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ABSTRACT

A modification of Moulines’ blind second order statistical Chan-
nel Subspace approach is proposed for the identification of single
input multiple output finite impulse response channels. The mod-
ification exploits the transmitter redundancy introduced by a trail-
ing zero filter bank precoder. The method is shown to be robust to
common zeros and channel order over-estimation errors.

1. INTRODUCTION

Using only second order statistics (SOS), it is not possible to blindly
identify a single input single output (SISO) channel unless it is
driven by a redundant precoder [1, 4] or is fractionally sampled
[6, 5, 3]. Using a filter bank precoder to drive the channel has
a number of advantages, including spreading the spectrum of the
source symbols [2] and thereby mitigating the adverse effects of
channel spectral nulls. The advantage of fractionally sampling
the output of the SISO channel is that, unlike precoding, no re-
duction in the information rate is necessary. The disadvantage of
fractional sampling is that no blind SOS method can identify the
sub-channels if the sub-channels share a common zero.

This paper proposes to use both a precoder and fractionally
sampled outputs to identify the channel. A subspace based chan-
nel identification algorithm is derived, and it is shown to exhibit
better performance than schemes which rely on either a precoder
or fractionally sampled outputs alone.

The rationale behind using both a precoder and fractionally
sampled outputs is that they complement each other nicely. The
fractionally sampled outputs means that the precoder does not need
to introduce very much redundancy at all for it to be effective,
while the precoder eliminates the problem of common zeros.

The signal model is illustrated in Fig. 1. The complex valued
source symbols s(n) are precoded by a filter bank precoder. It is
assumed that the filter bank precoder introduces a number of trail-
ing zeros, and hence is referred to as a trailing zero (TZ) precoder.
These trailing zeros eliminate inter-block interference [4], greatly
simplifying the channel identification procedure. The coded sym-
bols then pass through a single input multiple output (SIMO) finite
impulse response (FIR) channel. This SIMO channel results ei-
ther from fractionally sampling the output of a SISO channel [3],
or naturally by using multiple receive antennas. The aim of this
paper is to derive a SOS subspace method for identifying the sub-
channels in Fig. 1.

The organization of this paper is as follows. Section 2 derives
a channel identification algorithm. It is an extension of the ideas in
[4, 3]. Simulation results are presented in Section 3 which demon-
strate the advantages of the proposed approach.
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Fig. 1. (a) Precoder Structure, (b) TZ-Precoder with multiple FIR
channels

2. TZ-CS: MODIFIED CHANNEL SUBSPACE
APPROACH FOR BLIND CHANNEL IDENTIFICATION

Consider the discrete-time multi-rate transmitter and multichannel
FIR model arrangement as shown in Fig.1. Note that this multi-
channel FIR system may have arisen from oversampling the output
of a single sensor or by using a multiple receiver system. It con-
sists of Z sub-channels each of order at most L. The zero mean
complex valued input symbol stream s(n) and the additive white
noise are assumed to be stationary. The noise is assumed to be
uncorrelated among channels.

In Fig.1, the precoder maps blocks of M input symbols into
blocks of P encoded symbols, which are then sent through the
channel. As in [4], the input to the up-sampler of the mth branch
is sm(n) := s(nM + m). It represents the m-th symbol in the
nth block of M symbols. With the insertion of P � 1 zeros, the
corresponding upsampler’s output is um(n) :=

P
i sm(i)�(n �

iP ) where �(n) denotes Kronecker’s delta. The transmitted data
sequence is:u(n) =

PM�1
m=0 um(n) =

P
i

PM�1
m=0 sm(i)fm(n�

iP ).



In order to obtain a linear block data model, we make the fol-
lowing definitions:

s(n) = [s0(n); s1(n); : : : ; sM�1(n)]
T ;

fm = [fm(0); : : : ; fm(M � 1); 0; : : : ; 0]T ;

F0 = [f0 : : : fM�1] 2 C
P�M ;

x
(r)(n) = [x(r)(nP ); x(r)(nP + 1); : : : ; x(r)(nP + P � 1)]T ;

v
(r)(n) = [v(r)(nP ); v(r)(nP + 1); : : : ; v(r)(nP + P � 1)]T

where r = 0; : : : ; Z � 1. Also required are the P � P Toeplitz
lower triangular matrices H(r)

0 with first column

[h(r)(0); : : : ; h(r)(L); 0; : : : ; 0]T :

We make the following assumptions (cf. [4]):
(a0) Sub-channels h(r)(l) are Lth order FIR with h(r)(0) 6= 0.
(a1) (P;M;L) are chosen to satisfy P > L, P = M + L.
(a2) Precoder filters have L trailing zeros; i.e., ffm(n)gPn=M =
0; 8m 2 [0;M�1], and are linearly independent; i.e., rank(F0) =
M , which guarantees one-to-one mapping and thus recovery of
s(n) from the coded symbols u(n).
(a3) There exists an N � P , such that the M �N matrix SN :=
[s(0); : : : ; s(N � 1)] has full rank M . Note that, as N tends to
1, (1=N)SSH tends to the input correlation matrix Rss.

Based on (a0)-(a2), we can write the received block data model
[4] for the rth channel as:

y
(r)(n) = x

(r)(n) + v
(r)(n) = H

(r)
0 F0s(n) + v

(r)(n) (1)

Let H(r)
P denote the first M columns of H(r)

0 Then H(r)
0 F0 =

H
(r)
P F, where F is the full rank matrix formed from M rows of

F0. The received block data model thus becomes [4]:

y
(r)(n) = H

(r)
P Fs(n) + v

(r)(n) (2)

Stacking the outputs of the Z channels gives

0
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or y(n) = HPFs(n) + v(n) = x(n) + v(n) (3)

Given a block of data fy(n)gN�1n=0 , the objective here is to esti-
mate the Z(L+1)�1 vector h = [h(0)T ; : : : ;h(Z�1)T ]T , where
rth channel impulse response h(r) = [h(r)(0); : : : ; h(r)(L)]T .
As in [3], we choose to collect N consecutive data vectors
fy(n)gN�1n=0 in a matrix:

YN := [y(0); : : : ;y(N � 1)] = HPFSN +VN (4)

The covariance matrix of the received data is thus

Ryy = E(YNY
H
N ) = HPFRssF

HHH
P +Rvv (5)

where Rss = E(SNS
H
N ) and Rvv = E(VnV

H
n ). Note that (a0)

is enough to conclude that HP is full rank i.e., rank (HP ) = M .
By assumption, Rvv = �2vI and Rss is full rank . The EVD of
Ryy is then expressed as

Ryy = Sdiag(�0; : : : ; �M�1)S
H + �2vGG

H (6)

where S = [S0; : : : ;SM�1] and G = [G0; : : : ;GPZ�M�1].
The columns of S span the signal subspace, while those of G,
the noise subspace. The columns of HPF also span the signal
subspace and thus by orthogonality, we have

G
H
i HPF = 0: (7)

It can be shown that under the assumptions we have made, the
channel h can be estimated up-to a scale factor. In practice, since
the output data vectors are noisy, equation (7) is solved by mini-
mizing the quadratic form:

q(h) =
XPZ�M�1

i=0
j GH

i HPFj
2: (8)

Let GH
i HPF = hTGiF where Gi is the filtering matrix associ-

ated withGi and can be obtained by back substitution. Therefore,
j GH

i HPF j2= hHGiFF
HGHi h and equation (10) can thus be

expressed as: q(h) = hHQh, where Q=
PPZ�M�1

i=0 GiFF
HGHi

and the channel estimate can thus be formulated as

h = arg min
khk=1

k hHQh k2 : (9)

Therefore, h is obtained as the eigenvector associated with the
minimum eigenvalue ofQ. We call this method the TZ-CS method.

Remark 1: Whereas Moulines’ method requires no common
zeros to ensure that the corresponding HPF have full rank, the
matrix HPF here have full rank due to trailing zeros introduced
by the precoder. Intuitively, common zeros are not a problem be-
cause TZ-precoder can identify a SISO channel [4] without any
restrictions on the location of channel zeros.

Remark 2: An important feature of TZ-CS is its robustness to
channel order over-estimation. It is shown in [4], which considered
the SISO case, that the channel identification is robust to channel
order over-estimation.

Remark 3: Because P > M therefore information rate is
lower than transmission rate, which pays off in equalization. How-
ever, we can tradeoff increase in information rate (i.e. by setting
M (and thus P ) large) for increase in transceiver complexity.

Remark 4: (i) With fm(n) = exp(j2�mn=M), the filter
bank precoder of Fig.1, reduces to the digital TZ-OFDM transmit-
ter and (ii) using Hadamard Codes instead of complex exponen-
tials, the filter bank of Fig.1 reduces to TZ-CDMA precoder that
uses as filters the Hadamard basis with trailing zeros [4].

3. SIMULATION RESULTS

This section compares TZ-CS with CS and channel estimation
method in [4]. Computer simulations were conducted with QPSK
input signal. We simulated the oversampled output of two sepa-
rate single receivers, with oversampling factor L = 4, ISI degree
Z = 4. For CS temporal window length Nw = 8 and for TZ-CS
we took M = 4 and P = Nw = 8. The channel coefficients are
chosen as in [3] for first receiver, whereas for receiver 2 channel
coefficients were obtained by artificially introducing common ze-
ros among the sub-channels of set I. The zero distribution of these
two sets of channels is plotted in Fig.2(a) and (b) with different
symbols representing different zeros of different channels of chan-
nel sets I and II. As can be seen channel set I has no common zero,
whereas, channel set II has a number of common zero shared by
sub-channels.
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Fig. 2. Zero distribution of the channels: (a) first channel set, (b)
second channel set
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Fig. 3. Comparison of the TZ-CS and CS methods for N=100-
1000 symbols

The normalized root-mean-square error (NRMSE) is defined
as:

NRMSE =
1

k h k

vuut 1

Nt

NtX
i=1

k ĥ(i) � h k2 (10)

where Nt is the number of Monte Carlo runs (100 in our case) and
ĥi is the estimate of the channel from ith run.

In the first simulation study, we fixed the SNR to 25 dB and
varied the number of symbols from 100-1000. Fig.3(a) and (b)
shows the NRMSEs of the channel estimates from the TZ-CS and
CS methods for channel sets I and II respectively. We can see that
CS is unable to identify channel set II with common zero, whereas,
the new method is successful in identifying both channel sets. TZ-
CS performs better than the CS method even with no common
zeros and requires much less number of data samples.

In the second simulation study, we fixed the number of sym-
bols to be 100 and varied the SNR from 10-40 dB. Fig.4(a) gives
the NRMSEs of the channel estimates from these two methods for
channel set I. It is clear that TZ-CS exhibits good performance at
low SNR.

In the third simulation study, we tested the robustness of TZ-
CS when channel order is over-estimated. Fixing the SNR = 25 dB
and with true channel length (L) of 3 for channel set I, we manu-
ally varied the length estimate to 4 (i.e., L=4). It is apparent from
Fig.4(b) that TZ-CS is robust to channel order over-estimation er-
ror without any severe degradation of estimation accuracy, how-
ever, CS is very sensitive and thus not a reliable approach when
channel order is over-estimated.

We can tradeoff increase in information rate (i.e. by setting
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Fig. 4. Comparison of the TZ-CS and CS methods (a) for
SNR=10-40 dB, (b) when channel order is overestimated
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Fig. 5. (a) Comparison of the TZ-CS for P=8 and P=9, at SNR=25
dB, (b) Comparison of TZ-CS and TZ-SISO, for SNR=25 dB and
N=100-1000 symbols

M (and thus P ) large) for increase in transceiver complexity, how-
ever, this results in performance degradation of TZ-CS. This is
shown in Fig.5 (a) by comparing performance of TZ-CS with P=8
(M=4) and P=9 (M=5), at SNR=25dB.

TZ-filter bank precoder has been successfully applied to the
problem of SISO FIR channel identification without channel zero
locations (abbreviated to TZ-SISO in this paper) in [4]. The work
in this paper extends the work in [4] to the identification of SIMO
FIR channels. One can argue that identification of TZ-precoder
driven SIMO FIR channels can be divided into identifying a set
of TZ-precoder driven SISO FIR channels between the input and
each of the outputs using [4]. However, each of these FIR channels
would be identified using only the measurements of its output and
not the full set of observations which contains more information.
Obviously TZ-CS is expected to result in improved performance
to channel estimates as it exploits additional information from the
outputs of other channels. This is shown in fig 5(b), where channel
1 of the channel set I is identified using TZ-SISO and using TZ-CS
(using observation outputs from other channels of the channel set
I). The improved performance of TZ-CS is clear.

Based on the multichannel block data model equation (3), we
extended the ZF and MMSE equalizers derived in [4] to the SIMO
channel in Fig.1. We found that the better channel estimates ob-
tained by the TZ-CS method led to better source symbol estimates
obtained with either ZF or MMSE equalizers. The results are
shown in Fig. 6 and are now explained. For channel set II, the
phase pattern of the receiver outputs is plotted in Fig. 6(a). Us-
ing the channel estimates via TZ-CS method for 100 snapshots of
data multichannel ZF and MMSE equalizers are implemented. The
equalized phase patterns using multichannel ZF and MMSE equal-
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Fig. 6. Comparison of phase patterns: (a)before equalization (c)
after ZF equalization using TZ-CS estimates; (b) after MMSE
equalization using TZ-CS estimates and (d) after ZF equalization
using CS estimates

izers are given in Fig 6(b) and (c). In comparison with Fig.6(a),
the constellation is clearly much improved. Fig 6. (d) gives an in-
sight of the channel estimates by CS method where phase pattern
is obtained by using CS channel estimates in the ZF equalizer for
TZ-CS. It is clear that CS channel estimates are unacceptable and
equalization is impossible.

4. CONCLUSION

This paper presented a modification of Moulines’ CS method for
identifying SIMO FIR channels driven by a trailing zero (TZ) pre-
coder. It was demonstrated that by exploiting the input redun-
dancy created by the TZ precoder, the resulting blind multichan-
nel subspace method (TZ-CS) outperforms Moulines’ CS method
in terms of robustness to common zeros and channel order over-
estimation. Moreover, the TZ-CS method requires shorter data
lengths and lower SNR than the CS method does to achieve the
same level of performance.
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