FUZZY ANISOTROPIC DIFFUSION FOR SPECKLE FILTERING
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ABSTRACT proposed filter is based on Gerig’s anisotropic filter [2, 1].
An anisotropic diffusion filter contoled by fuzzy rulesis  Our improved method is based on calculating drféusion

presented. The proposed filter is based in the Perona-MalikCoefficient by a fuzzy inference, instead of by a decreasing
technique, using a fuzzy reasoning to calculate de diffusion function of the gradient, which allows us to have a more
coefficient which controls the whole diffusion. The method detailed control over the diffusion process.
has the advantage that it can be used for both smoothing
and noise cleaning, as well as edge enhancement. This 2. ANISOTROPIC FILTERING
new aproach also allows ut to model the diffusion process
through a rule base to have a better performance. SomeThe basic idea of anisotropic diffusion filtering is that smooth-
examples are given to ilustrate the effectiveness of the pro-ing and edge enhancement can be modelled as a diffusion

posed technique. process in wich a flow exists between adjacents cells con-
taining substances such as gases or fluids. A diffusion pro-
1. INTRODUCTION cess of the type needed for our problem can be described by
a partial differential equation of the form:
Speckle is the term used for granular patterns that appears OI(Z,t) .
on some types of images, as, for example, ultrasonic im- 5 = div(e(@ OVI(z,y,1)) (1)

ages, due to the mottling, and it can be considered as a kind ] i
of multiplicative noise. Speckle degrades the quality of the Wherédiv denotes theiivergence operator andV denotes

image, and hence it reduces the ability of human observerthe gradient. The fU_nCtiOC_(f, t) is called thediffusion co-
to discriminate fine details, and it also makes further image €fiient. In conjuntion with the gradient it describes the
processing more dificult. Ordinary filters, such as linear fil- 10W between cells:

ters or median filters, do not work well for edge preserving & = (&, t)VI(Z,t) )
smoothing of images corrupted with noise.
Perona and Malik [1] developed a multiscale smooth- This coefficent is defined as a monotonically decreas-

ing and edge enhancement scheme which has proved to béng function of the gradient magnitude, so that the flow in-
a powerful tool for noise cleaning. Their anisotropic diffu- creases within homogeneus regions where the gradient is
sion filtering method is mathematically formulated as a heat small. Several functions has been proposed ([3, 2]).
diffusion process, which smoothes region interiors, but not ~ In 2-D case (for simplicity) we can approximate equa-
their interfaces. This work was further developed in [2, 3]. tion 1 and write

The main problem with anisotropic diffusion algorithms oI (z,y,t)
is that they need a large amount of iterations to reach its ~ {(z,y,t + At)=I(z,y,t) + Ati@t (3)
steady state. This means much time consumption and an I+ At — By + By — Dg) (4)

important influence of border effects. In addition, in a very
noisy enviroment, the resulting image after a large amount where® g, @y, ®x and®gs are the local flow contribu-
of iterations has not a real appearance. Consequently seviions.
eral proposals have appeared as feasible options to anisotro-
pic diffusion [4, 5, 6]. 3. FUZZY CONTROLLED ANISOTROPIC
In the present paper we introduce a new type of edge- DIFFUSION FILTER
preserving smoothing filter controlled by fuzzy rules. This
The authors acknowledge the Junta de Castilla gritsr research ~ Fuzzy rules allow us to process directives described in terms
grant VA78/99 and FEDER for research grant IFD87-0881 of human-like reasoning. So, instead of using a well-defined




function of the gradient in a certain neighbourhoodto calcu- 4 pixels (see figure 1): the central one, the 4-connected and
late thediffusion coefficient, c(z, y,t), we will use a fuzzy  the two 8-connected. We will use these distances to make a
aproximation, which will allow us to make operations such
aslF thedifference beteewn pixelsgray levelsissmall, THEN
the diffusion coefficient is high. Such a rule, wich is ex- Pa| Ps| P | |\ Pajopsfope| | pafps|ope| | pa)opsfops
presed in a plain linguistic form, can be translated into a pr | pa| po| | p7 | pe| po| | b7 | pal| po| | P7 | Pa| Po
more formal struture by a fuzzy operator.
Tha basic idea behind our filter is to use the fuzzy rule
base to make the diffusion easier in those areas where the Fig. 1. Pixels involved in each flow
difference of the pixels is small, and to make it harder in
the zones where the difference is high. By controlling the fuzzy inference to calculat€;. The rules that we will use
behaviour of the diffusion coefficient we control the whole are as follows:
diffusion process. . . . R;(D1,Ds): If Diisa; andD:ish; thenC;isc;
Fuzzy reasoning has proved its success in modelling the
uncertainly that tipically occurs when both noise cancella- Though several strategies have been reported [8], we will
tion and detail preservation represent very critical issues. Inresort to the method proposed by Kosko [9] to carry out
the last few years, many approaches have been proposed, ithe fuzzy inferences. A crisp value is simply obtained by a
particular, focussing in the area of nonlinear filtering [7]. defuzzification method, such as the centroid

> @ (D1)bj(D2)c;

>_;ai(D1)bj(D2)
We define the contributions of local flow as a function of ] )
the difference bewteen the central pixel and each of the 4- Wherea; andb; are the antecedent sets ands the centroid
connected pixels in every orientation, and the diffusion co- of the consequent set. We define two linguistic variables:

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

EAST WEST NORTH SOUTH

3.1. Generalized Diffusion Algorithm F(y) = )

efficient for every direction [3, 2]: Luminance difference anddiffusion coefficient. Their fuzzy
sets are shown in figures 2 and 3 respectively. We have cho-
by = ﬁ [Ce(I(z+ Az,y,t) — I(x,y,t))] sen consistent, normal and complete fuzzy sets with PTS
2 membership functions [10]. The distribution of the sets in
Oy = Aia:? [Cw(I(z,y,t) — I(x — Az, y,t))] the space is the result of heuristic experiments.
2
By = 5o (OnUGy+Aut) ~ I, 1)] Jrow om ok e e
<I>5 = ﬁ[CS(I(l',y,t)—I(ﬁ,y—Ay,t))]
Y3
0 f 1 f T T ] T T ! 1L0G ()
whereCy, Cg, Cg andCy, are the diffusion coefficients 01 02 03 04 05 06 07 08 09 1
for each orientation (North, South, East and WgstThe
process to obtain them is explained later. Equation 4 de- Fig. 2. Luminance differences (antecedent)

scribes the iterative process of the general anisotropic diffu-
sion, as well as of our filter. At each new time step At,
c7 C6 C5 [eZ3 c3 c2 C1 Cco

a new image is generated from previous image of &tep 1
3.2. Fuzzy Diffusion Coefficients . W LOG ,; (10000)

4

To calculate the four coefficients, we make use of fuzzy op- 0t 0203 04 05 06 07 08 09
erators. We define two distance®, and D,. The for-
mer is the absolute difference between the pixel and the 4-
connected pixel in the diffusion direction, i.e. 10z, D, =
|I(z,y)—I(z+1,y)|. D2isthe absolute difference between
each 8-connected pixel in the diffusion direction, divided by 3.3. The Fuzzy Rulebase
2,i.e.forCg, Dy = $|I(z+1,y+1)—I(z+1,y—1)|.2 So, _ _ _ _
for each coefficient, i.e. in the considered direction, we use AS We have aready said, the main behaviour of the filter
- _ _ _ depends on the behaviour of the diffusion coefficients. So,
_ Paradoxically, North and South are upside down (figure 1). The reasony, e can control several diffusion attributes such as speed,
of it, is the position of the y axis; its origin is in the top of the image. . .
2This last distance is obtained from the calculation of terms such asSMoothness, and so forth, with the design of the fuzzy rule-
I(z + %,y) andI(z — %,y) from the approximation of the gradient [3]  base. The rule construction for image enhancement largely

Fig. 3. Diffusion Coefficient (Consequent)




D1 \ Do Ag Aq Ao As Ag As Ag Ay
Agp Co Co C1 Ch Co Cg Cy Ce
A Co C1 O C; Co C3 (4 Cs
As C1 Cc; C1 C; Co C3 (4 Cs
As C1 Cc; C1 Cy Co Cq4 Cs Cr
Ag Co Co Co Ca Cs Cy Cs Cr
As C3 C3 C3 Cy Cy C; Cs Oy
As Cy Cy Cy Cs Cs Cs5 Cs C7
Aq Cs Cs Cs¢ C; C; C; C; Cq

Table 1. Rule Set for the Fuzzy Anisotropic Diffusion

depends on the application domain. We can build rules sets,
obtaining different behaviours of the same filter. For our
rulebase, we have tried to model alarge diffusion for small
differences, and a strong restriction to diffusion when the
differenceislarge enough (table 1).

4. EXPERIMENTAL RESULTS

The proposed method has been applied to several images
of size 256x256 and 8 bits per pixel, corrupted by mul-
tiplicative noise (¢2 = 0.04) and additive gaussian noise
(o2 = 100) according to the equation

I, = I + IyAr(02) +n(o2) (6)

Two original images are shown in Fig. 5(a), Fig. 6(a), and
the corrupted onesin Fig. 5(b) and Fig. 6(b).

Fig. 4 shows the output image after 0, 2, 5, 8, 12 and 20
iterations respectively. In the last one, we have aready got-
ten agood quality image. It shows one of the advantages of
the Fuzzy Anisotropic Diffusion (FAD) filtering: it requires
asmaller amount of iterations, which makesthe influence of
the border efects smaller, and it makes the algorithm faster
aswell.

To evauate the quality of the restored images, the FAD
filter is compared to a classical median filter and to a non-
fuzzy anisotropic filter. The same noise parameters as be-
fore are used. To calculate the diffusion coefficient for the
Perona-Malik technique the next equation is used [1]:

1
1+ |VI(z,y,t)|/K)?

c(z,y,t) = ( (7)
with different values of constant K (K = 2 and K = 5).
To obtain stable solutions in all the experiments, we have
chosen avaue of thetimestep A = 0.2 [1].

The images restored by the FDA filters are in Fig. 5(c)
and Fig. 6(c). Theresultsof the Median filter arein Fig. 5(d)
and Fig. 6(d). Finally, the results for the anisotropic difus-
sion (AD) filter arein Fig. 5(e) and Fig. 6(e) for K = 2 and
in Fig. 5(f) and Fig. 6(f) for K = 5.

I

Fig. 4. Evolution of the Fuzzy Diffusion Algorithm. a) Cor-
rupted image. b) After 2 iterations. c) after5 iterations. d)
after 8 iterations €) after 12 iterations f) after 20 iterations

From all these images, it can be observed that the vi-
sual quality of Fig. 5(c) and Fig. 6(c) (the ones filtered by
the FAD filter) are better than the others. The new filter is
capable to eliminate the noise without distorting the edges.
Although the AD filter with K = 5 aso removes noise ef-
fectively, many small details have disappeared. The whole
scene has an artificial 1ook, which is more evident in the
shade zones, where new edges appear.

For all of them, the RMS error has been calculated,
showing again a better performance of the FAD filter. For
thefirst image (fig 5) the error values are: 0.1138 (corrupted
image), 0.0379 (FAD), 0.0751 (Median Filter), 0.0937 (AD,
with K=2) and 0.0523 (AD, with K=5). For the second im-
age (fig 6) the error values are: 0.4950 (corrupted image),
0.0379 (FAD), 0.0638 (Median Filter), 0.0827 (AD, with
K=2) and 0.0392 (AD, with K=5).

5. CONCLUSIONS

In this paper an improved anisotropic diffusion filter con-
toled by fuzzy rulesis presented. Experimental results have
shown that the FAD filter has a better performance than the
Perona-Malik filter inimages corrupted by both speckle and
aditive gaussian noise. Asthediffusioniscontrolled by aset
of rules, it is easier to adapt this diffusion to the conditions
of the problem, without changing the whole filter. The fu-
ture work will be oriented to the introduction of techniques
for learning and tuning the rule-base from data [11].
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