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ABSTRACT
Wavelet decomposition has recently been generalized to binary
field in which the arithmetic is performed wholly in GF(2).  In
order to maintain an invertible binary wavelet transform with
desirable multiresolution properties, the bandwidth, the perfect
reconstruction and the vanishing moment constraints are placed
on the binary filters. While they guarantee an invertible
transform, the transform becomes non-orthogonal and non-
biorthogonal in which the inverse filters could be signal length-
dependent. We propose to apply the perpendicular constraint on
the binary filters to make them length independent.  A filter
design strategy is outlined in which a filter design for a length of
eight is given. We also propose an efficient implementation
structure for the binary filters that saves memory space and
reduces the computational complexity.

1. INTRODUCTION
Images in most applications are represented by a finite number of
quantization levels such that the image ranges are finite.  There
have been several attempts to generalize wavelet decomposition
to finite fields to take account of image characteristics [1-4]. In
particular, [4] proposed a binary wavelet transform (BWT) in
which the arithmetic is performed wholly in the GF(2), i.e., the
field with binary elements, {0,1} and modulo-2 arithmetic. As
the intermediate and the transformed data are binary, no
quantization error is introduced. Modulo-2 arithmetic is
equivalent to an exclusive-or operation; hence BWT can be
performed efficiently.

The construction of a two-band BWT is equivalent to the design
of a two-band perfect-reconstruction filter bank.  In order to
maintain an invertible transform with desirable multiresolution
properties, three constraints [4] are placed on the binary filters.
They are the bandwidth, the perfect reconstruction and the
vanishing moment constraints.  While these constraints guarantee
an invertible BWT, they also confine the transform to be non-
orthogonal and non-biorthogonal.  We found that the form of the
inverse filters might not be maintained when the signal length
changes as in the up-sampling operation of the inverse transform.
This is undesirable and extra constraints should be imposed so
that the inverse filters are independent of the signal length.

We propose to use the perpendicular constraint to resolve this
signal length-dependency problem. The perpendicular constraint
relates the form of the forward and the inverse filters. A filter
design is outlined using this constraint for a filter length of eight.
In particular, a set of length-independent conditions is derived.
An efficient in-place implementation structure is also explored

which not only saves the memory space involved in the transform
but also reduces the computational complexity.

2. LENGTH DEPENDENCY
The BWT is based on the circular convolution of binary
sequences with binary filters (wavelet and the scaling function),
and is followed by the process of decimation by two.
Mathematically, an NN ×  transform matrix T is constructed as
follows,
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ksa =
v  defines a vector with elements formed from a circular

shifted sequence of a
�

 by k , A ′  is the transpose of A ,

ic and id  are the scaling and the wavelet coefficients

respectively.  The BWT is then defined as,
Txy = (2)

where x is the original signal and y is the transformed signal.

To guarantee an invertible BWT with multiresolution property,
three constraints are required on the binary filters, namely the
bandwidth, the perfect reconstruction and the vanishing moment
constraints [4].  They are summarized as follows,
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Using eqn.3 and the fact that aa =2  for )2(GFa ∈ , the energy

of the lowpass and the bandpass filters can be written as,
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In contrast to the real field, a vector in GF(2) can have zero
energy even when the vector is not a zero vector.  As the energy
of the bandpass filter is zero, the BWT cannot be orthogonal or
biorthogonal although it is invertible.  The lack of orthogonality
and biorthogonality renders the inverse filter design non-trivial.



Consider the filter coefficients given in [4] when the filter length
is eight.  The forward lowpass and bandpass filters are

 { } ′0,1,0,1,0,1,1,1 and { } ′0,0,1,1,1,1,1,1 (5)

respectively.  When the signal length is 16, the forward BWT
filters can be obtained simply by padding zeros to the end of the
corresponding filters.  However, the inverse filters are not related
by this simple zero-padding relationship.  In particular, for
lengths that are equal to 8 and 16, the inverse lowpass filters are,

{ } ′1,1,1,1,1,1,0,0 , { } ′1,1,0,0,1,1,1,1,0,0,1,1,0,0,1,1

and the inverse bandpass filters are,

{ } ′1,1,1,0,1,0,1,0 , { } ′1,0,1,0,1,1,1,0,0,1,0,0,0,1,0,0

respectively.  We refer to this as the signal length-dependency
problem as the form of the inverse filters changes with signal
length.  Since the signal length changes at every decomposition
level of BWT due to up-/down-sampling, this problem is very
undesirable and an extra constraint is required on the binary
filters.

3. PERPENDICULAR CONSTRAINT
While eqn.3 guarantees that the BWT is invertible, it does not
explicitly specify the form of the inverse filters.  The form of
inverse filters is thus unconstrained such that it might change
with signal length.  Assume the inverse filter to have the form,
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This form should be independent of the signal length.  We
propose to use the perpendicular constraint to achieve this signal
length-independent property.  This constraint relates the form of
the forward filters to that of the inverse filters.  It is defined as,

    
jjsrc δ==⋅ vv      0==⋅ jssc

vv

      0==⋅ jsrd
v

v

     
jjssd δ==⋅ v

v (7)

where ba
�� ⋅ denotes the vector product of a

�
 and b

v

, j  is an

even integer that ranges from 0 to 2−N  and kδ is the Dirac

delta function which is equal to 1 when 0=k  and 0 otherwise.  As
the signal length can be greater than or equal to the filter length,
the length of the vectors defined in eqn.7 follows the signal
length.  To solve the length-dependency problem, eqn.7 should
be true for all lengths greater than or equal to the filter length.

Eqn.7 is similar to the biorthogonal condition in the real field
case.  In particular, the forward lowpass filter is perpendicular to
all the even shifts of the inverse bandpass filter, and the forward
bandpass filter is perpendicular to all the even shifts of the
inverse lowpass filter.  The forward lowpass (bandpass) filter is
also perpendicular to the even shift of the inverse lowpass
(bandpass) filter, except for a zero shift.  By imposing this
constraint on binary filters, one could avoid the signal length-
dependency problem.

Consider the case when the filter length is eight.  The
perpendicular constraint in eqn.7 is reduced to two sets of 14
equations (one for r

�
and the other for s

�
),
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The empty entries in eqn.8 represent zeros.  In general, the
number of equations produced from the perpendicular constraint
is (2M-2) where M is the filter length.  Thus the size of the
matrix produced would be (2M-2) x M. Due to eqn.4, this matrix
would have a full rank for perfect reconstruction.  However, it
produces a set of over-determined equations for solving r

�
and

s
�

, and one needs to check for consistency for each solution
obtained.  Therefore, extra constraints on the binary filters should
be imposed as part of the consistency checking procedure as
shown in the next section. Note that the constraints resulting
from the consistency checking procedure are different for
different filter lengths [5].

4. FILTER DESIGN STRATEGY
Consider a filter design for a filter length of eight.  There are 16
unknown coefficients.  By eqn.3, the number of unknowns is
reduced to nine, which gives 512 feasible designs.  However, not
all of them are length independent, as it can be seen from the
choice in eqn.5.  The perpendicular constraint is needed to
determine those designs that are signal length independent.

According to eqn.3 and by manipulating the matrix in eqn.8, it
can be shown that,
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where

101 ccX +=  

( )( )761102 ccccX +++=

( )( )5432103 ccccccX ++++=
( ) ( )2132120221 VVcVVddcVY ++++++=
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0314 dYYY ++=

( )42005 ddddY ++=
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( )( ) ( )( )543240404241 ccccccddcccV ++++++++=

( )( ) ( )( )321040402022 ccccccddcccV ++++++++=

( ) ( )40144003 ccccddcV ++++=

This provides a set of over-determined equations for solving

1010 ,,, ssrr .  A check for consistency between these solutions is

thus required.  In particular, it can be shown that the consistency
requires,
   ( )( ) 0543210 =++++ cccccc

   ( )( ) 05432 =++ cccc

   ( ) 0420 =+ ddd  

   042 =dd

   ( )( ) 02311020 =++++ YYYccdc

   ( )( ) 0317626 =+++ YYccdc

   ( )( ) 021313222 =+++++ YYYYccdc (10)

Consider the choice in eqn.5, it does not satisfy the second and
the fourth constraints.  Therefore, the form of the inverse filter is
length dependent.  Solving eqn.10 gives the following 10 cases,

{ }5404203210 1or 0,0,1,0,, cccdddcccc +=======
{ }0or 0,0,0,0,0 544203210 ========= ccdddcccc

{ }5424203210 1or 0,1,0,0,,0 cccdddcccc +========
{ }204544203210 or ,0,1,, cccccdddcccc +=======

234024205410 1,,0,1,0,, cccccdddcccc +=+======
{ }1dor 0,1,0,0,, 4032205410 ==+===== cccddcccc

324205410 1,0,1,0, ccdddcccc +=======

01204205432 1,,0,1,0,0, ccccdddcccc +========
{ }420401205432 cor 0,1,0,0,, ccdccddcccc +==+=====

0,1,0,1,0 014205432 ========= ccdddcccc (11)

In summary, there are 66 feasible designs from eqn.11.  They
have the same number of vanishing moment, the same spectral
behavior and are length independent.  One could use the total
number of "ones" in the filter coefficients to group them.  There
are four groups.  They are summarized in Table 1.  The
expression for the inverse filters can be obtained by solving
eqn.8 and eqn.9 using eqn.10.  They are not shown here due to
space limitation.

A close examination of eqn.11 reveals that the lowpass filters in
a number of designs are the same while the bandpass filters are
related by a two-circular shift.  For example, in Group 1,
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Their lowpass outputs are thus the same while their bandpass
outputs are related by circular-shifts.  Removing these shifted
pairs, only 32 feasible designs remain as shown in Table 1.  The
four designs in Group 1 are,
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The bandpass filters are the same while the lowpass filters are
related by a circular shift.  Therefore, their lowpass outputs at the
first level of decomposition are related by one-circular shift.  At
the second level of decomposition, (1.a) and (1.c) take those
samples with indexes ( )14 +i  while (1.b) and (1.d) take those

with indexes ( )34 +i  for 14,,1,0 −= Ni L

.  At the third level of

decomposition, all lowpass outputs are different.  Those samples
taken by (1.a), (1.b), (1.c) and (1.d) are
( )18 +i , ( )38 +i , ( )58 +i , ( )78 +i for 18,,1,0 −= Ni L

 respectively.

In principle, there is no difference between the even and odd
number samples.  Filters in the same group should share similar
filter properties statistically.  Among filters from different
groups, one could use different criteria to choose a particular
filter.  If the computational speed is of the greatest concern, one
could choose filters from Group 1.

5. SIMULATION RESULTS
To determine how it works, we applied the BWT to a set of
binary images.  Figure 1(a) shows one of these cases.  The
transformed result using a Group 2 filter is shown in Figure 1(b).
Note that the transformed coefficients resulting from the BWT
are binary.  There is no expansion in their range.  Most of the
large value coefficients using the BWT correspond to high
sequency transition.  We can clearly see that the high sequency
edge transitions in the character “h” were mapped into the high
sequency regions in the transformed data.  In particular, all three
bandpass subbands show clearly the horizontal edges, the vertical
edges and the diagonal edges of the original image.

In order to study the compactness of the signal representation
produced by the BWT, the entropy is calculated.  A small
entropy indicates a large discrepancy between the number of zero
and non-zero coefficients, and thus a potentially more efficient
coding representation. Table 2 summarizes the entropy results
when different binary filters are used.  In general, the entropy
was significantly reduced in the transformed images for all the
binary filters, indicating a more compact image representation
after the BWT.

6. IN-PLACE IMPLEMENTATION
The lifting implementation in the real-field wavelet transform
allows the transform to be carried out efficiently in the spatial
domain [6].  In particular, it enables an in-place implementation
structure that not only reduces the computational complexity, but
also saves the memory space involved in the transform.  Similar
to the case in the real field, the BWT has an in-place
implementation structure in which the transform can be carried
out efficiently in the binary field.

In order to have an in-place implementation structure, the odd
and the even samples of the original signal are split into two
sequences.  These two sequences are then updated according to
the binary filter coefficients.  This is similar to the "split, update
and predict" procedure of the lifting implementation in the real
field.

As discussed above, the lowpass filter in Group 1 involves a sub-
sampling operation only, while the bandpass filter involves an



exclusive-or operation between two neighboring samples.  The
in-place implementation structure is thus trivial for the Group 1
filter. The in-place implementation structure can also be extended
to filters involving not only sub-sampling operations.  Let us
consider filters from Group 3 (cf. Table 1 and Figure 2).  The in-
place implementation consists of three stages.  In the first stage,
the operation is similar to that in Group 1 filters.  The result is
then circular shifted by one.  Two more exclusive-or operations
are then applied to the shifted sequence, which gives the desired
filter outputs.  The total number of exclusive-or operation is
reduced from five to three using this in-place structure.  Filters in
Groups 2 and 4 can be implemented using the same philosophy.

No of
XOR

No of
feasible
designs

No of feasible
designs (excluding

circular shifted
pairs)

Filter example
(lowpass,
bandpass)

Group 1 1 16 4 {0,1,0,0,0,0,0,0}
{1,1,0,0,0,0,0,0}

Group2 3 28 12 {1,1,1,0,0,0,0,0}
{1,1,0,0,0,0,0,0}

Group 3 5 18 12 {1,1,1,1,0,0,0,1}
{1,1,0,0,0,0,0,0}

Group4 7 4 4 {1,1,1,1,1,1,1,0}
{1,1,0,0,0,0,0,0}

Table 1: Filter Grouping for filter length equals to eight.

Image Original Filter Length = 8
Entropy Group 1 Group 2 Group 3 Group 4

“a” 0.8946 0.1629 0.2456 0.3079 0.3580
“b” 0.9079 0.0935 0.1426 0.1811 0.2181
“c” 0.8809 0.0624 0.0806 0.0963 0.1136
“d” 0.7567 0.0653 0.0980 0.1079 0.1342
“e” 0.7279 0.1008 0.1594 0.2101 0.2489
“g” 0.9548 0.1044 0.1600 0.2051 0.2394
“h” 0.7425 0.1172 0.1898 0.2446 0.2842
“i” 0.7645 0.0909 0.1452 0.1899 0.2215
“j” 0.4780 0.0767 0.1318 0.1763 0.2163
“m” 0.8941 0.0956 0.1343 0.1624 0.1907
“n” 0.8638 0.0832 0.1359 0.1765 0.2154
“o” 0.8108 0.1113 0.1795 0.2367 0.2788
“s” 0.3661 0.2299 0.2177 0.2382 0.2317

Table 2: Summary of entropy values for the original image and
the transformed images using filters from different groups.

7. CONCLUSIONS
In order to maintain an invertible binary wavelet transform with
the desirable multiple resolution properties, three constraints are
required, namely the bandwidth, the perfect reconstruction and
the vanishing moment constraints.  While these constraints
guarantee that the transform is invertible, the transform is
constrained to being non-orthogonal and non-biorthogonal.  This
renders the inverse filter design non-trivial and the form of the
inverse filters could be signal length dependent.

This paper proposes to use the perpendicular constraint to
resolve the problem.  In particular, this constraint requires that
the forward lowpass (bandpass) filters be perpendicular to all the
even shifts of the inverse bandpass (lowpass) filters.  The
forward lowpass (bandpass) filters are also required to be
perpendicular to all the even shifts of the inverse lowpass
(bandpass) fitlers except for the zero shift.  With this constraint

in the filter design, a set of conditions for length independency is
derived. An efficient implementation structure of the binary
filters has also been explored.  This implementation has the in-
place property, which saves the memory space involved in the
transform and reduces the computational complexity.
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         (a)                (b)

Figure 1: (a) The binary image and (b) the transformed image
using (b) Group 2 filter with a three level of decomposition.

Figure 2: An in-place implementation for Group 3 filter.  The
sign “+” means a modulo-2 addition which is equivalent to an
exclusive-or operation.
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