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ABSTRACT

The normal inverseGaussian(NIG) distribution is a recent
flexible closedform distribution thatmaybeappliedasamodelof
heavy-tailedprocesses.TheNIG distribution is completelyspeci-
fiedby four realvaluedparametersthathavenaturalinterpretations
in termsof theshapeof theresultingprobabilitydensityfunction.
By choosingtheparametersappropriately, onecandescribeawide
rangeof shapesof thedistribution. In this paper, we discusssev-
eralof thedesirablepropertiesof theNIG distribution. In particu-
lar, wediscussthecumulantgeneratingfunctionandthecumulants
of theNIG-variables.A particularlyimportantpropertyis thatthe
NIG distribution is closedunderconvolution. Finally, we derive a
setof very simpleyet accurateestimatorsof theNIG parameters.
Our estimatorsdiffer fundamentallyfrom estimatorssuggestedby
otherauthorsin thatour estimatorstake advantageof thesurpris-
ingly simplestructureof thecumulantgeneratingfunction.

1. INTRODUCTION

Theso-callednormalinverseGaussian(NIG) distribution is aver-
satilenon-GaussianmodelrecentlyintroducedbyBarndorff-Nielsen
in 1995[1, 2]. It wasintroducedasa possiblemodelfor financial
data,andit haslateralsobeenattemptedasa modelof turbulence
[2].

TheNIG hasto our knowledgenever beenappliedin anelec-
trical engineeringcontext earlier. We will in this papershow that
theNIG hasseveraldesirableandremarkablefeatureswhichmakes
it suitableasa modelof a largeclassof non-Gaussiannoisepro-
cesses.In particular, we proposethattheNIG-modelmaybevery
usefulfor modelingimpulsive noise.By examiningtheflexibility
impliedby theparameterizationof thedistribution,webelievethat
spiky noisepresentin radar, sonarandcommunicationchannels
canbemodeledby theNIG-distribution.

2. THE NORMAL INVERSE GAUSSIAN DISTRIBUTION

ThenormalinverseGaussiandistribution is a variance-meanmix-
tureof aGaussiandistributionwith aninverseGaussian.A stochas-
tic variable � is said to be normal inverseGaussianif it hasa
probabilitydensityfunctionof theform [1, 2, 5]�����	��

�������������� � �	��
��� �	��
 �"! � � � �	��
��$# (1)
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Fig. 1. NIG-density(logarithmicscale)for differentvaluesof � .
Here, % �'&(�') , and � �+* .
where �"! �	��
 is the modifiedBesselfunction of the secondkind
with index 1, � �	��
,� �.- �
/10 % /32 % �	� 0 &4
 , � �	��
,�+�5�	� 0 &4
 / 2� / 
 !�6 / . Furthermore,

)�798 % 8�: � , �<; ) , and 0>= :?&@: = .
As seenfrom thedefinition in Eq. (1), theshapeof theNIG-

densityis specifiedbyafourdimensionalparametervector
� � # % #A&
# � 
 .

Thisparameterizationis veryflexible indeed,makingit possibleto
modela largevarietyof shapesandwith variousdecayratesof the
tail.

The four parametersof the NIG-distribution have naturalin-
terpretationsrelatingto theoverallshapeof thedensityasfollows.
The � -parametercontrolsthesteepnessof thedensity, in thesense
thatthesteepnessor pointinessof thedensityincreasesmonotoni-
cally with increasing� . This hasimplicationsalsofor thetail be-
havior, by the fact that largevaluesof � implies light tails, while
smallervaluesof � implies heavier tails. Note the similarity be-
tweenthis parameterand the � -parameterin the � -stabledistri-
bution [4]. Fig. 1 shows the dependency on � for % �B&C�D)
and � �B* . Note that the tails becomeheavier asthe valueof �
decreases.

The % -parameteris a skewnessparameter, in the sensethat% :E) impliesa densityskew to theleft, % ; ) impliesa density
skew to the right, and % �F) implies a densitythat is symmetric
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Fig. 2. NIG-density(logarithmicscale)for differentvaluesof % .
Here, � �EG , &H�I) , and � �J* .
around
&

, which is obviously a centralityor translationparame-
ter. Fig. 2 shows the dependency on % . Note that the skewness
increasesas % increases.

Last,the � -parameteris a scaleparameterin thesensethatthe
rescaledparameters�LKM��� and % K % � are invariant under
location-scalechangesof

�
.

3. PROPERTIES OF NIG-VARIABLES

NIG-variablesobey several desirablepropertiesthat make them
suitablefor practicalnoisemodeling. We will now demonstrate
the attractivenessof the NIG-distribution in termsof someof its
properties.

3.1. Cumulants

Barndorff-Nielsen[2] derived themomentgeneratingfunctionof
theNIG-distribution. By generalizinghis result,wereadilyderive
thecharacteristicfunctionof theNIG asN �O�QPR
,�IS�TVU WYX�Z\[3X]S^Z_T U WYX�Z4`a[cb.dfe_ghXiSjdjkie�#

(2)

wherel � U 0 * is theimaginaryunit, and 0>= :mPn: = .
Thecumulantgeneratingfunction o �p�QPq

�srut N ���QPR
 there-

forehasthefollowing simpleformo �<�QPq
,� �Ov - �
/q0 % /q0 - �
/q0 � % 2 l PR
 /jwx2 l &�P (3)

With thecumulantgeneratingfunctionathand,it isnow straight-
forwardto calculatethecumulantof order y by meansofz `u{cg� �+� 0 l 
A{
| { o � �QPm�')3
| P { } (4)

Thefirst four cumulantsarereadilyfoundto bez ` ! g� �~& 2 % �- � / 0 % / z ` / g� � � / �� � / 0 % / 
�� 6 / (5)

z `u�fg� � � � / % �� �
/R0 % / 
5� 6 / z `u�fg� ��� � / � � / 2�� % / 
 �� �
/R0 % / 
5� 6 / } (6)

We thusseethatall cumulantsexist andthat they areexpressible
assimplealgebraicfunctionsof theparameters.

It is particularly interestingto notice that the skewnessand
kurtosishasthefollowing elegantclosedform expressions� � � z `u�fg�v z ` / g� w � 6 / � �]�U � # (7)

and � � � z `u�fg�v z ` / g� w / � ��� * 2�� � /��� #
(8)

where� � %�� � and � � �.- �
/q0 % / .
Since 0 *�: � :�* and

)~: � : = , the expressionsfor
skewnessandkurtosis,Eqs.(7) and(8) show that we canmodel
datathat coversa very large rangeof non-Gaussianshapes.By
combiningEqs.(7) and(8) it is easyto show thatwe maymodel
variableswith any simultaneousskewnessandkurtosisin the re-
gion � ��� � � /� � � .
3.2. Exact limits

If we assume% �I) and
&

arbitrary, onecanreadilyshow thatthe
Gaussian���'� � &
#f� / � densityis a limit wheneither �~K�=
or ��K�= , with theidentificationthat

� / � � � � .
Anotherimportantspecialcaseof theNIG is theCauchydis-

tributionwhich resultswhen � � % �') , and
&

and � arbitrary.

3.3. Tail behavior

Asymptotically, theBesselfunctionbehavesas� ! �	��
 �C� �� � ����� � 0 ��
���8 �,8 K�= } (9)

Hence,thetail of theNIG decaysas� � �	��
 � 8 �,8 Z\� 6 / ����� � % � 0@� 8 �,8 
 } (10)

Note that Eq. (10) is invalid when ��0 8 % 8, ¡* . In that special
case,thetail of theNIG decaysas� � �	��
 � 8 �,8 Z / # (11)

which is of coursethetail behavior of theCauchy.

3.4. Convolution property

A very attractive anduseful propertyof the NIG that cannotbe
overrated,is thatit is closedunderconvolution [1, 2]. Thishasfar
reachingconsequenceswhenconsideringsumsof NIG variables.

Let � ! # }�}�} # �£¢ be ¤ independentNIG-variableswith com-
mon parameters� and % , but having individual locationparam-
eters
& ! # }�}�} #A& ¢ , andindividual scaleparameters� ! # }�}�} # � ¢ .

Thenthesumvariable¥ � � ! 2�¦�¦�¦u2 �O¢ is alsoNIG distributed,
with parameters

� � # % #�&4§h¨V§5# � §Q¨j§�
 , where
&�§Q¨j§��F© ¢ªR« ! & ª and� §Q¨j§,� © ¢ªq« ! � ª .
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Fig. 3. SyntheticNIG data. Upper left � �¬* andupperright� �F) } )3)$)�* , for % ��&n�F) and � ��* . Lower left % � � and
lower right % � � } ­ , for � �EG^#5&H�') , and � �J* .

4. GENERATION OF SYNTHETIC NIG DATA

WehavegeneratedsyntheticstatisticallyindependentNIG-databy
meansof the well known acceptance-rejectionmethod(seee.g.,
[3]). This methodis basedon drawing samplesfrom a simpler
auxiliarydensity ®�°¯� � ®�\
 from whichvariablescaneasilybemade.
In addition,uniformvariables±��?² � )Y#�*�� aregeneratedandcom-
paredto a density that completelyblankets the wanteddensity� � �	��


.
In Fig. 3 we show sequencesconsistingof 200 white NIG-

samplesin each.The upperpanelshave % �³&s��) and � �´*
ascommonparameters,with � ��* in theupperleft corner, and� �¬) } )$)3)�* in the upperright corner. The lower panelshave� �³G^#5&?��) and � ��* ascommonparameters,with % � � in
the lower left corner, and % � � } ­ in the lower right corner. Note
thatthe � �+* dataaresymmetricandwithoutextremeexcursions
from the mean,while the � �µ) } )$)3)�* datahave an impulsive
charactersuggestingheavy tails. Furthermore,notethatthe % � �
dataareslightly skewed,while the % �IG dataarestronglyskewed
towardspositive values.

Thetheoreticalprobabilitydensityfunctionsfor thesynthetic
datashown in Fig. 3 canbefoundin Figs.1 and2.

5. ESTIMATION OF THE NIG PARAMETERS

Moment estimatorsexist [5], but they shouldbe avoideddue to
their poor statisticalbehavior. Maximum likelihood estimators
(MLE) have alsobeensuggestedandimplemented[5]. Thesees-
timatorsare very complicatedto handlenumerically, due to the
highly nonlinearform of theNIG-distribution. We recommendto
avoid alsotheMLE dueto theirnumericalintractability.

We have chosento employ a totally differentapproachwhen
developingestimatorsof the NIG-variables.The structureof the
cumulantgeneratingfunction (CGF), eq. (3), is very simple in
termsof the four parametersthat definesthe NIG. This structure
shouldobviously beexploited.Wewill now show thatit is easyto
establisha setof simplerelationsfor theCGFthatcanbedirectly

exploited whenconstructingaccurateestimatorsfor the parame-
ters.

First,weexpandthecomplex valuedsquareroot in eq.(3) ex-
plicitly, sothatwecanwrite therealandimaginarypartsof o ���QPR

as

Reo ���QPR

� �£¶	|�0 *U �1· ¸ / 2 - ¸ � 2�� % / P /j¹ (12)

Im o � �QPq

�»º¼�& 2 U � % �· ¸ / 2 - ¸ � 2m� % / P /
½¾ P>#

(13)

where| / � � / 0 % / , and ¸ / � | / 2 P / .
Weunderstandthattheabove exactexpressionsfor Reo � �QPR


and Im o ���QPR
 can be usedto derive a large numberof differ-
ent estimatorsof the four NIG-parameters.It is thuspossibleto
talk aboutCGF-basedparameterestimators.Wewill now derive a
setof simpleandaccurateCGF-basedestimatorsof thefour NIG-
parameters.

5.1. Estimating �
We first confineour attentionto valuesof

P
suchthatP /q¿ � / 0 % / and

P /°¿ � % / } (14)

Undertheseassumptions,we find that

Reo � �QPR
,À � - � / 0 % / 0Á� P } (15)

Thus,� is givenby thenegativeslopeof Reo � �QPR
 for large
P

, and
anestimatoris constructedby estimatingtheslopeof ReÂo � �QPR
 ,
where Âo � �QPR
 is anestimateof thecumulantgeneratingfunction.
Formally, we maywriteÂ � � 0 || P ReÂo �<�QPR
 } (16)

5.2. Estimating
&

Theassumptionsin Eq. (14) cannow beappliedto theimaginary
partof theCGF, Eq.(13),whichyields

Im o � �QPq
,À~&ÃP } (17)

Thus,
&

is givenby theslopeof Im o �<�QPR
 for large
P

, andanes-
timator is constructedby estimatingtheslopeof Im Âo ���QPR
 . For-
mally, we maywrite Â&Ä�M|| P Im Âo � �QPR
 } (18)

Notethestrongdegreeof mathematicalsymmetrybetweenthees-
timatorsof � and

&
.

5.3. Estimating %
CombiningEqs.(12)and(13)wefind thatIm o � �QPR
 canbewrit-
tenas

Im o �p�QPq

� % P- � / 0 % / 0 Reo � �QPR
 � � 2 &ÃP (19)



It follows directly from (14) thatÅÅÅÅ Reo �<�QPq
� ÅÅÅÅ ¿ - � / 0 % / } (20)

Thus,we mayapproximateEq. (19)by

Im o ���QPR
,À % P �
Reo �<�QPq
 2 &ÃP (21)

It is now easyto estimate% by theuseof Eq.(21). Theresult-
ing estimatorreadsÂ% � ReÂo ���QPR
P Â� v Â&ÃP 0 Im Âo �p�QPR
 w } (22)

5.4. Estimating �
Theremainingparameter, � cannow readilybeestimatedbymeans
of Eq.(12), to give

Â� ÀÇÆÈ É�Ê ReÂo �<�QPR
Â� 2 *U � � P /Ë2 · P � 2�� Â% / P /5Ì / 2 Â% /.Í ÎÏ !�6 / }
(23)

Again, theassumptionsin (14)have beenapplied.

5.5. Estimating the cumulant generating function

To obtaina statisticallyconsistentestimatorof theCGF, we note
that the probability densityfunction (PDF) itself

� � �	��

and the

characteristicfunction
N ���QPR


constitutea Fouriertransformpair.
We have thereforeappliedthe following indirect methodto esti-
matethe CGF: First, we form a standardnon-parametrickernel
smoothedestimateof thePDF(seee.g.,Silverman’s book[6]), to
obtain Â� � �	��
 . Theuseof aGaussiankernelfunctionhasprovento
yield goodresultsfor syntheticNIG-data.Secondly, thecharacter-
istic functionis estimatedby meansof adiscreteFouriertransform
of thekernelestimate Â���O�	��
 . In practice,we performthediscrete
Fourier transformby meansof theFastFourierTransform(FFT),
to yield ÂN � �QPR
 atasetof discretetransformvariables

P,Ð
, whereÑ

is a discreteindex. Finally, theestimateof thecumulantgenerat-
ing functionis foundfrom Âo � �QPR
,�srÒt ÂN � �QPq
 . Notethataphase
unwrappingmaybenecessaryto correctthephasediscontinuities
causedby thenumericalevaluationof thecomplex logarithm.

5.6. Performance evaluation

Wecarriedouta MonteCarlosimulationto assesstheaccuracy of
theproposedestimator. Thesimulationsarebasedon1000repeti-
tions,andin Table1 we show theMonteCarlobiasandstandard
deviationof theestimatorof thescaleparameter� . Theresultsare
shown for variouslengths Ó of the availabledatasegments,and
for two differentvaluesof � . A relatively shortrangeof

P
-values

wasusedfor obtainingtheestimateof thecharacteristicfunction:* } � 7'P+7 � } � , andthekernelfunctionwaschosento bea stan-
dardizedGaussian.

FromTable1 we seethatasexpected,theaccuracy becomes
betteras Ó increases.Both the bias and the standarddeviation
convergesto zero as the samplesize increases,so the proposed
estimatoris consistent.The consistency of the estimatorcanbe
shown analytically. Fromthetable,weseethattheestimationerror
increaseswith increasingvaluesof � . Thisis alsoconfirmedby the
Craḿer-Raolowerboundsfor theparameters[7].

N � �J* � � �
100 bias:0.5249 bias:0.5554

std: 0.8736 std: 0.1735
1000 bias:0.0709 bias:0.3020

std: 0.1809 std: 0.8703
10000 bias:0.0106 bias:0.0196

std: 0.0702 std;0.1366
50000 bias:0.0021 bias:0.0025

std: 0.0352 std: 0.0332

Table 1. MonteCarlo simulatedbiasandstandard deviation for Â �
for different Ó . Here, � �J* and % �s&(�') .

6. CONCLUSIONS

In thispaper, we reviewedthenormalinverseGaussian(NIG) dis-
tribution,anddiscussedseveralof its properties.Wedemonstrated
thattheparameterizationof theNIG-distributionallows for a very
flexible formulationof distributions,rangingfrom theGaussianto
theCauchydistribution. Wealsointroducedasimpleandaccurate
CGF-basedestimatorof theNIG-parameters.

Ourconclusionis thattheNIG-distributionisaversatilemodel
for (leptokurtic)non-Gaussianvariableswith heavy tails (i.e., no
heavier thantheCauchy, which is arguablysufficient for treating
mostrealworld impulsive noiseprocesses).Amongthemany ad-
vantagesof the NIG-distribution, we recall that (i) the densityis
given in closedform, (ii) NIG-variablesareclosedunderconvo-
lution, (iii) the cumulantgeneratingfunction is very simple, (iv)
theparameterizationof themodelallowsfor a largerangeof prob-
ability densityshapes,and(v) we have derived fastandaccurate
parameterestimatorsthattake advantageof thecumulantgenerat-
ing function.

WebelievethattheNIG distributionwill becomeusefulfor the
modelingof impulsive noisein sonar, radar, andcommunication
channels.We have carriedout an analysisof impulsive noisein
theoceanacousticchannel,whichshowsthattheNIG outperforms
the � -stablemodelfor suchnoise.
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