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ABSTRACT

This paper proposes a method to obtain optimal 2nd-order approx-
imation preserving prefilters for a given orthogonal unbalanced
multiwavelet basis. This procedure uses the prefilter construction
introduced in [3]. The prefilter optimization scheme exploits the
Taylor series expansion of the prefilter combined with the multi-
wavelet. Using the DGHM multiwavelet with the obtained optimal
prefilter, we find that quadratic input signals are annihilated by the
high-pass portion of filter bank at the first level of decomposition.

1. INTRODUCTION

One of the most important properties of multiwavelet is its approx-
imation order. In the case of compactly supported multiwavelets,
this corresponds to the property of polynomial reproduction. Since
the multiwavelets have more than one scaling functions, the di-
lation equation becomes the dilation equation with matrix coeffi-
cients. Thus, in applications, one must associate a given discrete
signal into a sequence of length-r vectors (where r is the num-
ber of scaling functions) without losing some certain properties
of the underlying multiwavelet. Such a process is referred to as
prefiltering or multiwavelet initialization. One prefiltering method
for the DGHM multiwavelet suggested by Geronimo is to create a
function with vector sequence of length r based on the interpolat-
ing property of the DGHM scaling functions. It yields a prefilter
which is approximation order preserving but not orthogonal. In
[3], Hardin and Roach develop a theory for constructing prefilters
which preserve both orthogonality and approximation order up to
order 2. It has been shown in [1, 3, 7] that choosing a prefilter
is a crucial step which significantly affects the performance of the
multiwavelet filter bank. In this paper, we use the results in [3] to
construct the orthogonal length-3 approximation order preserving
prefilter. Since an infinite number of such prefilters can be con-
structed, we propose a criterion to find the optimal prefilter for
a given orthogonal multiwavelet basis. The criterion exploits the
Taylor series expansion of the prefilter combined with the multi-
wavelet.

2. MULTIWAVELET PRELIMINARIES

Let � denote a compactly supported orthonormal scaling vector

� = (�1; �2; : : : ; �r)T
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where r is the number of scalar scaling functions. Then �(t) sat-
isfies a two-scale dilation equation of the form

�(t) =
p
2
X
n

h(n)�(2t� n) (1)

for some finite sequence h of r � r matrices. Furthermore, the
integer shifts of the components of � form an orthonormal system,
that is

< �l(� � n); �l
0

(� � n0) >= �l;l0�n;n0 : (2)

Let V0 denote the closed span of f�l(� � n) j n 2 Z; l =
1; 2; : : : ; rg and define Vj = ff( �

2j
) j f 2 V0g. Then (Vj)j2Z

is a multiresolution analysis of L2(R) [5]. Note we choose the
decreasing convention Vj+1 � Vj .

Let Wj denote the orthogonal complement of Vj in Vj�1.
Then there exists an orthogonal multiwavelet 	=( 1,  2, : : :,
 r)T such that f l(� � n) j l = 1; 2; : : : ; r and n 2 Zg forms
an orthonormal basis of W0. Since W0 � V�1, there exists a
sequence g of r � r matrices such that

	(t) =
p
2
X
n

g(n)�(2t� n): (3)

Let f 2 V0, then f can be written as a linear combination of
the basis in V0.

f(t) =
X
k2Z

c0(k)
T�(t� k) (4)

for some sequence c0 2 l2(Z)r . Since V0 = V1�W1, f can also
be expressed as

f(t) =
1p
2

X
k2Z

c1(k)
T�(

t

2
� k) +

1p
2

X
k2Z

d1(k)
T	(

t

2
� k):

(5)
The coefficients c1 and d1 are related to c0 via the following de-
composition and reconstruction algorithm:

c1(k) =
X
n

h(n)c0(2k + n) (6)

d1(k) =
X
n

g(n)c0(2k + n) (7)

c0(k) =
X
n

h(k � 2n)T c1(n) +
X
n

g(k� 2n)Td1(n): (8)
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Fig. 1. Multiwavelet filter bank.

Let Q(z) be the z transform of the matrix-valued sequence q.
If Q(z) can be written in the form

Q(z) =

mX
n=l

qnz
�n = qlz

�l + ::: + qmz
�m

where ql and qm 6= 0, then Q(z) is said to have a length of
(m� l + 1).

3. MULTIWAVELET PREFILTERS AND OPTIMIZATION
CRITERION

The block diagram of a multiwavelet filter bank can be shown as
in Figure 1 where Q(z) and P (z) represent the prefilter and the
postfilter, respectively. Vector sequence x is obtained by the fol-
lowing operator. Define the operator Dr : RZ ! (Rr)Z which
partitions a scalar sequence into a sequence grouped in vectors of
length r as follows. Given a scalar sequence x(n); n 2 Z, then
x = Dr(x) is given by

x = Dr(x) = (# r)

0
BB@

x(n)
x(n+ 1)

...
x(n+ r � 1)

1
CCA

n2Z

=

0
BB@

x(rn)
x(rn+ 1)

...
x(rn+ r � 1)

1
CCA

n2Z

:

The block diagram of the high-pass portion of the analysis
multiwavelet filter bank is shown in Figure 2a. By using the first
Nobel Identity, the block diagram in Figure 2a is equivalent to the
one shown in Figure 2b. Let

W (z) =

0
@

W1(z)
...

Wr(z)

1
A = G(1=zr)Q(zr)

0
@

z0

...
zr�1

1
A : (9)

Then from Figure 2b, we see that V (z) =W (z)X(z). The energy
compaction ratio is defined as the ratio of the total energy of the
output from the high-pass portion of the analysis filter bank and
the total energy of input signal. Then, if X(z) is stationary, V (z)
is stationary as well. So the total energy of V (z) is 2r times the
energy of U(z). Thus the energy compaction ratio is obtained by

Energy compaction ratio =R
jX(ej!)j2(jW1(e

j!)j2 + : : :+ jWr(e
j!)j2) d!

2r
R
jX(ej!)j2d! :
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Fig. 2. (a) Block diagram of high-pass portion of analysis filter
bank. (b) Equivalent system.

The energy compaction ratio can be used to see how effectively
the high-pass portion of the orthogonal filter bank annihilates the
input signal. Thus, the smaller the ratio, the better the energy com-
paction.

It is known [4] that if� is compactly supported, � has approx-
imation order p if and only if there exist vector coefficients �n(k)
such that

tn =
X
k

�n(k)
T�(t� k) ; n = 0; :::; p� 1 (10)

where �n = (�1n �
2
n ::: �

r
n)

T . Furthermore, it follows from (10)
that the high-pass filter g annihilates �n for n = 0; 1; :::; p � 1,
i.e.,

�g � �n = 0; n = 0; 1; :::p� 1 (11)

where �g(k) = g(�k).
Let S : C(R) ! R

Z be the sampling operator S(f) =
(f(n

r
))n2Z and let � : C(R) ! (Rr)Z be defined by �(f) =

1p
r
Dr(S(f)): Let �n(t) := tn and an := �(�n).

A prefilter Q(z) with impulse response q is said to be a pth-
order approximation preserving prefilter for � if [3]

q �an = �n mod spanf�0; : : : ; �n�1g; n = 0; : : : ; p�1: (12)

Note: f = g mod L if and only if f � g 2 L.

Lemma 1 Suppose � has approximation order p and q is a pth-
order approximation preserving prefilter for�. LetW (z) be given
by (9). Then, W (n)(1) = 0 for n = 0; :::; p � 1. (Here W (n)

denotes the nth derivative of W .)

Proof : Let w be the inverse Z-transform of W (z) and let pn =
S(�n). Then, by the first Nobel Indentity, (# r)(w � pn) = �g �
q �Dr(pn). Since an = �(�n) = Dr(pn) and �n = q � an, we
have (# r)(w �pn) = �g ��n and, hence, by (11), (# r)(w �pn) =
0 for n = 0; :::; p � 1. The shift invariance of �n then implies
w � pn = 0 for n = 0; :::; p� 1.

Therefore, (w � pn)(0) =
P

k
w(k)(0� k)n =

(�1)nP
k
w(k)kn = 0 for n = 0; :::; p� 1. Thus,

X
k

w(k)(a0 + a1k + ::: + ap�1k
p�1) = 0 (13)

for any ai 2 R. Since W (z) =
P

k
w(k)z�k, we have

W (n)(1) =
X
k

w(k) for n = 0 (14)



Table 1. Optimal prefilter coefficients for the DGHM multiwavelet

0.312146768057 -0.111458514406q(1)
-0.526851707882 0.188123391564

a 0.485328400031 -0.584495172202q(0)
0.584495172202 0.485328400031
0.188123391564 0.526851707882q(-1)
0.111458514406 0.312146768057
0.009390110250 -0.067942050642q(1)
0.002264535743 -0.016385026171

b 0.992593475574 -0.098895392339q(0)
0.098895392339 0.992593475574
-0.016385026171 -0.002264535743q(-1)
0.067942050642 0.009390110250
-0.626283326739 0.299036923482q(1)
0.632561984796 -0.302034848716

c 0.155146499297 0.053999651374q(0)
0.053999651374 -0.155146499297
0.302034848716 0.632561984796q(-1)
0.299036923482 0.626283326739
0.247052825476 0.164291169222q(1)
0.789564730613 0.525063870525

d 0.108909066323 0.031742659818q(0)
0.031742659818 -0.108909066323
-0.525063870525 0.789564730613q(-1)
0.164291169222 -0.247052825476

For n > 0,

W (n)(1) =
X
k

w(k)(�k)(�k� 1):::(�k � (n� 1)) (15)

Thus, from (13), (14) and (15), it is clear that

W (n)(1) = 0 for n = 0; :::; p� 1:

Since the spectra of most natural signals are concentrated
around zero frequency, a natural way to obtain a small energy com-
paction ratio is to find a prefilter such that W (ej!)�W (ej!) is
zero and as flat at zero frequency as possible. Now consider the
Taylor series expansion of W (ej!) about ! = 0:

W (ej!) =

1X
n=0

cn!
n (16)

where cn is the r � 1 vector given by cn(i) =
W

(n)

i
(1)

n!
, i =

1; :::; r. For a prefilter q, we letm = m(q) denote the index of the
first nonzero coefficient cm in (16). If � has approximation order
p and q is pth-order approximation preserving, then, by Lemma 1,
c0 = c1 = ::: = cp�1 = 0 and so we have m(q) � p. Observe
that

W (ej!)�W (ej!) = cTmcm !2m +O(!2m+1)

which leads us to consider the following:
Optimization Criterion. Given a collection L of prefilters, let

mL := max
q2L

m(q)

be the largest possiblem for any of the prefilters in L. If q is a pre-
filter with m(q) = mL that also minimizes kcmL

k2 = c�mL
cmL

then we say that q is optimal (with respect to L).

Table 2. Taylor series coefficients c0(1)� c4(1) ofW (ej!) using
the optimal prefilters in Table 1.

c0(1) c1(1) c2(1) c3(1) c4(1)

a 0 0 0 -j0.40825 -1.17113
b 0 0 0 -j0.40825 0.01706
c 0 0 0 -j0.40825 0.37899
d 0 0 0 -j0.40825 3.81684

Table 3. Taylor series coefficients c0(2)� c4(2) ofW (ej!) using
the optimal prefilters in Table 1.

c0(2) c1(2) c2(2) c3(2) c4(2)

a 0 0 0 -j0.92446 0.56882
b 0 0 0 -j0.25148 0.44090
c 0 0 0 j0.69748 -2.08410
d 0 0 0 j2.61059 -3.52904

We next apply the optimization criterion to find the optimal
length-3 approximation order preserving prefilter for the DGHM
multiwavelet. For the DGHM multiwavelet (r = 2), W1(e

j!) and
W2(e

j!) are the Fourier transform of the prefilter combined with
the antisymmetric and symmetric wavelets, respectively. Since the
multiwavelet has approximation order 2, c0 and c1 are zero vec-
tors. Note that, from observation, c2(1) is automatically zero for
the DGHM multiwavelet. Following the optimization criterion,
we then search for a prefilter that minimizes jc2(2)j2. Using the
prefilter construction given in [3], we found several prefilters such
that c2(2) was zero as well. This implies that quadratic input sig-
nals are annihilated byW (ej!). Table 1 gives the optimal prefilter
coefficients. Tables 2 and 3 show the Taylor series coefficients
c0(1)� c4(1) and c0(2)� c4(2) using the obtained prefilters, re-
spectively.

4. RESULT WITH IMAGE COMPRESSION ALGORITHM

In this section, we apply the multiwavelet filter bank to the im-
age compression algorithm using the obtained optimal length-3
approximation order preserving prefilters. The image compression
scheme used in this paper is an adaptation of the binary-uncoded
SPIHT algorithm of [6] which exploits the zero-tree structure of
wavelet coefficients. The results were obtained with gray-scaled,
8 bpp, 512x512 Lena image. We first obtain the results of the
image compression using DGHM multiwavelet with the optimal
prefilters. Table 4 shows the PSNR of the decompressed Lena
image at different bit rates. From the image compression results
and the Taylor series coefficients of the optimal prefilters, it can
be seen that the best prefilter amoung the obtained optimal pre-
filters (prefilter b) is the one that has small nonzero Taylor series
coeffcients at the low order of !. In [3], six possible length-3
quasi-interpolation prefilters and four possible length-2 approxi-
mation order preserving prefilters for the DGHM multiwavelet are
given. We next compare the result with the optimal length-3 quasi-
interpolation prefilter and the optimal length-2 approximation or-
der preserving prefilter. Additionally, comparisons are made with
the Daubechies-4 scalar wavelet which has the same approxima-
tion order (p = 2). Table 5 shows the PSNR of the decom-
pressed Lena image using the DGHM multiwavelet with various
prefilters and the D-4 scalar wavelet. Figure 3 shows the frequency



Table 4. PSNR comparison of decompressed Lena image using
optimal prefilters.

PNSR (dB)
CPR Optimal prefilters

a b c d
8:1 38.88 39.21 38.59 37.46

16:1 35.31 35.66 35.02 33.62
32:1 31.93 32.12 31.67 30.58
64:1 29.10 29.11 28.99 28.41

128:1 26.64 26.53 26.62 26.37

Table 5. PSNR comparison of the decompressed Lena images us-
ing the DGHM multiwavelet and the Daubechies-4.

PNSR (dB)
DGHM

CPR Opt l-3 Opt l-2 Opt l-3 D-4
quasi approx approx

8:1 38.85 38.85 39.21 38.74
16:1 35.25 35.30 35.66 35.19
32:1 31.88 31.98 32.12 31.85
64:1 29.00 29.17 29.11 29.02

128:1 26.54 26.64 26.53 26.51

responses of W1(e
j!) and W2(e

j!) when Q(z) is the optimal
length-3 approximation order preserving prefilter (prefilter b) and
compares with the responses when Q(z) are other prefilters. The
result of image comression agrees with the frequency responses in
Figures 3 which show that the frequency response of the optimal
length-3 approximation order preserving prefilter is the flattest at
low frequency.

5. CONCLUSIONS

This paper has developed an optimization criterion to find the op-
timal 2nd-order approximation preserving prefilter for a given or-
thogonal multiwavelet basis based on the taylor series expansion
of the prefilter combined with the multiwavelet. The results show
that the DGHM multiwavelet with the obtained optimal prefilter
outperforms other prefilters which were included in this study and
the D-4 scalar wavelet with the same approximation order.
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