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ABSTRACT

If two wide sense stationary time series are correlated then one
can be used to predict the other. The reduced rank Wiener filter is
the rank constrained linear operator which maps the current value
of one time series to an estimate of the current value of the other
time series in an optimal way. A closed form solution exists for
the reduced rank Wiener filter. This paper studies the problem of
determining the reduced rank FIR filter which optimally predicts
onetime series given the other. Thisoptimal FIR filter iscalled the
convolutive reduced rank Wiener filter, and it is proved that deter-
mining it is equivalent to solving a weighted low rank approxima-
tion problem. In certain cases a closed form solution exists, and
in general, the iterative optimisation algorithm derived here can
be used to converge to alocally optimal convolutive reduced rank
Wiener filter.

1. INTRODUCTION

Let z(t) € R™ and y(t) € R" be two wide sense stationary
time series, where t € R denotestime. Let z~' denote the unit
delay operator defined by 2 'x(t) = (¢t — 1). The convolutive
rank r Wiener filter of order p is defined to be the matrix T'(z™")
satisfying

arg min
T(="1)
T(z~H)=A(z"")B

E[ly® -T¢"e0)|].

p—1
AT =) Aiz™, A eRYVT, BeR”™ (1)
i=0

where the minimisation is over the elements of the matrices A;
and B. (Since z(t) and y(t) are wide sense stationary, the expec-
tation in (1) does not depend on ¢.) The norm is taken to be the
2-norm; ||z||> = «” « for any vector a, where the superscript T
denotestranspose. The specia case of p = 1in (1) has been exten-
sively studied in the literature; the minimising matrix 7' is called
the reduced rank Wiener filter [2, 3, 4, 9, 10, 11, 12]. This paper
studies various properties of the convolutive reduced rank Wiener
filter, including deriving aclosed form solution of (1) under certain
conditions on the statistics of (¢).

The apparently more general case of when B is allowed to
be a polynomial in 2~ ! reduces to (1) as follows. If B(z™!) =
> ¢ Biz~" then form the augmented matrix B and augmented
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vector (t) given by

B=[ByBi - By, @

i) = [ 2t -1 - et-q+1)"] . @

Because B(z~")x(t) = Bz(t),the T(z™") = A(z~")B(z7")
which minimises E[||y(t) — T(=~")x(t)||*] isfound by solving
(1) with z(¢) replaced by ().

Motivation for considering (1) isnow given. Thematrix B can
be thought of as an analysis filter. It extracts from the time series
x(t) the r most useful linear combinations of the elements of x(t)
for predicting y(¢). The matrix A(z~') can be thought of as a
synthesisfilter. It optimally combines the » components of Bx(t)
to estimate y(¢). Purposely choosing r < m makes the resulting
filter robust to mis-specification of the statistics of «(¢) and y(t).
Indeed, restricting B to have r rowsis similar in spirit to principal
component analysis [1]. Furthermore, rank reduction is known to
trade bias for variance (or risk) [7, 11].

The outline of this paper is as follows. Section 2 briefly re-
views the weighted low rank approximation problem. Section 3
proves the main result of this paper, which is that the convolutive
rank reduced Wiener filter can be calculated by solving an associ-
ated weighted low rank approximation problem. This fundamen-
tal result is used in Section 4 to derive a closed form solution of
(1) under certain conditions on the statistics of (). A numeri-
cal algorithm for solving (1) is given in Section 5. Simulationsin
Section 6 confirm that the convolutive rank reduced Wiener filter
performs as expected.

2. LOW RANK APPROXIMATION

This section briefly reviews the weighted low rank approximation
problem [8] of calculating
arg min | X — Rlf2,
rank{R}<r
|X — R||g = vec{X — R} Qvec{X — R} (4)

for agiven datamatrix X € R™*™ and positive definite symmet-
ric weighting matrix Q € R™"P*™"P_ Here, vec {-} is the vec
operator [5] which stacks the columns of a matrix to form a col-
umn vector. Section 3 will show that the convolutive reduced rank
Wiener filter problem (1) can be solved by solving acorresponding
low rank approximation problem (4).

The traditional approach to reduced rank problems [12] is to
over-parameterise R as R = AB where A has r columns and



B has r rows. However, some properties of the reduced rank
problem, such as whether or not a closed form solution exists,
are obscured by the ambiguity in the decomposition R = AB =
(AS™")(SB), thelatter equality holding for any invertible matrix
S eR™".

The key insight [8] required to remove the ambiguity is the
realisation that the matrix R can be decomposed as R = AB if
and only if there exists a full rank matrix N € R™*(™~") guch
that RN = 0. (Given either B or N, the other may be taken to
be any matrix satisfying BN = 0.) Thisimplies that (4) can be
solved by first computing

arg  min fi(N),  fi(N)= min [IX-R[
NeRmX(m—T‘) RER"PX™M
[NT N0 RN=0
©)

where | N N| is the determinant of N” N and is non-zero if and
only if N hasfull rank. A closed form expression for fi (V) in (5)
existsand isgiven by [8, Th. 1]

fi(N) = vec {X}" (N ® I,)
(Vo 1.,)"Q ' (N e 1,)] T (N® L)  vec{X} (6)

where ® is Kronecker’'s product [5] and I,, € R"?*"? isthe
identity matrix.

The reformulation (5) has removed the ambiguity in the fol-
lowing sense. Since fi(NS) = fi(N) for any invertible ma-
trix S, the value of f1 (V) depends only on the range space of V.
Mathematicaly, if Gy,,m—» denotes the collection of al m — r
dimensional subspaces of R™ (so that range {N} € Gu,m—r if
N has full rank), then there exists a function f; : Gmm—r = R
suchthat f1(N) = fi(range {N}) holdsfor all full rank matrices
N e R™*(m=) Thus (5) can be written as

arg _min  fi(8) @

m,m—r

which is an unconstrained optimisation problem on the Grassman-
nian manifold Gy, —r. Since (7) hasaunique solutionin general,
the ambiguity has been removed [8].

Although (7) will not be used subsequently in this paper, the
reason for mentioning it is that it shows that al the information
about the rank reduced problem (4) is nicely captured by the re-
formulation (5). The sameideaisused in the next section to study
the convolutive reduced rank Wiener filter.

3. RELATIONSHIP TO LOW RANK APPROXIMATION

This section shows that the convolutive reduced rank Wiener filter
(1) can be computed by solving a weighted low rank approxima-
tion problem (4).

Finding a closed form solution to the convol utive reduced rank
Wiener filter is impeded by the ambiguity in the decomposition
T(z7') = A(z"")B = (A(z~")S7") (SB), the latter equality
holding for any invertible matrix S € R™*". Asin Section 2,
this ambiguity is removed by noting that the matrix T'(z~') =
To+Tiz 4 4Tp—12~?~ canbedecomposed asT' (2~ !) =
A(z~h) B if and only if there exists afull rank matrix N such that
ToN =T:N =--- =T,_1N = 0. (Given either B or N, the

other may be taken to be any matrix satisfying BN = 0.) Thus
(2) can be solved by first computing

arg min f2(N),
NeRmx(m—r)
[NT N|#0
f(N)= _min E[ly®) -Ta@)l*] ©
FeRnXpm
T(I,®N)=0
where
T=[ToT - Tpei,

@(t) = [m(t)T e(t-1)" - m(t_p+1)T]T ©

are the augmented versions of the components of T(z™') and
x(t). (Notethat T(I, ® N) = [ToN ' N --- Tp_1N].)
It isassumed that the following covariance matrices are given.

Res = Ba2(1)' ], Rys=Bly®Oa0)’],  (10)
Ryy = E[y®y()"], Rey=E[z0y®)7]. @D

Since E[||y(t) — Té(t)”z] is quadratic in the elements of

T, it is possible to choose X, R and ( in (5) so that fi(N) =
f2(IN')+c for some constant c. Thisequivalenceisnow established
formally. _

To makethe constraint T'(I, ® N) = 0 equivalentto RN = 0,
define Rtobe R = [Ty --- T, ;]". The cost can be written in

terms of R instead of T as follows. Define K to be the unique
permutation matrix such that K vec { R} = vec {TT} holds for

any choice of Ty, --- ,Tp—1. (Infact, K = (Kn,p @ Inn)Knp,m
where the commutation matrix [5] Kyp,n iS the unique permu-
tation matrix such that Ky, m vec {X} = vec {X”} holds for
any matrix X € R"?*™ and similarly for K,,,,.) Definec =
tr {Ryy — RyaRz3Ray} and X = RyzR; .. Then

E[||y(t) - T@(t)nﬂ = tr {Ryy — 9T Ry + TRﬁTT}
=tr {(X = T)Ras (X = T)" } +¢
= vee {X7 ~ 77} (I ® Raz) vee [ X7 ~T"} +c
=vec{X — R} K"(I, ® Rzz)K vec{X — R} +¢ (12

where X satisfies K vec { X} = vec {XT}. This is summarised
in Theorem 1 below.

Theorem 1 The convolutive rank r Wener filter T(271) = T +
Tiz7' 4+ - + T, 12~ =Y when written in the form R =
(T3 - T,,]", is also the weighted low rank approximation
of thematrix X € R™*™ with weighting Q € R*"?*"™P where
X and Q are given by

vec {X} = K7 vec {(RyiR;;;)T} , (13)
Q=K"(I, ® Rzs)K, (14
K= (Kn,p ® Im)Knp,m (15)

and the matrices K,,,, and K, are the commutation matrices
defined earlier.



Remark: Sincevec {R} = K7 vec {TT}, the matrix X is ob-
tained from R,z R} in the same way that R is obtained from

T; divide Ryz R 2 into p blocks of size n x m, then stack these
blocks vertically.

From (12) itisreadily seen that the optimal Wiener filter with-
out the rank constraintis R = X, or equivalently, T = RyiR;il.
Therefore, Theorem 1 shows that the convolutive reduced rank
Wiener filter is obtained by approximating a permuted version X
of the convolutive full rank Wiener filter matrix Ry R4 by arank
reduced one. Somewhat surprisingly, the weighting matrix @ for
the approximation does not depend on Ryz Or Ryy.

Itisremarked that theterm tr { Ry, — RyzR32 Ray | in(12)
is the smallest mean square error (MSE) achievable if there is no
rank constraint.

4. CLOSED FORM SOLUTION

For any matrix X with SVD X = UZVT, define I, to be ©
with all but the first » singular values set to zero. It iswell known
that the best rank r approximation of X in the unweighted case
is R = Trunc, {X} = US, V7. Theorem 2 below generalises
this result to certain weighted cases. Combining Theorem 2 and
Theorem 1 leads to a closed form solution of the convolutive rank
reduced Wiener filter under certain conditions.

Theorem 2 If Q in (4) can be decomposed as@Q = A ® B, where
A e R™*™ and B € R"*"?  then the best rank r approximation

of X isR = B~ % Trunc, {B%XA%}A—%.

PROOF.  Define X = BzXAz and N = A zN. Then
fi1(IV), defined in (6), can be written as

£ (N) = br {NTXTXN (NTN)_I} .

This generalised Rayleigh quotient [8] achieves its minimum when

the columns of N are the m — r smallest right singular vectors of

X. The R which minimises || X — R||%, in (5) subject to RN =

RAZN = 0 can then be shown to be (c.f., [8]) as given in the

theorem. m|
The following two results follow straightforwardly.

Lemma 3 Define Q asin Theorem 1. Then @) can be decomposed
as@ = A® B,where A € R™*™ and B € R""*"? | if and
only if Rzz can be decomposed as Rzs = RY. ® RYY, where
R € R and R € R,

Corallary 4 (Optimal Filter) Define X and R asin Theorem 1.
If Rz decomposes as Rzz = RS ® R, where R{) € RP*?
and R(;i) € R™*™, then the convolutive rank reduced Wener
filter R isgiven by

R= [(Rg;)‘% ® In]

Trunc, { [(Rg;) ts In] X (Rgfg) : } (Rg;) P e

If p = 1 then (16) reduces to

B

2E )

_1 _
R = Trunc, {RyiRif } R
the well-known formulafor the rank reduced Wiener filter.

5. NUMERICAL ALGORITHM

This section presents a numerical agorithm for solving the convo-
Iutive rank reduced Wiener filtering problem (1). The algorithm
is derived by first using Theorem 1 to convert it to alow rank ap-
proximation problem of the form (4), and then using one of the
algorithmsin [8] to solve (4).

Algorithm 5 Given the correlation matrices Rzz and Ry de-
fined in (10), the following algorithm iteratively converges to a
local minimum of the cost function (1). The filter T'(27") is re-
turned inthe matrix formR = [Ty --- T, ,]" where T(2 ') =
To+2 'Ti+---+2~ =Y, Thealgorithmuses thefunction

F(N) =vec{XN}"

(Ve L)@ ' (Na )]

1vec{XN}. (17)

1 St K := (Kn,p ® L) Knp,m- (See (1) for the definition
of n, m and p, and see Section 3 for the definition of the
commutation matrices Kp,» and K, p.)

2. St Q:= KT'(I,®Rz3)K. St X € R"P*™ to the matrix
for whichvec {X} = K7 vec {(RyaR33)" }.

3. Setstepsize ) := 1. Choose N € R™*(™~") and N, €
R™*" suchthat [N N, ][N N.] =1.

4. St A € R?*("=7) and B € R""*"™ to the matrices for
which

vee {4} = [N L)'Q ‘(N 1)]  vee (XN},

vec {B} = Q ' vec {ANT} .

5. Compute the descent direction K = —2NT (X — B)T A.
If || K| is sufficiently small then stop, returning the matrix
R € R"P*™ satisfying

vec{R} =vec{X} - Q ' (N®1I,)

(Vo 1)"Q (Ve L) (N @ L)  vee [X} .

6. If f(N) — f(N + 2AN_K) > M|K]|? then st X\ := 2
and repeat Sep 6. (Recall that f isdefined in (17).)

7. 1f f(N) — f(N + ANLK) < SA|K||* thenset X := A
and repeat Sep 7.

8. St N := N + AN K. Renormalise [N N_.] by setting
[N N.]:= qf {N}. (The" Q-Factor” operator qf {N} is
the Q-matrix in the QR decomposition of V.) Go to Sep 4.

Remark: Alg. 5 minimises (8) on the Grassmann manifold of
matrices of theform {N : N N = I'}. See[8, 6] for details.



6. SSIMULATIONS

The following model was used to generate the time series y(t) €
R3.

y(t) = Aox(t) + Arz(t — 1) 4+ o’ n(t) (18)

where both 2(¢) and n(t) are independent white Gaussian noise
processes with zero mean and unit variance and the matrices Ay
and A; aregiven by

1 05 0.2 01 09 01
Ag=|07 1 03], A=|[08 02 02].
0.5 0.5 0.1 04 06 0.1
(19)

Note that both Ao and A; have full rank. In the figures, the noise
variance o isrelated to the SNR according to the formulaSNR =
10log,, o”.

The time series x(t) was used to predict y(¢) using three fil-
ters; the Wiener filter y(¢t) = Aox(t), the convolutive rank 2
Wiener filter found by solving (1) with r = 2, and the convolu-
tive (full rank) Wiener filter y(t) = Aox(t) + A1xz(t — 1). The
results are plotted in Figure 1.

The same three filters were then used to predict y(¢) given the
noise corrupted time series z(t) + w(t), where the additive white
Gaussian noise w(t) had zero mean and variance 0.04. The results
are plotted in Figure 2 and demonstrate the robustness of rank re-
duction to model mis-specification. The rank reduced convolutive
Wiener filter performs similarly to the optimal full rank convolu-
tive Wiener filter yet is computationally simpler to compute.

7. CONCLUSION

This paper introduced the convolutive rank reduced Wiener filter,
which is a generalisation of the rank reduced Wiener filter pre-
viously studied in the literature. A closed form solution of the
convolutive rank reduced Wiener filter was derived, as well as a
numerical algorithm for computing it.
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