THE NORMAL INVERSE GAUSSIAN DISTRIBUTION: A VERSATILE MODEL FOR
HEAVY-TAILED STOCHASTIC PROCESSES

AlfredHansserand Tor Arne @igard

Universityof Tromsg PhysicsDepartment
ElectricalEngineeringGroup
N—-9037Tromsg ,Norway
Email: {alfred,torarné@phys.uit.no

ABSTRACT

The normal inverse Gaussian(NIG) distribution is a recent
flexible closedform distribution thatmaybe appliedasa modelof
heary-tailed processesThe NIG distribution is completelyspeci-
fiedby four realvaluedparameterthathave naturalinterpretations
in termsof the shapeof the resultingprobability densityfunction.
By choosingheparameterappropriatelyonecandescribeawide
rangeof shapef the distribution. In this paper we discusssev-
eralof thedesirablepropertiesof the NIG distribution. In particu-
lar, we discusgshecumulantgeneratindunctionandthecumulants
of theNIG-variables A particularlyimportantpropertyis thatthe
NIG distributionis closedunderconvolution. Finally, we derive a
setof very simpleyet accurateestimatorsof the NIG parameters.
Our estimatorgiffer fundamentallyfrom estimatorsuggestedby
otherauthorsin that our estimatordake adwantageof the surpris-
ingly simplestructureof the cumulantgeneratingunction.

1. INTRODUCTION

Theso-callechormalinverseGaussianNIG) distributionis aver
satilenon-Gaussiamodelrecentlyintroducedoy Barndorf-Nielsen
in 1995[1, 2]. It wasintroducedasa possiblemodelfor financial
data,andit haslateralsobeenattemptedasa modelof turbulence
[2].

The NIG hasto our knowledgenever beenappliedin anelec-
trical engineeringcontet earlier We will in this papershaw that
theNIG hasseveraldesirableandremarkabldeaturesvhichmales
it suitableasa modelof alarge classof non-Gaussiamoisepro-
cessesln particular we proposehatthe NIG-modelmaybevery
usefulfor modelingimpulsive noise.By examiningthe flexibility
implied by the parameterizatioof thedistribution, we believe that
spiky noisepresentin radar sonarand communicationchannels
canbe modeledby the NIG-distribution.

2. THE NORMAL INVERSE GAUSSIAN DISTRIBUTION

ThenormalinverseGaussiardistribution is a variance-meamix-
tureof aGaussiamlistributionwith aninverseGaussianA stochas-
tic variable X is saidto be normalinverse Gaussianf it hasa
probability densityfunctionof theform [1, 2, 5]
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Fig. 1. NIG-density(logarithmicscale)for differentvaluesof a.
Here, = u =0,andd = 1.

where K (z) is the modified Besselfunction of the secondkind

with index 1, p(z) = §y/a2 — B2+ B(z—p), q(z) = ((z—p)*+

62)'/2, Furthermore() < |8| < a,d > 0, and—oo < p < o0.
As seenfrom the definitionin Eq. (1), the shapeof the NIG-

densityis specifiedby afour dimensionaparametevector(c, 3, i, d).

This parameterizatiois very flexible indeed makingit possibleto
modelalargevariety of shapesandwith variousdecayratesof the
tail.

The four parameter®f the NIG-distribution have naturalin-
terpretationselatingto the overall shapeof thedensityasfollows.
Thea-parametecontrolsthe steepnessf thedensity in thesense
thatthe steepneser pointinesf the densityincreasesnonotoni-
cally with increasingx. This hasimplicationsalsofor thetail be-
havior, by the factthatlarge valuesof « implieslight tails, while
smallervaluesof « implies heavier tails. Note the similarity be-
tweenthis parameteand the a-parameteiin the a-stabledistri-
bution [4]. Fig. 1 shavs the dependencona for 8 = p = 0
andd = 1. Notethatthe tails becomeheaier asthe value of «
decreases.

The B-parametelis a skewnessparameterin the sensethat
B < 0 impliesadensityskew to theleft, 3 > 0 impliesa density
skew to theright, and3 = 0 implies a densitythatis symmetric
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Fig. 2. NIG-density(logarithmicscale)for differentvaluesof 3.
Here,a =5, =0,andd = 1.

aroundy, which is obviously a centrality or translationparame-
ter. Fig. 2 shavs the dependencon 3. Note that the skewness
increasessf increases.

Last,the -parameteis a scaleparametei thesensahatthe
rescaledparametersx — «d andf8 — B4 areinvariantunder
location-scalehange®f z.

3. PROPERTIESOF NIG-VARIABLES

NIG-variablesobey several desirablepropertiesthat make them
suitablefor practicalnoisemodeling. We will now demonstrate
the attractvenessof the NIG-distribution in termsof someof its
properties.

3.1. Cumulants

Barndorf-Nielsen[2] derived the momentgeneratingunction of
the NIG-distribution. By generalizinghis result,we readilyderive
thecharacteristidunctionof theNIG as

By (W) = PV B g6V (BHjw)? pinw @)

wherej = +/—1 is theimaginaryunit,and—oo < w < co.
Thecumulantgeneratingunction¥ x (w) = In ®x (w) there-
fore hasthefollowing simpleform

Ux(w) =8 [\a? =7 — Va2 — B+ jw)?| +juw  (3)

With thecumulanigeneratingunctionathandiit is now straight-
forwardto calculatethe cumulantof ordern by meansof

nd"\le(w = 0)

(n) —(—3 4
Kx (—9) dm - (4)
Thefirst four cumulantsarereadilyfoundto be
W _ e @__ o’
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We thusseethat all cumulantsexist andthatthey areexpressible
assimplealgebraicfunctionsof the parameters.

It is particularly interestingto notice that the skewnessand
kurtosishasthe following elegantclosedform expressions
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)7
and
@ 3(1+4p°
M=y = (é”), ®
[+]

wherep = B/a and¢ = §y/a? — 2.

Since—1 < p < 1 and0 < ¢ < oo, the expressiongor
skewnessandkurtosis,Egs. (7) and (8) shav thatwe canmodel
datathat coversa very large rangeof non-Gaussiashapes.By
combiningEgs.(7) and(8) it is easyto shav thatwe may model
variableswith ary simultaneouskewnessandkurtosisin the re-
gionys > 493 /3.

3.2. Exact limits

If weassumed = 0 andy arbitrary onecanreadilyshav thatthe
GaussianX ~ N (u, 02) densityis alimit wheneithera — oo
or & — oo, with theidentificationthato® = §/a.
Anotherimportantspecialcaseof the NIG is the Cauchydis-
tributionwhich resultswhena = 8 = 0, andp andé arbitrary

3.3. Tail behavior

Asymptotically the Bessefunctionbehaesas

K@)~ Eena) o o @

Hence thetail of the NIG decaysas
fx(z) ~ |27 exp (Bz — olal) . (10)

Note that Eq. (10) is invalid whena — |8| < 1. In thatspecial
casethetail of theNIG decaysas

fx(x) ~ a7,

which s of coursethetail behaior of the Cauchy

(11)

3.4. Convolution property

A very attractive and useful propertyof the NIG that cannotbe
overratedjs thatit is closedundercorvolution[1, 2]. Thishasfar
reachingconsequenceshenconsideringsumsof NIG variables.

LetXy,..., Xn beM independeniIG-variableswith com-
mon parametergy and 3, but having individual location param-
etersui, ..., pnm, andindividual scaleparametersyi, ... ,anm.
ThenthesumvariableY = X;+- - -4+ X isalsoNIG distributed,
with parameterga, 3, pitot, 0tot), Wherepior = Z%zl pm and

M
Qtot = D =y Om.
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Fig. 3. SyntheticNIG data. Upperleft « = 1 andupperright
a = 0.0001, for 3 = p = 0andd = 1. Lowerleft 3 = 2 and
lowerright 3 = 4.9, fora = 5,4 = 0, andd = 1.

4. GENERATION OF SYNTHETIC NIG DATA

We have generatedyntheticstatisticallyindependeniIG-databy
meansof the well knowvn acceptancesgjectionmethod(seee.qg.,
[3]). This methodis basedon draving samplesfrom a simpler
auxiliary density f ¢ (£) from which variablescaneasilybe made.
In addition,uniformvariablesy ~ /[0, 1] aregenerate@indcom-
paredto a density that completelyblankets the wanted density
fx(z).

In Fig. 3 we shav sequencesonsistingof 200 white NIG-
samplesn each. Theupperpanelshave 3 = 4 = 0 andd = 1
ascommonparameterswith & = 1 in the upperleft corner and
a = 0.0001 in the upperright corner The lower panelshave
a = 5,4 = 0andé = 1 ascommonparametersyith 8 = 2 in
thelower left corner and8 = 4.9 in thelower right corner Note
thatthea = 1 dataaresymmetricandwithoutextremeexcursions
from the mean,while the o = 0.0001 datahave animpulsive
charactesuggestindneavy tails. Furthermorenotethatthe 8 = 2
dataareslightly skewed, while the 3 = 5 dataarestronglyskewed
towardspositive values.

Thetheoreticalprobability densityfunctionsfor the synthetic
datashawvn in Fig. 3 canbefoundin Figs.1 and2.

5. ESTIMATION OF THE NIG PARAMETERS

Moment estimatorsexist [5], but they shouldbe avoided due to
their poor statisticalbehaior. Maximum likelihood estimators
(MLE) have alsobeensuggeste@gndimplemented5]. Thesees-
timatorsare very complicatedto handlenumerically due to the
highly nonlinearform of the NIG-distribution. We recommendo
avoid alsothe MLE dueto their numericalintractability.

We have choserto employ atotally differentapproachwhen
developing estimatorsof the NIG-variables. The structureof the
cumulantgeneratingfunction (CGF), eq. (3), is very simplein
termsof the four parametershat definesthe NIG. This structure
shouldobviously be exploited. We will now shaw thatit is easyto
establisha setof simplerelationsfor the CGFthatcanbedirectly

exploited when constructingaccurateestimatorsfor the parame-
ters.

First, we expandthe comple valuedsquarerootin eq.(3) ex-
plicitly, sothatwe canwrite therealandimaginarypartsof ¥ x (w)
as

Re¥x(w) =4 [d — %\/32 + /st + 4ﬂ2w2J 12)
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Im¥x (w) = |:u+ }w, (13)

whered? = o? — 8%, ands? = d? + w?.

We understandhatthe abose exactexpressionsor Re¥ x (w)
and Im¥ x (w) canbe usedto derive a large numberof differ-
ent estimatorsof the four NIG-parameterslt is thus possibleto
talk aboutCGF-basegarameteestimatorsWe will now derive a
setof simpleandaccurateCGF-basedstimatorf thefour NIG-
parameters.

5.1. Estimating §

We first confineour attentionto valuesof w suchthat
Ww>a® -4 and W’ > 45° (14)

Undertheseassumptionsye find that

Re¥ x (w) ~ §y/a? — B2 — dw. (15)

Thus,d is givenby thenegative slopeof Re¥ x (w) for largew, and
an estimatoris constructedy estimatingthe slopeof Re¥ x (w),

where¥ x (w) is anestimateof the cumulantgeneratingunction.
Formally, we maywrite

~ d _ ~
5= ——Relx(w). (16)

5.2. Estimating p

Theassumptionin Eqg. (14) cannow be appliedto theimaginary
partof the CGF, Eq.(13), whichyields

IM¥ x (w) ~ uw. a7

Thus, p is given by the slopeof Im¥ x (w) for largew, andanes-

timatoris constructedy estimatingthe slopeof Im\f'x(w). For-
mally, we maywrite

~ d, =
p—dwlm\Ifx(w). (18)

Notethe strongdegreeof mathematicabymmetrybetweerthees-
timatorsof é andy.

5.3. Estimating 3

CombiningEgs.(12) and(13) we find thatim¥ x (w) canbewrit-
tenas

M x () P (19)

= Jal—3 —Revx(@)s M




It follows directly from (14) that

Rekllg( (UJ) ‘ > a — ,82. (20)
Thus,we mayapproximateeg. (19) by
__ Bwd

Im¥ x (w) ~ Relx (@) + pw (21)

It is now easyto estimate3 by theuseof Eq. (21). Theresult-
ing estimatoreads

Rel x () [ﬁw

B= = - |m\f:X(w)] . (22)

5.4. Estimating «

Theremainingparameterx cannow readilybeestimatedy means
of Eq.(12),to give

~ 2
R ReUx(w) 1 \/ = ~
A~ | ———+ —=\w +Jwt +452w2| + 1
[ 3 V2

1/2

(23)
Again, theassumptioni (14) have beenapplied.

5.5. Estimating the cumulant generating function

To obtaina statisticallyconsistenestimatorof the CGF, we note
that the probability density function (PDF) itself fx (z) andthe
characteristidunction ® x (w) constitutea Fouriertransformpair.
We have thereforeappliedthe following indirect methodto esti-
matethe CGF: First, we form a standardnon-parametrikernel
smoothedestimateof the PDF (seee.g.,Silvermans book[6]), to

obtainfx(x). Theuseof aGaussiarkernelfunctionhasprovento
yield goodresultsfor syntheticNIG-data.Secondlythecharacter
istic functionis estimatedy meanof adiscreteouriertransform
of the kernelestimatefx (z). In practice we performthediscrete
Fouriertransformby meansof the FastFourier Transform(FFT),
toyield ) x (w) atasetof discretetransformvariablesw;, wherei
is adiscreteindex. Finally, the estimateof the cumulantgenerat-
ing functionis foundfrom ¥ x (w) = In ®x (w). Notethataphase
unwrappingmay be necessaryo correctthe phasediscontinuities
causedy thenumericalevaluationof the complex logarithm.

5.6. Performance evaluation

We carriedout a Monte Carlosimulationto assessheaccurayg of
the proposecdestimator The simulationsarebasedn 1000repeti-
tions,andin Table1 we shav the Monte Carlo biasandstandard
deviation of the estimatorof the scaleparameted. Theresultsare
shavn for variouslengths NV of the available datasegments,and
for two differentvaluesof §. A relatively shortrangeof w-values
wasusedfor obtainingthe estimateof the characteristidunction:
1.4 < w < 2.4, andthe kernelfunctionwaschosento be a stan-
dardizedGaussian.

From Table 1 we seethatasexpected the accurag becomes
betteras IV increases.Both the bias and the standarddeviation
corvergesto zero as the samplesize increasesso the proposed
estimatoris consistent. The consisteng of the estimatorcanbe
shavn analytically Fromthetable we seethattheestimatiorerror
increasesvith increasingsaluesof 6. Thisis alsoconfirmedby the
Craner-Raolower boundsfor the parameter§7].

| N || 0=1 | 6=2 |
100 || bias:0.5249 | bias:0.5554
std:0.8736| std:0.1735

1000 || bias:0.0709 | bias:0.3020
std:0.1809 | std:0.8703

10000 || bias:0.0106 | bias:0.0196
std:0.0702| std;0.1366

50000 || bias:0.0021 | bias:0.0025
std: 0.0352 | std:0.0332

Table 1. MonteCarlo simulatechiasandstandad deviation for &
for different N. Here, « = 1 and8 = p = 0.

6. CONCLUSIONS

In this paperwe reviewedthe normalinverseGaussiar{NIG) dis-
tribution, anddiscussedeveralof its properties We demonstrated
thatthe parameterizationf the NIG-distribution allows for avery
flexible formulationof distributions,rangingfrom the Gaussiano
the Cauchydistribution. We alsointroduceda simpleandaccurate
CGF-basedstimatorof the NIG-parameters.

Ourconclusioris thattheNIG-distributionis aversatilemodel
for (leptokurtic)non-Gaussiawariableswith heavy tails (i.e., no
heavier thanthe Cauchy which is arguably sufiicient for treating
mostrealworld impulsive noiseprocesses)Amongthe mary ad-
vantagef the NIG-distribution, we recall that (i) the densityis
givenin closedform, (ii) NIG-variablesare closedunderconvo-
lution, (iii) the cumulantgeneratingfunctionis very simple, (iv)
theparameterizationf themodelallows for alargerangeof prob-
ability densityshapesand(v) we have derived fastandaccurate
parameteestimatorghattake advantageof the cumulantgenerat-
ing function.

We believethattheNIG distributionwill becomeusefulfor the
modelingof impulsive noisein sonay radar and communication
channels.We have carriedout an analysisof impulsive noisein
theocearacousticchannelwhich shavsthatthe NIG outperforms
the a-stablemodelfor suchnoise.
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