
CONVOLUTIVE REDUCED RANK WIENER FILTERING

Jonathan H. Manton and Yingbo Hua

ARC Special Research Centre for Ultra-Broadband Information Networks
Department of Electrical and Electronic Engineering

The University of Melbourne, Parkville, Victoria 3010, Australia.
j.manton@ee.unimelb.edu.au

ABSTRACT

If two wide sense stationary time series are correlated then one
can be used to predict the other. The reduced rank Wiener filter is
the rank constrained linear operator which maps the current value
of one time series to an estimate of the current value of the other
time series in an optimal way. A closed form solution exists for
the reduced rank Wiener filter. This paper studies the problem of
determining the reduced rank FIR filter which optimally predicts
one time series given the other. This optimal FIR filter is called the
convolutive reduced rank Wiener filter, and it is proved that deter-
mining it is equivalent to solving a weighted low rank approxima-
tion problem. In certain cases a closed form solution exists, and
in general, the iterative optimisation algorithm derived here can
be used to converge to a locally optimal convolutive reduced rank
Wiener filter.

1. INTRODUCTION

Let x(t) 2 R
m and y(t) 2 R

n be two wide sense stationary
time series, where t 2 R denotes time. Let z�1 denote the unit
delay operator defined by z�1x(t) = x(t � 1). The convolutive
rank r Wiener filter of order p is defined to be the matrix T (z�1)
satisfying

arg min
T (z�1)

T (z�1)=A(z�1)B

E
h

y(t)� T (z�1)x(t)



2i ;

A(z�1) =

p�1X
i=0

Aiz
�i
; Ai 2 R

n�r
; B 2 Rr�m (1)

where the minimisation is over the elements of the matrices Ai
and B. (Since x(t) and y(t) are wide sense stationary, the expec-
tation in (1) does not depend on t.) The norm is taken to be the
2-norm; kxk2 = xTx for any vector x, where the superscript T
denotes transpose. The special case of p = 1 in (1) has been exten-
sively studied in the literature; the minimising matrix T is called
the reduced rank Wiener filter [2, 3, 4, 9, 10, 11, 12]. This paper
studies various properties of the convolutive reduced rank Wiener
filter, including deriving a closed form solution of (1) under certain
conditions on the statistics of x(t).

The apparently more general case of when B is allowed to
be a polynomial in z�1 reduces to (1) as follows. If B(z�1) =Pq�1

i=0 Biz
�i then form the augmented matrix ~B and augmented
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vector ~x(t) given by

~B = [B0 B1 � � � Bq�1] ; (2)

~x(t) =
h
x(t)T x(t� 1)T � � � x(t� q + 1)T

iT
: (3)

Because B(z�1)x(t) = ~B~x(t), the T (z�1) = A(z�1)B(z�1)
which minimises E

�
ky(t)� T (z�1)x(t)k2

�
is found by solving

(1) with x(t) replaced by ~x(t).
Motivation for considering (1) is now given. The matrixB can

be thought of as an analysis filter. It extracts from the time series
x(t) the r most useful linear combinations of the elements of x(t)
for predicting y(t). The matrix A(z�1) can be thought of as a
synthesis filter. It optimally combines the r components of Bx(t)
to estimate y(t). Purposely choosing r < m makes the resulting
filter robust to mis-specification of the statistics of x(t) and y(t).
Indeed, restricting B to have r rows is similar in spirit to principal
component analysis [1]. Furthermore, rank reduction is known to
trade bias for variance (or risk) [7, 11].

The outline of this paper is as follows. Section 2 briefly re-
views the weighted low rank approximation problem. Section 3
proves the main result of this paper, which is that the convolutive
rank reduced Wiener filter can be calculated by solving an associ-
ated weighted low rank approximation problem. This fundamen-
tal result is used in Section 4 to derive a closed form solution of
(1) under certain conditions on the statistics of x(t). A numeri-
cal algorithm for solving (1) is given in Section 5. Simulations in
Section 6 confirm that the convolutive rank reduced Wiener filter
performs as expected.

2. LOW RANK APPROXIMATION

This section briefly reviews the weighted low rank approximation
problem [8] of calculating

arg min
R

rankfRg�r

kX �Rk2Q;

kX �Rk2Q = vec fX �RgT Q vec fX �Rg (4)

for a given data matrix X 2 Rnp�m and positive definite symmet-
ric weighting matrix Q 2 R

mnp�mnp . Here, vec f�g is the vec
operator [5] which stacks the columns of a matrix to form a col-
umn vector. Section 3 will show that the convolutive reduced rank
Wiener filter problem (1) can be solved by solving a corresponding
low rank approximation problem (4).

The traditional approach to reduced rank problems [12] is to
over-parameterise R as R = AB where A has r columns and



B has r rows. However, some properties of the reduced rank
problem, such as whether or not a closed form solution exists,
are obscured by the ambiguity in the decomposition R = AB =�
AS�1

��
SB

�
, the latter equality holding for any invertible matrix

S 2 Rr�r .
The key insight [8] required to remove the ambiguity is the

realisation that the matrix R can be decomposed as R = AB if
and only if there exists a full rank matrix N 2 R

m�(m�r) such
that RN = 0. (Given either B or N , the other may be taken to
be any matrix satisfying BN = 0.) This implies that (4) can be
solved by first computing

arg min
N2Rm�(m�r)

jNTNj 6=0

f1(N); f1(N) = min
R2Rnp�m

RN=0

kX �Rk2Q

(5)

where
��NTN

�� is the determinant of NTN and is non-zero if and
only if N has full rank. A closed form expression for f1(N) in (5)
exists and is given by [8, Th. 1]

f1(N) = vec fXgT (N 
 Inp)h
(N 
 Inp)

T
Q
�1(N 
 Inp)

i�1
(N 
 Inp)

T vec fXg (6)

where 
 is Kronecker’s product [5] and Inp 2 R
np�np is the

identity matrix.
The reformulation (5) has removed the ambiguity in the fol-

lowing sense. Since f1(NS) = f1(N) for any invertible ma-
trix S, the value of f1(N) depends only on the range space of N .
Mathematically, if Gm;m�r denotes the collection of all m � r
dimensional subspaces of Rm (so that range fNg 2 Gm;m�r if
N has full rank), then there exists a function ~f1 : Gm;m�r ! R

such that f1(N) = ~f1(range fNg) holds for all full rank matrices
N 2 Rm�(m�r) . Thus (5) can be written as

arg min
S2Gm;m�r

~f1(S) (7)

which is an unconstrained optimisation problem on the Grassman-
nian manifoldGm;m�r . Since (7) has a unique solution in general,
the ambiguity has been removed [8].

Although (7) will not be used subsequently in this paper, the
reason for mentioning it is that it shows that all the information
about the rank reduced problem (4) is nicely captured by the re-
formulation (5). The same idea is used in the next section to study
the convolutive reduced rank Wiener filter.

3. RELATIONSHIP TO LOW RANK APPROXIMATION

This section shows that the convolutive reduced rank Wiener filter
(1) can be computed by solving a weighted low rank approxima-
tion problem (4).

Finding a closed form solution to the convolutive reduced rank
Wiener filter is impeded by the ambiguity in the decomposition
T (z�1) = A(z�1)B =

�
A(z�1)S�1

��
SB

�
, the latter equality

holding for any invertible matrix S 2 R
r�r . As in Section 2,

this ambiguity is removed by noting that the matrix T (z�1) =

T0+T1z
�1+� � �+Tp�1z

�(p�1) can be decomposed as T (z�1) =
A(z�1)B if and only if there exists a full rank matrix N such that
T0N = T1N = � � � = Tp�1N = 0. (Given either B or N , the

other may be taken to be any matrix satisfying BN = 0.) Thus
(1) can be solved by first computing

arg min
N2Rm�(m�r)

jNTNj 6=0

f2(N);

f2(N) = min
~T2Rn�pm

~T (Ip
N)=0

E
h
ky(t)� ~T ~x(t)k2

i
(8)

where

~T = [T0 T1 � � � Tp�1] ;

~x(t) =
h
x(t)T x(t� 1)T � � � x(t� p+ 1)T

iT
(9)

are the augmented versions of the components of T (z�1) and
x(t). (Note that ~T (Ip 
N) = [T0N T1N � � � Tp�1N ].)

It is assumed that the following covariance matrices are given.

R~x~x = E
h
~x(t)~x(t)T

i
; Ry~x = E

h
y(t)~x(t)T

i
; (10)

Ryy = E
h
y(t)y(t)T

i
; R~xy = E

h
~x(t)y(t)T

i
: (11)

Since E
h
ky(t)� ~T ~x(t)k2

i
is quadratic in the elements of

~T , it is possible to choose X , R and Q in (5) so that f1(N) =
f2(N)+c for some constant c. This equivalence is now established
formally.

To make the constraint ~T (Ip
N) = 0 equivalent toRN = 0,
define R to be R = [TT0 � � � T Tp�1]

T . The cost can be written in
terms of R instead of ~T as follows. Define K to be the unique

permutation matrix such that K vec fRg = vec
n
~T T
o

holds for

any choice of T0; � � � ; Tp�1. (In fact, K = (Kn;p 
 Im)Knp;m

where the commutation matrix [5] Knp;m is the unique permu-
tation matrix such that Knp;m vec fXg = vec

�
XT

	
holds for

any matrix X 2 R
np�m , and similarly for Kn;p.) Define c =

tr
�
Ryy �Ry~xR

�1
~x~xR~xy

	
and ~X = Ry~xR

�1
~x~x. Then

E
h
ky(t)� ~T ~x(t)k2

i
= tr

n
Ryy � 2 ~TR~xy + ~TR~x~x

~T T
o

= tr
n
( ~X � ~T )R~x~x( ~X � ~T )T

o
+ c

= vec
n
~XT � ~T T

oT
(In 
R~x~x) vec

n
~XT � ~T T

o
+ c

= vec fX �RgT KT (In 
R~x~x)K vec fX �Rg+ c (12)

where X satisfies K vec fXg = vec
n
~XT

o
. This is summarised

in Theorem 1 below.

Theorem 1 The convolutive rank r Wiener filter T (z�1) = T0 +

T1z
�1 + � � � + Tp�1z

�(p�1), when written in the form R =
[T T0 � � � T Tp�1]

T , is also the weighted low rank approximation
of the matrix X 2 Rnp�m with weighting Q 2 Rnmp�nmp where
X and Q are given by

vec fXg = K
T vec

n
(Ry~xR

�1
~x~x)

T
o
; (13)

Q = K
T (In 
R~x~x)K; (14)

K = (Kn;p 
 Im)Knp;m (15)

and the matrices Kn;p and Knp;m are the commutation matrices
defined earlier.



Remark: Since vec fRg = KT vec
n
~T T
o

, the matrix X is ob-

tained from Ry~xR
�1
~x~x in the same way that R is obtained from

~T ; divide Ry~xR
�1
~x~x into p blocks of size n �m, then stack these

blocks vertically.
From (12) it is readily seen that the optimal Wiener filter with-

out the rank constraint is R = X , or equivalently, ~T = Ry~xR
�1
~x~x.

Therefore, Theorem 1 shows that the convolutive reduced rank
Wiener filter is obtained by approximating a permuted version X
of the convolutive full rank Wiener filter matrixRy~xR

�1
~x~x by a rank

reduced one. Somewhat surprisingly, the weighting matrix Q for
the approximation does not depend on Ry~x or Ryy .

It is remarked that the term tr
�
Ryy �Ry~xR

�1
~x~xR~xy

	
in (12)

is the smallest mean square error (MSE) achievable if there is no
rank constraint.

4. CLOSED FORM SOLUTION

For any matrix X with SVD X = U�V T , define �r to be �
with all but the first r singular values set to zero. It is well known
that the best rank r approximation of X in the unweighted case
is R = Truncr fXg = U�rV

T . Theorem 2 below generalises
this result to certain weighted cases. Combining Theorem 2 and
Theorem 1 leads to a closed form solution of the convolutive rank
reduced Wiener filter under certain conditions.

Theorem 2 If Q in (4) can be decomposed as Q = A
B, where
A 2 Rm�m andB 2 Rnp�np , then the best rank r approximation

of X is R = B�
1
2 Truncr

n
B

1
2XA

1
2

o
A�

1
2 .

PROOF. Define ~X = B
1
2XA

1
2 and ~N = A�

1
2N . Then

f1(N), defined in (6), can be written as

f1(N) = tr

�
~NT ~XT ~X ~N

�
~NT ~N

��1�
:

This generalised Rayleigh quotient [8] achieves its minimum when
the columns of ~N are the m� r smallest right singular vectors of
~X . The R which minimises kX � Rk2Q in (5) subject to R ~N =

RA
1
2N = 0 can then be shown to be (c.f., [8]) as given in the

theorem. 2

The following two results follow straightforwardly.

Lemma 3 Define Q as in Theorem 1. Then Q can be decomposed
as Q = A 
 B, where A 2 R

m�m and B 2 R
np�np , if and

only if R~x~x can be decomposed as R~x~x = R
(1)
~x~x 
 R

(2)
~x~x, where

R
(1)
~x~x 2 R

p�p and R(2)
~x~x 2 R

m�m .

Corollary 4 (Optimal Filter) Define X and R as in Theorem 1.
If R~x~x decomposes as R~x~x = R

(1)
~x~x 
 R

(2)
~x~x, where R(1)

~x~x 2 R
p�p

and R
(2)
~x~x 2 R

m�m , then the convolutive rank reduced Wiener
filter R is given by

R =

��
R
(1)
~x~x

�� 1
2

 In

�

Truncr

���
R
(1)
~x~x

� 1
2

 In

�
X
�
R
(2)
~x~x

� 1
2

��
R
(2)
~x~x

�� 1
2
: (16)

If p = 1 then (16) reduces to

R = Truncr

�
Ry~xR

� 1
2

~x~x

�
R
� 1

2
~x~x ;

the well-known formula for the rank reduced Wiener filter.

5. NUMERICAL ALGORITHM

This section presents a numerical algorithm for solving the convo-
lutive rank reduced Wiener filtering problem (1). The algorithm
is derived by first using Theorem 1 to convert it to a low rank ap-
proximation problem of the form (4), and then using one of the
algorithms in [8] to solve (4).

Algorithm 5 Given the correlation matrices R~x~x and Ry~x de-
fined in (10), the following algorithm iteratively converges to a
local minimum of the cost function (1). The filter T (z�1) is re-
turned in the matrix form R = [TT0 � � � T Tp�1]

T where T (z�1) =
T0+z

�1T1+� � �+z
�(p�1)Tp�1. The algorithm uses the function

f(N) = vec fXNgTh
(N 
 In)

T
Q
�1(N 
 In)

i�1
vec fXNg : (17)

1. Set K := (Kn;p 
 Im)Knp;m. (See (1) for the definition
of n, m and p, and see Section 3 for the definition of the
commutation matrices Knp;m and Kn;p.)

2. SetQ := KT (In
R~x~x)K. Set X 2 Rnp�m to the matrix
for which vec fXg = KT vec

�
(Ry~xR

�1
~x~x)

T
	

.

3. Set step size � := 1. Choose N 2 R
m�(m�r) and N? 2

R
m�r such that [N N?]

T [N N?] = I .

4. Set A 2 R
np�(m�r) and B 2 R

np�m to the matrices for
which

vec fAg =
h
(N 
 In)

T
Q
�1(N 
 In)

i�1
vec fXNg ;

vec fBg = Q�1 vec
n
ANT

o
:

5. Compute the descent direction K = �2NT
?(X � B)TA.

If kKk is sufficiently small then stop, returning the matrix
R 2 Rnp�m satisfying

vec fRg = vec fXg �Q
�1(N 
 In)h

(N 
 In)
T
Q
�1(N 
 In)

i�1
(N 
 In)

T vec fXg :

6. If f(N) � f(N + 2�N?K) � �kKk2 then set � := 2�
and repeat Step 6. (Recall that f is defined in (17).)

7. If f(N) � f(N + �N?K) < 1
2
�kKk2 then set � := 1

2
�

and repeat Step 7.

8. Set N := N + �N?K. Renormalise [N N?] by setting
[N N?] := qf fNg. (The “Q-Factor” operator qf fNg is
the Q-matrix in the QR decomposition of N .) Go to Step 4.

Remark: Alg. 5 minimises (8) on the Grassmann manifold of
matrices of the form

�
N : NTN = I

	
. See [8, 6] for details.



6. SIMULATIONS

The following model was used to generate the time series y(t) 2
R
3 .

y(t) = A0x(t) +A1x(t� 1) + �
2
n(t) (18)

where both x(t) and n(t) are independent white Gaussian noise
processes with zero mean and unit variance and the matrices A0

and A1 are given by

A0 =

2
4 1 0:5 0:2

0:7 1 0:3
0:5 0:5 0:1

3
5 ; A1 =

2
4 0:1 0:9 0:1

0:8 0:2 0:2
0:4 0:6 0:1

3
5 :
(19)

Note that both A0 and A1 have full rank. In the figures, the noise
variance �2 is related to the SNR according to the formula SNR =
10 log10 �

2.
The time series x(t) was used to predict y(t) using three fil-

ters; the Wiener filter by(t) = A0x(t), the convolutive rank 2
Wiener filter found by solving (1) with r = 2, and the convolu-
tive (full rank) Wiener filter by(t) = A0x(t) + A1x(t � 1). The
results are plotted in Figure 1.

The same three filters were then used to predict y(t) given the
noise corrupted time series x(t) +w(t), where the additive white
Gaussian noisew(t) had zero mean and variance 0.04. The results
are plotted in Figure 2 and demonstrate the robustness of rank re-
duction to model mis-specification. The rank reduced convolutive
Wiener filter performs similarly to the optimal full rank convolu-
tive Wiener filter yet is computationally simpler to compute.

7. CONCLUSION

This paper introduced the convolutive rank reduced Wiener filter,
which is a generalisation of the rank reduced Wiener filter pre-
viously studied in the literature. A closed form solution of the
convolutive rank reduced Wiener filter was derived, as well as a
numerical algorithm for computing it.
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