD, K=5 (200 iterations) 

Fig. 6. Comparison of diferent methods of noise smoothing.

hancement,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 21, no. 1, pp. 42–49,
Jan. 1999.

[7] F. Russo, “Recent avances in fuzzy techniques for im-
age enhancement,” IEEE transactions on instrumenta-
tion and measurement, vol. 47, no. 6, pp. 1428–1434,
Dec. 1998.

[8] B. Yuan G. Klir, Fuzzy Sets and Fuzzy Logic, Prentice-
Hall International, New Jersey, 1995.

[9] B. Kosko, Fuzzy Engineering, Prentice-Hall Interna-
tional, New Jersey, 1997.

[10] M.G. Singh X. Zeng, “Approximation theory of fuzzy
systems- SISO case,” IEEE Transactions on Fuzzy
Systems, vol. 2, no. 2, pp. 162–176, Feb. 1994.

[11] L. X. Wang and J.M. Mendel, “Generating fuzzy rules
by learning from examples,” IEEE Transactions on
SMC, vol. 22, no. 6, pp. 1414–1427, June 1992.


