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ABSTRACT

Harmonic analysis, the analysis of signals which consist
of a sum of sinusoids (or complex sinusoids) with additive
white or colored noise, is a much studied problem, with
many important applications.  Nevertheless, existing ap-
proaches have significant limitations.   In many, the model
order (number of sinusoids) is assumed known, and in
most cases Additive White Gaussian Noise (AWGN) is
assumed.  We present a method for jointly determining the
model order and estimating the sinusoid parameters in
white or colored noise.  It uses the notch periodogram in
an iterative detection and estimation algorithm.  It uses an
explicit detection test based on an estimate of the noise
PDS, which is obtained by smoothing the logarithm of the
notch periodogram.

1. INTRODUCTION
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where ma and mω are the complex amplitude and normal-
ized frequency of the mth cisoid,
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The problem considered in this paper is to jointly estimate
the Power Density Spectrum of the noise (which may be
colored), determine M , and estimate the signal parameter
vectors a and Ω .  If v  is white and Gaussian and M is
known, the Maximum Likelihood Estimates of a and Ω
are found [1] by solving the least squares minimization
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For given Ω , the optimum a is given [1] by
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Hence substituting (1.3) into (1.2) yields an equivalent
minimization of an objective function of Ω only,
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projector onto  span ( )( )E Ω  and ( ) ( )
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orthogonal projector.  An alternative approach is to form a
minimization problem using a prediction error matrix, and
solve it iteratively using the Steiglitz-McBride algorithm
(1974), KiSS algorithm (Kumaresan, Scharf, Shaw, 1986),
IQML algorithm (Bresler, Macovski, 1986), or (in a vari-
ant form) the IFA (Kay, 1984).  However the algorithm in
this paper, like that in [2,3], minimizes (1.4) directly in
terms of Ω  and uses a different iterative approach, with
important benefits.

2. THE NOTCH PERIODOGRAM

Assume that the true values of the first 1M −  frequencies
are known, and form the vector [ ]1 1, , T

V Mω ω −= …Ω .
To determine the one remaining frequency ω , we can use
the result [2] that  ( ) ( ) ( )1 1 ;V V VJ J P ω= −Ω Ω Ω , where
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is called the notch periodogram of the data vector x with
respect to the notch set VΩ .   Hence the optimum value of
ω is that which maximizes ( );V VP ω Ω .  This leads to the
idea [2,3] of using the notch periodogram iteratively.

In [3] Hwang and Chen describe a combined detection &
estimation algorithm, which has two phases.  The initiali-
zation phase starts by identifying the frequency 01ω of the
peak in the standard periodogram.  Next, with 1 01ω=Ω as
the notch set, the new peak frequency 02ω of the notch



periodogram is found. Then with [ ]2 01 02, Tω ω=Ω as the
notch set, the frequency 03ω of the peak of the notch peri-
odogram is determined, and so on.  At each iteration, the
model order M is increased only if it results in a reduction
in the following information-theoretic criterion [4]
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in which the first term is the log-likelihood (ignoring a
constant term) and the second a penalty term; otherwise
the initialization phase is terminated.  In [3], the value

2α = in (1.6) is empirically found to be optimum.  Inter-
estingly, a more recent Bayesian model order criterion for
this problem [5] corresponds to 5 3α =  in (2.2).

The second phase of the algorithm in [3] refines the fre-
quency estimates using the Alternating Notch Periodo-
gram Algorithm (ANPA) [2].  Each frequency in turn is
removed from the notch set, the peak of the resulting
notch periodogram is found, and its frequency replaces the
removed frequency in the notch set.  This optimization
process (which is of the type known as univariate search
or 'cyclic descent'  [6]) is repeated until convergence.

A separate application of the notch periodogram is a de-
tection test by Li and Djurić [7] for closely spaced sinu-
soids in white noise.  First assume one tone, plus noise v
of variance 2σ .  Assume the frequency 1ω  of the single
sinusoid is correctly estimated and, with notch frequency

1ω , the frequency of the peak of the notch periodogram in
the range ( ) ( )1 1N Nω π ω ω π− < < + , i.e. one "bin"

width centered on 1ω , is Pω . Then ( ) 2
1 12 ;PP ω ω σ is

[7] approximately distributed (in the tails) as 2
2χ .  Thus a

threshold 1γ  can be defined so that if ( )1 1 1;PP ω ω γ< we
conclude there is only one sinusoid; otherwise we con-
clude that there is at least one more sinusoid close in fre-
quency.  [7] then describes an extension of this idea to test
for more than two sinusoids.  A new notch set is formed
either from the frequencies of the two largest peaks in

( )1 1;P ω ω  in the above frequency range or, if there is only

one peak at Pω , as [ ]2 1, T
Pω ω=Ω .  The maximum of

the new notch periodogram in the same frequency range is
again tested and if it is less than 1γ  we conclude there are
only two sinusoids.  Otherwise the number of notches is
increased in the same way and the test repeated until the
test fails.  Where 2σ is not known, [7] proposes estimat-
ing it by averaging the notch periodogram over the fre-
quency "bins" not close to the notch frequencies.

This detection test is part of an overall framework [7] in
which each distinct peak in the original periodogram is
processed in the way described above, but while the kth

peak is being analyzed, notches are also placed at the
other peaks of the original periodogram, and the noise
estimation procedure is modified to exclude those peaks.

3. DEVELOPMENT OF THE NEW METHOD

We have previously described fast frequency-domain ap-
proaches to the harmonic estimation problem [8,9].  These
algorithms were based on subtraction of the estimated
tones, rather than their removal by orthogonal projection
as in the notch periodogram.  However, we found it diffi-
cult to devise statistically satisfactory detection tests for
that approach, for the high resolution case.  We therefore
decided to combine the detection test [7] with an iterative
estimator based on the notch periodogram, as in [3].  (A
further reason for this choice were the limitations in the
performance of information-theoretic stopping criteria
such as (2.2); see [7] and also our findings below.)  A key
benefit is that we can now devise an extension to the de-
tection test to accommodate colored noise.   If the "noise
floor" ( )NS ω ,
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where E signifies Expectation,  varies only "slowly" with
frequency, then over a small frequency range it is ap-
proximately constant.  Hence if it can be estimated, we
may use ( )NS ω  instead of 2σ in the detection test.

3.1 Investigation of existing algorithms

The detection test [7] is satisfactory for deciding between
0, 1, and more-than-1 tone.  However it has limitations.
The first may be illustrated using the (often used [1]) test
signal used in [7], that is ( )y n =

( ) ( ) ( )exp 2 0.5 exp 2 0.51 ,j n b j n v nπ π φ+ + + (3.2)
where 0,..., 24n =  and 4φ π= .  Also define Signal to

Noise Ratio (as in [1, 7]) as ( )( )( )1010 log 1/ var v n  dB.

The first notch is placed at the frequency 1ω of the single
peak (near the mean of the two true frequencies), and the
second notch is placed very close to the first.  Thus the
two notches are not close to the two true frequencies.  At a
SNR of 20 dB, the maximum SNR used in [7], the result-
ing residual error is not sufficiently large to cause errone-
ous detection of a third tone.  However, at higher SNR
(e.g. 30dB) the test erroneously detects 3 or 4 tones.

Next, note the signal (3.2) has a "best case" phase rela-
tionship.  The worst case phase [9] in (3.2) is 4φ π= −



rather than 4π+ , and it makes both detection and esti-
mation more difficult (for any algorithm) - a higher SNR
is needed to detect two tones.  After the first notch is
placed (again near the mean of the two true frequencies),
the residual notch periodogram has smaller total energy.
And, although the residual has two peaks, they are well
outside the frequency range of the test [7], further reduc-
ing its detection power.  Even if that frequency range is
increased, the test suffers because the power in the resid-
ual is spread in frequency.  We found that better detection
performance results from the idea [12] of using a lowered
initial threshold then, if that threshold is exceeded, adding
a new notch, optimizing the notch frequencies, and then
retesting each tone by removing each notch in turn.

Also, [7] often places new notches at the same frequency
as existing notches, or very close, and this causes numeri-
cal problems in the notch periodogram algorithm.  Suit-
able minor algorithm modifications can prevent this.

We then investigated the combined detection-estimation
algorithm [3], which works well in many circumstances.
However in difficult cases two problems arise.  First, the
detection test based on the EDC (2.2) has lower detection
power than that in [7].  For example, if the signal (3.2) is
used with 4φ π= − at SNR 40dB, only one tone is de-
tected by the EDC method, whereas two are detected by
[7].  This may be in part because the peak frequencies
found in the initialization phase of [3] are biased due to
the presence of other tones nearby in frequency.  How-
ever, the same bias is found for 4φ π= , but in that case
two tones are successfully detected.

Second, for high resolution estimation, the convergence of
the  ANPA algorithm is fast for "good" phase relation-
ships, such as (3.2) with 4φ π= , which was one of the
test cases used in [3].  However, like all univariate optimi-
zation methods, it converges much more slowly when the
Hessian matrix of the error surface has a high eigenvalue
ratio, as happens for example when 4φ π= −  is used in
(3.2).  For example, at 40dB SNR, with 4φ π=  ANPA
converges completely within 5 iterations; but with

4φ π= − , (and forced detection of two tones) conver-
gence is slower, taking over 100 iterations.

3.2 A new noise floor estimation algorithm

If the noise floor (3.1) is assumed to be white, then its
mean value 2σ  may be estimated [7] by averaging the
notch periodogram, excluding frequencies close to de-
tected tones.  During initial detection, the resulting esti-
mated is biased high by the currently undetected tones.
This may in certain cases reduce detection performance.

One way to reduce this bias is to estimate 2σ  using the
mean of the logarithm of the notch periodogram:
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where 0 2 Nω π=  (or, if a zero-padding factor of Z is
used, ( )0 2 ZNω π= ).  Although this estimator has a
higher variance than the (unrealizable) sample-mean of
the periodogram of noise alone, it has a far lower bias
from any undetected tones.  Thus the probability of failed
detection of new peaks is reduced.  We may extend this
approach to estimate a colored noise floor (3.1), by form-
ing a weighted local average in the frequency domain,
instead of a global average:
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where , ,...,kw k K K= −  is a unit sum window function
(such as a scaled Hanning window).  Such an approach
has been proposed [10] as a smoothed estimator of a
broadband spectrum, but not for its ability to estimate a
noise floor spectrum in the presence of interfering tones.

4. THE OVERALL ALGORITHM

Our overall algorithm involves iterative noise floor esti-
mation, using the methods described above, detection of
new tones, using an enhanced detection test, and refine-
ment of the notch frequencies of the notch periodogram by
non-linear optimization.  A crucial issue, which signifi-
cantly affects performance, is the sequence in which de-
tection, frequency estimation and notch frequency optimi-
zation are carried out.

To overcome the detection test problems described in sec-
tion 3.1: (a) we avoid to the need [7] to start by identifying
"l distinct peaks" in the periodogram, which requires a
separate detection test.  Instead, as each new peak is de-
tected, we either assign it to an existing "cluster" if it is
within 2 "bins" (i.e. 4 Nπ  rad/samp) of any notch fre-
quency in an existing cluster, or form a new single-tone
cluster.  This change also removes the (rigid) one bin fre-
quency range in [7], which (as we noted) reduces detec-
tion power in certain cases; (b) we re-optimize the notch
frequencies after each new tone is detected; and (c) we use
a lower initial threshold, but then retest with a higher
threshold after notch frequency optimization.

Because the ANPA algorithm has very slow convergence
under some conditions, we use a BFGS Quasi-Newton
algorithm (Matlab routine fminunc) for the optimization.
If the number of tones is large, the computational load of
this optimization is high.  We therefore investigated meth-



ods of reducing it.  Because "clusters" are separated from
each other in frequency they have low cross-interference
[9], so a single optimization of all notches may be re-
placed by sequential optimization of each cluster in turn
independently with little loss of performance; this works
well and significantly reduces computation load.

The following sequence was found to be the best:
1. compute notch periodogram, noise floor and threshold
2. compare new peak in notch periodogram with
      threshold; if peak below threshold, terminate.
3. assign new peak frequency to existing cluster (if within
      2 bins of any notch in cluster) or form new cluster.
4. optimise notches in each cluster in turn (fminunc).
5. go to 1.

4.1 Joint detection and estimation results

Example 1: two tones, equation (3.2) using worst case
phase 4φ π= − , white noise, SNR=40dB.   In 100 trials,
exactly 2 tones were detected in all cases.  The mean es-
timated frequencies and rms errors were:

True freq (bins) 12.5 12.75
Mean result (bins) 12.499 12.761
rms error (bins) 0.0374 0.0452

Example 2: blocklength N=64, four tones, using worst
case phase relationships [9] between all tones, white
noise.   In 50 trials, exactly 4 tones were detected in all
cases.  The mean estimated frequencies and rms errors
were:

Tone SNR (dB) 24 33 33 38
True freq (bins) 7.516 7.816 15.016 15.216
Mean result 7.519 7.815 14.974 15.234
rms error 0.015 0.006 0.107 0.083

4.2 Computation issues

We used fast frequency domain algorithms which we have
developed for computing the notch periodogram [11].   It
is necessary to limit the minimum separation of notches to
avoid numerical problems due to ill-conditioning in the
computation of ( )E ΩP  and (2.1).

For example 1 (high resolution, two tones, N=24) each
trial required between 100 and 210 notch periodogram
evaluations, and took approximately 4 seconds on a Dell
notebook CpiAD400XTB  (Pentium II processor).

For example 2 (high resolution, 4 tones, N=64) each run
required typically 200 and 400 notch periodogram evalua-

tions, and computation took approximately 20 seconds
(mean).

Note that although the second-order optimization method
(fminunc) is more complex than simple ANPA univariate
optimization, the number of notch periodogram evalua-
tions (which dominates computation time) is actually re-
duced for these worst case phase examples.

5. CONCLUSION

Our algorithm incorporates: the concept of iterative opti-
mization of the notch periodogram from [3], but with an
enhanced optimization strategy; an enhanced detection
test based on the notch periodogram; estimation of a (pos-
sibly colored) noise floor (when required) through the
smoothed log periodogram [10]; and fast frequency-
domain notch periodogram algorithms [11].  It performs
well, even for challenging test cases.
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