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ABSTRACT

This paper describes an attempt to extract peripheral
features of a point c(ti,qj) on a time-quefrency (TQ)
pattern by observing n×n neighborhoods of the point,
and then to incorporate these peripheral features into the
MFCC-based feature extractor of a speech recognition
system as a replacement to dynamic features. In the
design of the feature extractor, firstly, the orthogonal
bases extracted directly from speech data by using KLT
of 7×3 blocks on a TQ pattern are adopted as the
peripheral features, then, the upper two primal bases are
selected and simplified in the form of ∆t-operator and ∆q-
operator. The proposed feature-set of MFCC and
peripheral features shows significant improvements in
comparison with the standard feature-set of MFCC and
dynamic features in experiments with an HMM-based
ASR system. The reason for the increased performance
is discussed in terms of minimal-pair tests.

1.  INTRODUCTION

 Time-spectrum (TS) pattern x(t,f) has long been used
for acoustic features in automatic speech recognition
(ASR), and recently, dynamic features such as ∆-
cepstrum, ∆-power, etc. have been introduced into
ASR[1], [2] and the set of MFCC and dynamic features
is widely used. Dynamic features represent peripheral
features of a point on a TS pattern x(ti,fj) along the time
axis, however, we can obtain more information from n×n
neighborhoods of the point.
 In the previous work[3], the 7×7 orthogonal bases on
TS patterns were extracted directly from a speech
database by using KLT (see Figure 1), and were
incorporated into a feature extractor as mapping
operators to extract peripheral features. The feature set
of MFCC and peripheral features showed significant
improvements in comparison with a standard feature-set
of MFCC and dynamic features. In this method, a set X
with elements x(t,f) is mapped onto various peripheral
features Ym=ym(t,f), m=1, 2, …, M by using time-
frequency mapping operator {ΦΦΦΦm} (ΦΦΦΦm ∈∈∈∈ΦΦΦΦ):
       ΦΦΦΦm : X → Ym                    (1)
Figure 2 illustrates an example of the upper three
peripheral features of an utterance [kaden’tsa] (cadence).
 In this paper, we propose a design methodology for a
peripheral feature extractor in the cepstrum-domain
instead of the frequency-domain. In the methodology, we
observe peripheral features, or mapping operators, on
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Figure 1  7××××7 orthogonal basis on TS pattern

(A) original TS pattern

(B) 2nd-PF mapped with a Δt-operator Φ2

(C) 3rd-PF mapped with a Δf-operator Φ3

(D) 4th-PF mapped with a ΔtΔt-operator Φ4
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Utterance : [ kaden’tsa] (cadence)

Figure 2  Time-spectrum pattern and
   peripheral features in frequency domain

time-quefrency (TQ) pattern, then incorporate the
mapping operators into the feature extractor of a HMM-
based ASR system after simplifying {ΦΦΦΦm}and making
them symmetrical. The feature-set of MFCC and



peripheral features is compared with a standard feature-
set of MFCC and dynamic features in word recognition
experiments with a HMM-based ASR system.
 This paper is organized as follow:  Section 2 discusses
the geometrical structure of 7×3 blocks in time-
quefrency space. Section 3 then outlines a method of
implementing the peripheral features in a feature
extractor of an ASR system together with MFCC
parameters. Section 4 describes the experimental setup
and results, and section 5 provides the discussion.

2. PERIPHERAL FEATURES ON TIME   
- QUEFRENCY (TQ)  PATTERN

 Our previous work[3] showed that many types of
geometrical structures are observed on TS patterns. In
this section, we observe peripheral features on TQ
patterns instead of TS patterns. Figure 3 shows the
upper nine orthogonal bases of 7×3 blocks on TQ
patterns {c(ti,qj)}, j = 1, 2, …, 12. Tease are converted by
DCT of the output of BPFs {x(ti,fj)}, j=1, 2, …, 24. In
the figure, black and white squares represent positive
and negative values, respectively, and the size of each
square represents amplitude. The 7×3 orthogonal bases
were extracted by using Karhunen-Loeve transform
(KLT) from the speech data described in section 4.1.
 From a space-operational point of view, ΦΦΦΦ1 is
considered to be a smoothing operator, and as such is
neutral and generally has no effect on feature extraction
for ASR. ΦΦΦΦ2 and ΦΦΦΦ3 are the first and second derivative
operators with respect to the quefrency axis (∆q-operator
and ∆q∆q-operator), respectively, ΦΦΦΦ4, ΦΦΦΦ7 and ΦΦΦΦ9 are the
first, second and third derivative operator with respect to
the time axis(∆t-operator, ∆t∆t-operator, ∆t ∆t ∆t -
operator), respectively, and ΦΦΦΦ5, ΦΦΦΦ6 and ΦΦΦΦ8 are subspaces
that represent ridges and/or valleys on TQ patterns.
 TQ space operators, or mapping operators,  ΦΦΦΦm map a
TQ pattern c(t,q) onto peripheral features Ym=ym(t, q),
m=1, 2, …, M. An element ym(t, q) of peripheral features
is calculated with 7×3 neighborhoods of c(t,q) and ΦΦΦΦm =
φm(t,q) by the following equation:
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 Figure 4 illustrates an example of the upper three
peripheral features of utterance [kaden’tsa] (cadence).
Here, the mapping operators {ΦΦΦΦm}, m=2,3,4 were
applied to the TQ pattern after simplifying {ΦΦΦΦm} and
making them symmetrical. In this case, the three
mapping operators are correspondent to the ∆q-operator,
∆q∆q-operator, and ∆t-operator, respectively. In the figure,
(A) is an original TS pattern, (B) is the MFCC obtained
by converting the TS pattern with DCT, and (C), (D),
and (E) represent the 2nd-PF (PF : Peripheral Feature)
mapped with a ∆q-operator ΦΦΦΦ2 , the 3rd-PF mapped with
a ∆q ∆q -operator ΦΦΦΦ3, and the 4th-PF mapped with ∆t-
operator ΦΦΦΦ4, respectively. In the figure, patterns of
peripheral features and MFCC are displayed as absolute
values.
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Figure 3  7××××3 orthogonal bases on TQ pattern
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(A) original TS pattern

(B) Mel-Frequency Cepstrum Coefficient

(C) 2nd-PF mapped with a Δq-operator Φ2

(D) 3rd-PF mapped with a ΔqΔq-operator Φ3

(E) 4th-PF mapped with a Δt-operator Φ4

Utterance : [ kaden’tsa ] (cadence )

Figure 4 Peripheral features in cepstrum domain

3. COMBINING PERIPHERAL
           FEATURES WITH MFCC

 This chapter describes the methods of extracting
peripheral features and combining them with MFCC in a
feature extractor. Figure 5-A shows a standard feature
parameters used in current HMM-based ASR systems.
In the feature extractor, input speech is sampled at 16
kHz and a 512-point FFT of 25 ms Hamming-windowed
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Figure 5-A  MFCC with dynamic features

speech segments is applied every 10 ms. The resultant
FFT power spectrum is then integrated into the output of
24ch-BPFs with mel-scaled center-frequencies. Then, 38
feature parameters including 12 static parameters (mel-
cepstrum), ∆P (logarithmic power), ∆∆P, and 24
dynamic features (∆t, ∆t∆t) are extracted after converting
the output of BPFs into cepstrum coefficients (MFCC).
 In section 2, we investigated the 7×3 orthogonal bases
on TQ patterns and found that the upper primal bases
include derivative operators (ΦΦΦΦ2, ΦΦΦΦ3) along quefrency-
axis, while the standard MFCC-based extractor did not
include them. Figure 5-B shows the procedure for
extracting peripheral features, including dynamic
features, and MFCC.
 In figure 5-B, four space operators, giving the four
peripheral features ∆q-, ∆q∆q-, ∆t-, and ∆t∆t- cepstrum, are
simplified in the form of 1×3-block operators (∆q, ∆q∆q)
and 7×1-block operators (∆t, ∆t∆t), and the derivative
operation is replaced by a linear regression calculation.
Various peripheral features are combined with MFCC
static features (12 MFCC + ∆P + ∆∆P).

4. EXPERIMENTS

4.1 Speech Database
 The following three data sets were used :
D1. Acoustic model design set: A subset of
“ASJ(Acoustic Society of Japan) Continuous Speech
Database”, consisting of 4,503 sentences uttered by 30
male speakers (16KHz, 16bit)
D2. Test data set: A subset of “Tohoku University and
Matsushita Spoken Word Database”, consisting of 100
words uttered by 10 unknown male speakers. The
sampling rate was converted from 24KHz to 16KHz.
D3. 7×3 orthogonal basis design data set: A subset of
“ASJ News Corpus(ASJ-JNAS)”, consisting of 2,662
sentences uttered by 53 male speakers.

4.2  Experimental Setup
 The D1 data set was used to design 43 Japanese
monophone-HMMs with five states and three loops. In
the HMM, output probabilities are represented in the
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　　linear regression ( LR ) :

　2nd PF = Δq - cepstrum
　3rd PF  = Δq Δq - cepstrum
　4th PF  = Δt - cepstrum
　7th PF  = Δt Δt - cepstrum

each PF has 12dim

< peripheral features >

   

1 ) MFCC + Δt  + ΔtΔt +ΔP + ΔΔP 

2 ) MFCC + Δq  + ΔqΔq +ΔP + ΔΔP 

3 ) MFCC + Δt  + Δq +ΔP + ΔΔP 
…………...

example  :

Figure 5-B  MFCC with peripheral features

form of Gaussian mixtures, and covariance matrices are
diagonalized (mixture = 1, 2, 4). Speaker-independent
word-recognition tests were then carried out with the D2
data set. Feature parameters were evaluated by
combining ∆t, ∆t∆t, ∆P, ∆∆P, ∆q, and ∆q∆q with MFCC.

4.3  Result
 Figure 6 shows experimental results when various
types of features are added to MFCC. The results show
that:
- The peripheral feature ∆q-cepstrum provides
    improvement equal to that of ∆t-cepstrum, and
- the highest score is obtained when both ∆t-cepstrum
    and ∆q-cepstrum are added.
 In the experiment, the feature parameter set “MFCC+∆t

+∆q+∆q∆q+∆P+∆∆P” with a feature dimension of 50 did
not score higher than the “MFCC+ ∆t + ∆q +∆P+∆∆P”
set because of the small size of the data set. The
experimental results suggest that the addition of
dynamics along the quefrency axis to the standard
MFCC parameter set is important.

5. DISCUSSION

 Why are the recognition scores of the proposed feature
extractor higher than those of the baseline extractor? The
proposed extractor had the facility to grasp the variation
along quefrency-axis that contributes to recognize
vowels and consonants, while the variation along time-
axis has strong influence to consonant recognition.
 To compare the contribution of two features ∆t (∆t∆t)
and ∆q we prepare two word list, or minimal-pair lists,
that are composed from an original 100-word list of D2.
In the first list that includes minimal pairs of vowels /a, i,
u, e, o, N (independent nasal sound)/, nonsense words
were made by replacing a vowel in the original word
with a different one. In the second list that contains
minimal pairs of consonants /p, t, k, b, d, g, s, c, h, z, m,
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Figure 6  Comparison between MFCC
              parameter sets

n, r, j, w/, nonsense words were rebuilt by changing a
consonant with the other one to form such a confusable
pair as [wi:kude:] (weekday) ↔ [wi:kube:].
 After combining each word list with the original 100-
word list, 200-word recognition experiments for
“Minimal pairs of vowels” and “Minimal pairs of
consonants” were carried out. Figure 7-A and -B are the
experimental results of “Minimal pairs of vowels” and
“Minimal pairs of consonants”, respectively. The result
in Figure 7-A shows that ∆q parameter is superior to ∆t
parameter for the discrimination of vowels in spoken
words, while the result in Figure 7-B indicates that ∆q -
parameters and ∆t -parameters equally contribute to
performance in the discrimination of consonants.

6. CONCLUSION

 A framework for incorporating multiple geometric
structures into the feature extractor of ASR systems was
proposed. The design methodology of mapping operators
for extracting peripheral features was given by observing
the orthogonal bases of speech and by incorporating
primal components into a feature extractor in a
simplified form. The proposed feature extractor that
combines peripheral features with MFCC showed
significant improvements in comparison with the
standard MFCC-based feature extractor in the HMM-
based word recognition experiments. Dynamics along
the quefrency axis plays an important role both in vowel
and consonant recognition.
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Figure 7-A   minimal-pair test of vowels
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Figure 7-B  minimal-pair test of consonants
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