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ABSTRACT

We develop, apparently for the first time, an automatic cri-
terion to choose when to stop the iteration in anisotropic
diffusion signal reconstruction.

1. INTRODUCTION

Anisotropic diffusion (ANDI) has become a valuable tool
for multiscale nonlinear image analysisfor examplein edge
detection and segmentation. Since it was proposed by [6]
there has been a considerable development, especidly in
theoretical understanding e.g. [15], the specia issue in the
| EEE Transactions on Image Processing including, [14],[2],
[1]. In particular a considerable understanding of the effect
of different diffusion coefficients on convergence has been
developed e.g. [15],[2]. Also there are close connexions
with total variation denoising [8] and smoothed versions of
it[13],[3], [12].

A fundamental feature of the ANDI procedureisthe ne-
cessity to decide when to terminate the iteration. Typically
asthe diffusion is stepped forward in time (or iteration ) the
reconstruction improves, then stabilizes and then as time
wears on it degrades (gets over-smoothed). The iteration
counter or time parameter isin fact aregularizing or tuning
parameter for the nonlinear ANDI reconstruction procedure
which solvestheill-conditioned inverse problem of estimat-
ing a possibly discontinuous signal. As with other regular-
ization methods it is natural to seek an automatic stopping
rule. Infact no such methods seem to have been devel oped
for ANDI and our aim here is to devel op such an automatic
selection rule.

2. ANDI

We treat the one-dimensional problem for simplicity. With
continuous data i () the ANDI algorithm generates the re-
construction as the solution f(¢,z) to the inhomogeneous
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where ¢(-) is the conduction parameter or diffusion coeffi-
cient. A number of authors [2],[15] have pointed out that
the ANDI agorithm can be interpreted as a steepest descent
agorithm for minimising a nonquadratic criterion

J(f) = / o(1f (@))dz

with the start value (2.2). Here p(-) is a potentia function
andthenc(|¢]) = ”’ﬁ' wherew(€) = p' (¢) istheinfluence
function (a term borrowed from robust statistics)[2]. The

ANDI agorithm can thus be written
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If 1) (&) isan odd function then this becomes
af o, of
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Now as made clear by [15][2] the potential function has a
crucial impact on the algortihm behaviour. Animportant set
of results of [15] are that:

Theorem.

If 4)(c0) = 0 thenthealgorithmisill-posed in that there are
an infinite number of global minima.

If ¥(c0) # 0 then the algorithm is well-posed in that there
is only one stationary point, namely the constant function
(or image).

If p(&) is convex and v(o0) # 0 then J(f) has a unique
global minimum namely the constant image.

It followsthat the conductionfunctions used by [6] namely
those corresponding to
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both giveill-posed ANDI.

A number of well-posed conduction functions have been
developed e.g. [15]. We introduce a new potentia applied
by [13],[3] to the related smoothed total variation denoising
reconstruction procedure,

p§) = V& +v2—v
The associated influence and conduction functions are eas-
ily seen to be

&
o9 =

VE + 72
We notethat this potential functionis convex and well-posed
and so leads to awell-posed a gorithm.

For application to noisy data we deal with a discretised
version. Consider then the problem of estimating the possi-
bly discontinuoussignal f(t) on [0, 1] from noisy data

) .
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where ¢; is awhite Gaussian noise of variance o2 and zero
mean.

Because the standard explicit method has stability prob-
lems (that are troublesome for the calculations in the next
section) we have developed an iterative Crank-Nicholson
implicit type scheme[9]. Thetypica explicit schemewould
be (following e.g. [8]) (Here k isatime or iteration counter
while isaspatia coordinate)
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We can write this as
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We now replace this with theimplicit scheme
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Introducing the average
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enables us to rewrite the update as (with p = N ?)
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And this suggests the iteration (in n) for (¥
agn"'l) — fi(k)
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After some reorganisation this can be written as a weighted
average

(n+1) f(k (2.4)
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We then recover f*™) = 242° — f™) The algorithm usu-
aly convergesin afew iterations however; we use reflection
boundary conditions. The algorithm collapses to the Jacobi
iteration in [9] in the homogeneous case when the conduc-
tion functionistheidentity, however the formulation here as
a weighted average seems to be new. In the homogeneous
case convergence holds for all values of p whereas the ex-
plicit algorithm converges only for p < %

3. TUNING PARAMETER SELECTION

Here we regard diffusion time h = ké as a regularizing
or tuning parameter to be chosen. We use the symbol
here rather than ¢ to emphasize that h is really aregulariz-
ing characteristic feature size. If h is too small, the recon-
structed signal is very noisy; if h is too large it is smooth
and discontinuities are lost. There are numerous methods
that have been developed for choosing regularizing parme-
tersinill-conditioned inverse problems. These are reviewed
in [10] where the approach to be applied here was devel-
oped. We note that methods such as AIC [5] or MDL [7]
are not obviously applicable because they require the tun-
ing parameter to be a model dimension. A method such as
cross-vaidation [5] would be computationally prohibitive



because it requires that ANDI be repeated over and over as
data points are left out one at atime.

We use a simple quadratic measure of reconstruction
quality. At time h (or iteration k) this risk function is de-
fined as

Ry

E||f — f®]?
1

= E — f2q
/O(f F)2dn

The discrete version is then
1 i AU I
R, = NE{VE(JE(N) - f(k)(ﬁ))z
Ideally we would like to choose the stopping time A to min-
imize R;,. However R}, cannot be computed if only because
f(x) isunknown.

The ideais to find an empirically computable, statisti-
cally unbiassed estimator of R; and minimize that instead.
Using only the Gaussian assumption and a simple integra-
tion by parts argument it can be shown [10] that an empiri-
cally computable unbiassed estimator of Ry, is
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The idea then is to plot Rj, for a minimum in k. Thisis
called SURE (Stein’s unbiassed risk estimator for the orig-
inator, in a different context, of the integration by parts ar-
gument: see[10]).

In the current setting we generate 8’:;’;”

iteration. Differentiate through (2.3) and set g; = afézﬁ to
findfori=1,---,N

iteration by
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with boundary conditions 4" = 0 = ¢} | where
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This algorithm exhibits very slow convergence as well as
stability problems and so we use a natural extension of the
algorithm described in section 2 instead. The computation
then consists of advancing (2.4) and the iterative extension
of (3.1) in parallel and computing R}, at each step. We then
plot Ry, tofind theminimizing i value. We emphasizeagain
that the approach based on SURE does not rely on any par-
ticular algorithm, potential function or the one-dimensional
nature of theillustration used here.
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Fig. 1. Plot of SURE for blocky function showing shallow
local minimum.

4. RESULTS

In Fig.1lisaplot of SURE for the blocky function used by
[13],[11] with N=128 points. We chose v = .0001, snr =
64 to compare with their results. Here signal to noise ra-
tio (snr) is apower ratio . Since ANDI starts from the data
the error sum of squaresis zero there (but the trace term is
large). Asthefitting proceedsthe error sum of squaresrises
bu the trace drops. Thus the minimising value of SURE is
the first local minimum. This kind of behaviour is known
for tuning parameter selection for linear estimators [4]. In
Fig.1 thisfirst local minimum is rather shallow but evident;
this meansthat several valuesof h in that vicinity should be
tried. In Fig.2 we show the reconstruction corresponding to
thelocal minimising h = .00065. Thereconstructionis till
somewhat noisy but the narrow block is well reconstructed
although some bias shows. Biasis also evident in the recon-
struction of thetop level of thelarger block. For comparison
in Fig.3 we show the reconstruction towards the higher end
of the flat area of the local minimum. Thereis not alot to
choose between the two reconstructions. The larger value
of h provides a dightly smoother reconstruction with a lit-
tlelessbias.

5. SUMMARY

In this paper we have presented an automatic method of tun-
ing parameter choice for anisotropic diffusion, apparently
for thefirst time. The method has modest computational re-
quirements, whereas for example, cross-validation is com-
putationally prohibitive. Future work will deal with esti-
mation of the noise variance, extension of the technique to
handle correlated noise and some theoretical performance
analysis of the method.
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Fig. 2. Plot of dataand estimate, & = .00065
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Fig. 3. Plot of dataand estimate, h = .00090
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