ARCHITECTURE INDEPENDENT SHORT VECTOR FFTS
Franz Franchetti, Herbert Karner, Sefan Kral, Christoph W. Ueber huber

Department of Applied and Numerical Mathematics
Technical University of Vienna
Wiedner Hauptstrasse 8-10/115, A-1040 Vienna, Austria
franz@aurora.anum.tuwien.ac.at, christof@aurora.anum.tuwien.ac.at

ABSTRACT vector execution unit, which operates independently of the existing
integer and floating-point units. This new execution unit provides

;I'his paper _introduces a SIMD ve”ctorization fo_r FFTW—the integer SIMD and four-way single-precision floating-point SIMD
fastest Fourier transform in the west” by Matteo Frigo and Steven instructions.

Johnson. The new method 'e‘?‘ds.w an archi_tecture indepgndent The Intel Pentiumlll streaming SIMD extensions (SSEs)
short vector SIMD FFT vectorization that ut_lllzes the architec- [5][6] [7] include 70 new instructions, for instance, general pur-
ture_ adapiivity of FFTW. It is basgd on special FFT kernels (up pose floating-point instructions, which operate on a new set of
toh5||ze 64 a}nd m(_)l_rhe_) that are uyhzed by FFT\lllvfto compufte the eight 128-bit SSE registers, and integer instructions as well as
WI 0 ? trar}s orm. F":ST\\I/SCtort'ftatlon s_uppé)_rts a _eaturzs ?.gomf' cacheability control and data streaming capabilities.

piex transtorms in (arbitrary size, dimension and stride o Intel's Willamette Processor (which is the first processor with

the data vector; in-place and out-of-place transforms) and is fully S
transparent to the user. It is suitable for arbitrary vector sizes of the new IA kernel and successor of the P6 processor line) is capa-
the underlying hardwaré ble of two-way double-precision floating-point SIMD operations
’ in addition to the four-way single-precision floating-point SIMD
capabilities.
1. INTRODUCTION The new Intel 1A-64 architecture includes two-way single-
precision floating-point SIMD instructions that operate on generic
Major vendors of general purpose microprocessors have includeds4-bit registers.
SIMD extensions into their instruction set architecture (ISA) to The AMD 3DNow! technology provides an additional instruc-
improve the performance of multi media applications by exploiting tion set for SIMD processing. The 3DNow! instructions operate
the parallelism available in most multi media kernels. on 64 bit registers, divided into two single-precision floating-point
All these ISA extensions are based on the packing of large words which are mapped onto the floating-point registers.
registers with smaller data types (usually of 8-bits, 16-bits or 32-
bits) and parallel operation on the subwords within one register.
This is calledshort vector SIMD para”ehsm 3. FFTW: A RECURS'VE, KERNEL-BASED APPROACH
In this paper, a SIMD vectorized version of FFTW [2] for)] o
different platforms is presented. It extends the FFTW-framework FFTW (Frigo, Johnson [2]) is currently the most sophisticated and
with new vectorized codelets introduced in this paper. In this re- fastest FFT package. Itis based on arecursive algorithm that han-
spect we focus on the balance between performance, portabilitydles arbitrary array sizes, dimensions and strides. Portability and
and the integration into the existing FFTW system. architecture-adaptivity are further important features of FFTW.
The paper is organized as follows. Section 2 describes the ar- In FFTW, the computation is accomplished by ercutor
chitecture of different multi media extensions available on recent Which calls highly optimized blocks of code calleddelets. The
processors. Section 3 shortly describes FFTW, while Section 4combination of codelets applied by the executor is specified by a
describes how FFTW SIMD code can be made architecture inde-Special data structure callecpkan. The plan is determined at run-

pendent. Section 5 discusses the vectorization of the kernels andime in an extra initialization phase by tipganner. The planner
Section 6 presents runtime results. measures the runtime of many plans and selects the fastest one

(Frigo, Johnson [2], Haentjens [3]). Since the generated plans de-
pend on the computer used, FFTW performsuatitecture adap-
2. SHORT VECTOR EXTENSIONS tive FFT computation.
Codelets are powerful machine-generated blocks of code for
performing computational steps for FFT execution of various
sizes. The standard distribution of FFTW includes various codelet

The following architectures feature a floating-point short vector
SIMD instruction set extension and are therefore potential targets

for FETW SIMD vectorization. sizes (powers of two up to 64 and combinations of smaller primes).

The AltiVec SIMD architecture [8] [9] of Motorola’s G4 gen- P .
eration of PowerPC microprocessors, the MPC7400, expands thqé;?ﬂv\?zg/dzllzefgecﬁgzlﬁﬁeg??tba]generated automatically by the

current PowerPC architecture through the addition of a 128-bit Basically there are two codelet typesjiddie codelets and

This work was supported by the Special Research Program SFB F011n0 twiddle codelets, which have different fields of utilization. A
“AURORA’ of the Austrian Science Fund FWF. twiddle codelet of size computes an in-place FFTs of given size

void fftw twiddle_2 (fftw conplex * A const fftw conplex * W
int iostride, int m int dist)
L
int i;
fftw_conpl ex *inout;
inout = A
for (i =m i >0; i =(i - 1), inout = (inout + dist), W= (W+ 1))

{

fftwreal tnpl, tnp8, tnp6, tnp7;

tmpl = c_re (inout[0]);

tmp8 = c_im (inout[0]);

{
fftwreal tnp3, tnp5, tnp2, tnp4;
tnp3 = c_re (inout[iostride]);
tnp5 = c_im(inout[iostride]);
tnp2 = c_re (WO0]);
tnpd = c_im(WO0]);

tnp6é = (tnp2 * tnp3 - tnpd * tnp5);
tnp7 = (tnp4d * tnp3 + tnp2 * tnp5);
}
c_re (inout[iostride]) = (tnpl - tnpé);
c_re (inout[0]) = (tnpl + tnp6);
c_im(inout[0]) = (tnp7 + tnp8);
c_im(inout[iostride]) = (tnp8 - tnp7);

}
}

Figure 1: A Radix-2 Twiddle Codelet.

scaled by the twiddle factors which can be outlined by

y:=(FeL)"y, 1)

whereT is diagonal scaling matrix. See Fig. 1 for a standard twid-
dle codelet of size 2.

A no twiddle codelet of size performs an out-of-place FFT
of given size with different strides for the input and output which
can be outlined by

y = F, z. 2

4. THE SSIMD MACRO FRAMEWORK

SIMD vectorization is a highly machine dependent process with

typedef __nml28 FFTW SI MD_VECT;
typedef __n64 FFTW S| MD_COVPLEX;

/* define const operations */

#define FFTW.SI MD_KONST(c, v) \
static const __declspec(align(16)) float (c)[4]={v,v,vV,V}

#def i ne FFTW LOAD_KONST_SI MX(¢) *(FFTW SI MD_VECT *)(c)

/* define arithmetic operations */

#define SIMD_ADD(a, b) _mm add_ps((a), (b))

#define SI MD_SUB(a, b) _mmsub_ps((a), (b))

#define SIMD_MJIL(a, b) _mm.nul _ps((a), (b))

/* define | oad operations */
#define LOAD_RE |Mre,iminput,stride)

FFTW SI MD_VECT | dt np1, | dt np2;

| dt np1=_nm_| oadl _pi (I dt npl, (input));

| dt np1=_nm | oadh_pi (I dt np1, (input) + (stride));
| dt np2=_nm_| oadl _pi (| dt np2
| dt np2=_nm_| oadh_pi (| dt np2
(re)=_mm shuffle_ps(ldtnpl
(im=_mmshuffle_ps(ldtnpl

,(input) + 2 * (stride));
,(input) + 3 * (stride));
, 1 dt np2, _MV SHUFFLE(2, 0, 2, 0));
.1 dt np2, _MM SHUFFLE(3, 1,3, 1));

Figure 2: FFTW SIMD Macros for the Intel Pentium I11.

within the codelets are done using these macros (see Figs. 2 and
3 for details). So the vectorized version of FFTW is architecture
independent and all architectural differences are covered by one
single include file that defines the needed high-level macros.
FFTW accesses single real numbers like the real or imaginary
part of a complex number. That results in an access to quanti-
ties of size 4 byte (single-precision) or 8 byte (double-precision)
that are naturally aligned. But SIMD instructions normally offer
fast access only to naturally alignedway vectors, e.g., 16 byte
aligned 16 byte quantities (vectors of 4 single-precision floating-
point numbers) for four-way SIMD architectures. All other ac-
cesses are called unaligned and are very expensive in terms of ac-
cess time. Avoiding extra loads, stores and shuffling is therefore
one of the key problem when producing fast FFTW SIMD kernels.

no common language extension or standard API. Short vector ex-

tensions differ in various aspects like the programming model, in-
struction set, data types, and syntax.

Currently, application developers have two ways to access
SIMD hardware. They can either rewrite key portions of the appli-
cation in assembly language using the SIMD instructions, or they

5. VECTORIZING THE KERNELS

To vectorize the FFTW codelets, two different approaches have
been applied.

use a high-level language and apply vendor-supplied macros thatnternal Vectorization. The computation in the codelets can be

provide the functionality of the SIMD-processing primitives.
The most common language extension for specifying SIMD-
processing primitives is to provide function-call like macros within

vectorized, if the codelet contains a loop. The vectoriza-
tion results in computing some passes of the loop simulta-
neously. Twiddle codelets can be handled that way.

the C programming language. Each macro directly translates togxternal Vectorization. If more than one codelet has to be exe-

a single SIMD processing instruction, leaving register allocation
and instruction scheduling to the compiler. This approach would
be even more attractive to application developers if the industry

agreed to a common set of macros, rather than having a different

set from each vendor.
Different programming models and proprietary software sup-

port do not have an impact as severe as expected on the vectoriza-
tion process, because there are only a few operations needed within

FFTW. These are standard operations liRel¢ading a complex
number, {z) storing a complex numberii¢) loading a twiddle fac-
tor, (iv) declaring a constanty) using a constantpg) extracting
the real parts into a vectorpd;) extracting the imaginary parts
into a vector, (i:7) building complex numbers from a vector of
real parts and a vector of imaginary parts;)(@dding two vectors,
() subtracting two vectors, ana4) multiplying two vectors.

These operations must be mapped onto the underlying SIMD-

cuted with the same parameters on strided data, subsequent
calls to this codelet can be replaced by one call to a vec-
torized form of this codelet. This can be done using the
no twiddle codelets as well as using the twiddle codelets.
The different methods result in a different number of mem-
ory accesses due to the way, twiddle factors are accessed.
The cache locality of FFTW can be perturbed as memory
accesses are reordered.

Per invocation, an internally vectorized codelet does the same
amount of work as a standard codelet, while an externally vec-
torized codelet doea times the work of a standard codelet on a
n-way SIMD architecture.

The vectorization presented in this paper requires changes in
the codelets, the executor and the planner as well as in FFTW's in-
ternal data structures. Every codelet (no twiddle and twiddle) gets

architecture. To achieve a high abstraction level, the basic FFTWan internally vectorized and an externally vectorized version asso-
operations are mapped directly onto a set of macros. All operationsciated. Whenever a codelet (i. e., a pointer to a codelet) is saved,

#def i ne FFTW TW DDLE_STRIDE 2 1

three pointers to the associated codelets are saved after the VeC- e im it 2 (VS N CONPLEX * A
. . TN . . voi w_tw e_si in COWPI * A
torization. So the planner has to initialize the plans in a different ~ rrrwSsiv coPLex = wint iostride, int m int dist)

way. These pointers are used by the executor, to use the approprf— int i

ate vectorized codelet instead of a loop of standard codelets. SN COPLEX 7 mout;
. . H >>= FFTW LD_SI MD_LEN;
To vectorize a codelet, either a loop has to be vectorized or {77 IS B) 0 - (nou + FETwsin_Len * dist).
the computation of four codelets are put into one vector codelet. QY= (W FETWTWDOLE STRIDE 2 * FETWSIND_LEN)
Like the FPU codelets the SIMD codelets are generated auto- FETWSIDVECT {1pl, (8, (e, (m7:
.) , I nout +) 1st);
matically by incorporating the following transformations into the (o

FFTW SI MD_VECT tnp3, tnps, tnp2, tnpd;
FFTW codelet generator. Lqu:RE_|KA(tnp3TTptnp5TTpi hout (igztride), dist);

LOAD_RE_IM (tnp2, tnp4, W+ (0), FFTWTW DDLE_STRI DE_2);

e Inthe FPU codelet the real parts and the imaginary parts can v Sy UGN S v Vsl B0
be accessed independently. In a SIMD codelet, the real part L ORE_RE_I M (81 VD_ADD (trpl. (np6).
i i i SI MD_ADD (tnp7, tnp8), inout 0), dist);
and the imaginary part have to be loaded with one macro. STarE e (e SR ey oY

. SIMD_SUB (tnp8, tnp7), i t iostride), dist);
e An equivalent transformation is applied to the data storing -SU8 (1P, LrpT), fnout @ (Testride), dist)

instructions. ’

e Any arithmetic operation is transformed into the corre-
sponding macro. Figure 3: The Radix-2 SIMD Twiddle Codelet.

e The function prototypes and data types have to be adjusted.

¢ An extra stride parameter is passed to the twiddle codelets. ntel C/C++ Compiler 4.5 and on a 400 MHz G4 AltiVec system
e According to the vectorization type, the twiddle factor ac- ©Perating under Yellodog Linux 1.2 usiggc- vec 2.9.5. In both
cess has to be adjusted. ca_lse)s the highest available optimization was used (see [1] for de-
tails).

See Fig. 4 for the Radix-2 SIMD twiddle codelet.

The changes in the internal data structure must be handled Speed-Up
by the executor loop and by the loops in the twiddle codelets 100% 11T T T 1T T T T T 717
within the executor and results in an different index computation
within the executor. E.g., for a vectorized loop with 10 passes o .
on a 4-way SIMD architecture, 2 vectorized passes and 2 stan- EX0 ° N
dard passes are needed when operating with externally vector- .
ized codelets. The functiohf t w_execut or _si npl e is the 50% % . o o |
FFTW recursion entry point. All further steps are done by calls to . *
execut or _many_vector.

Inf ftw_execut or_si npl e, the no twiddle case can only 25% - ° n
occur with only one call to the codelet as it is the entry point of the
recursion. So this case cannot be vectorized. The key issue is the
twiddle case.

In theexecut or _many_vect or, both the twiddle and the
no twiddle case have to be changed. The no twiddle case occurs
with a lot of repetitions and is the leaf of the recursion. So the Figure 4: Speed-Up of No Twiddle Codelets on a 650 MHz Pen-
vectorized version of the codelets can be used. .

- : tium 1.

In the twiddle case, both the internally and the externally vec-
torized case is possible. The original code can be modified in two
different ways: The first method leads to the externally vectorized In the first test series, only the codelet runtime was mea-

version. Only the standard codelets and the externally vectorizedg ;req. The internally vectorized codelets and the externally vec-

codelets are used. This vectorization may lead to cache problemsyyrizeq codelets were compared to the original FPU codelets. In

as elements with big power of two strides are loaded within a few {hege tests, the externally vectorized codelets were typically about

lines of code within the codelet. However, this technique is more 15 o, faster than the internally vectorized codelets due to a smaller

obvious and faster to implement.. number of shuffling operations. Speed-ups of 25% to 70 % are
The internally vectorized version has the same data access patychieved over the standard FPU codelets. See Figs. 5 and 6.

tern as the original FFTW version and shows a better data local- | the second test series, the new codelets were tested within

ity than the externally vectorized version. As the no twiddle case FrTw. The SIMD FETW version was tested using vectorlengths
has no obvious internal vectorization, two different vectorization ranging from2* to 22° and ranging fron10* to 10°. Compared to

methods havg to be used: t_he _external vers_ion for the no'twiddlethe standard version of FFTW typically speed-ups of 25 % to 50 %
case and the internal vectorization for the twiddle case. This Ieadshave been achieved.

to a more complex executor implementation.

0% [L
12 3 45 6 7 8 9 101112 13 14 15 16 32 64

Codelet Size

For the vectorlengths of typ2® the performance of the ex-
ternally vectorized version degrades (due to cache associativity

6. EXPERIMENTAL RESULTS problems) while the internally vectorized version shows a good
speed-up for both the in-cache case and the out-of-cache case.
The new SIMD version of FFTW was tested on a 650 MHz Pen- For vectorlengths of typ&10? the externally vectorized ver-

tium Il system operating under Windows NT 4.0 using the native sion and the internally vectorized version show similar characteris-

Speed-Up
100% T T T T T T
ext. vect. Codelets =
int. vect. Codelets o
% -
L]
n
L]
50% " " . . M
[] [}
° ° ° ®
25% - - .
L]
L]
0 | | | | | | | | | |

10 16 32 64

Codelet Size

Figure 5:
tium 111

tics with an average speed-up of about 25 % which even increases
for the out of cache case. Typically more than 99 % of the compu-
tation is done in the SIMD part. See Figs. 7 and 8.

Speed-Up

5% \ \ \
ext. vect. Version
int. vect. Version
50% —
25% — —
0 | | | |
10! 10? 10% 10* 10° 10°

Vector Length N

Speed-Up of Twiddle Codelets on a 650 MHz Pen- Figure 7: Speed-Up compared to FFTW FRW,= k10¢ on a
650 MHz Pentium lII.

8. ACKNOWLEDGEMENTS

Matteo Frigo, with whom we have worked closely for more than
a year, has had a very strong influence on the greater part of this

paper.

Speed-Up
100% \ \ \ \ \
ext. vect. Version
int. vect. Version
5% — =
50% —
25%
0 | | | | |
21 20 28 910 912 o14 916 918 920
Vector Length N
Figure 6: Speed-Up compared to FFTW FPN, = 2* on a

650 MHz Pentium lIl.

7. CONCLUSION

In this paper a SIMD extension to FFTW is presented. It sup-
ports all features of complex transforms in FFTW (arbitrary size,
dimension and stride of the data vector; in-place and out-of-place
transforms) in an architecture independent way. Arbitramway
floating-point SIMD is supported within arbitrary sized FFTW ker-
nels. It turns out that the access to complex numbers instead of
SIMD vectors within the kernels is the key problem.

Significant speed-ups over the standard version of FFTW have
been achieved.

For unit stride data, special codelets are more appropriate.
They are incorporated into the next version of FFTW as special-
ized solvers.

(1]

(2]

(3]

[4]
(5]
[6]
[7]

(8]
9]

9. REFERENCES

F. Franchetti,Short Vector FFTsMaster Thesis, Depart-
ment of Applied and Numeric Mathematics, Technical Uni-
versity of Vienna, 2000.

M. Frigo, S. JohnsonFFTW: An Adaptive Software Ar-
chitecture for the FF,TProceedings of the ACM SIGPLAN
'99 conference on Programming language design and im-
plementation, 1999, Pages 169 - 180.

G. Haentjens,An Investigation of Recursive FFT Imple-
mentations Masters Thesis, Electrical and Computer En-
gineering, Carnegie Mellon University, 2000.

M. Frigo, A Fast Fourier Transform CompildProceedings
of the PLDI Conference, May 1999, Vol. 3, p. 1381.

Intel Corporation,intel C/C++ Compiler User’s Guide —
With Spport for the Streaming SIMD Extensigri$99.

Intel Corporation,intel Architecture Software Developer’s
Manual 1999.

Intel Corporation,AP-833 Data Alignment and Program-
ming Issues for the Streaming SIMD Extensions with the
Intel C/C++ Compiler1999.

Motorola Corporation,AltiVec Technology Programming
Environments Manuall998.

Motorola Corporation AltiVec Technology Programming
Interface Manuall1998.

