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ABSTRACT 

Eff icient two-step algorithms are described for optimizing the
stopband response of the prototype filt er for cosine-modulated
and modified DFT filter banks either in the minimax or in the
least-mean-square sense subject to the maximum allowable
aliasing and amplitude errors. The first step involves finding a
good start-up solution using a simple technique. This solution is
improved in the second step by using nonlinear optimization.
Several examples are included ill ustrating the flexibilit y of the
proposed approach for making compromises between the re-
quired filt er lengths and the aliasing and amplitude errors.
These examples show that by allowing very small amplitude and
aliasing errors, the stopband performance of the resulting filt er
bank is significantly improved compared to the corresponding
perfect-reconstruction filt er bank. Alternatively, the filt er orders
and, consequently, the overall delay can be significantly reduced
to achieve practicall y the same performance.

1. INTRODUCTION

Among different classes of M-channel criti call y sampled filt er
banks, cosine-modulated [1]−[9] and modified DFT [10]−[11]
filt er banks have become very popular in many appli cations due
to the following reasons. First, these banks can be generated
using a single prototype filt er by exploiting a proper transfor-
mation, making the overall i mplementation effective. Second,
the overall synthesis can concentrate on optimizing only the
prototype filt er. This paper concentrates on designing cosine-
modulated filt er banks, but as has been pointed out in [11], the
same prototype filt er with a proper scaling can be used for both
filter types mentioned above.

For designing the prototype filt er different strategies can be
applied. The design can be performed using constrained mini-
mization [5], iterative methods [6], lattice factorizations [2], [3],
[4] as well as by applying some other synthesis schemes [7], [8].
Some of these methods result in perfect-reconstruction (PR) fil-
ter banks whereas some in nearly PR filter banks.

For practical appli cations with lossy channel coding and
quantization, the PR property is desirable but not necessary. In
this case, the distortion caused by aliasing and amplitude errors
to the signal is allowed provided that they are smaller than that
caused by coding. Therefore, it is worth trying to release the PR
condition with the ultimate goal being to achieve better filt er
bank properties.
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This paper describes an eff icient two-step approach for syn-
thesizing prototype filt ers for nearly PR filter banks. In the first
step, a proper prototype filt er for a PR filter bank is generated
using a systematic multi -step procedure described in [12]. In the
second step, this filt er is used as a start-up solution for solving
the given constrained optimization problem. The optimization is
carried out by using the second algorithm of Dutta and Vidyasa-
gar [9], [13]. Several examples are included ill ustrating that by
allowing small amplitude and aliasing errors, the filt er bank
performance can be significantly improved. Alternatively, the
filter orders and the overall delay caused by the filt er bank to
the signal can be considerably reduced. This is very important in
communication appli cations.
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Figure 1. M-channel maximall y decimated filt er bank.

2. COSINE-MODULATED FILTER BANKS

A general M-channel criti call y sampled filt er bank is shown in
Figure 1 [1]. For this system the input-output relation in the z-
domain is expressible as
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for l  = 1, 2, …, M−1. Here, T0(z) is called the distortion transfer
function and determines the distortion caused by the overall
system for the unaliased component X(z) of the input signal. The
remaining transfer functions Tl(z) for l  = 1, 2, …, M−1 are called
the alias transfer functions and determine how well the aliased
components X(ze−j2πl / M) of the input signal are attenuated.

For PR, it is required that T0(z) = z−N with N being an integer
and Tl(z) = 0 for l  = 1, 2, …, M−1. If these conditions are satis-



fied, then the output signal is a delayed version of the input sig-
nal, that is, y(n) = x(n−N). It should be noted that PR is exactly
achieved only in the case of lossless coding. For a lossy coding,
PR is not achieved. Therefore, amplitude and aliasing errors
being less than those caused by coding are allowed. In these
nearly PR cases, the above-mentioned conditions should be sat-
isfied within given tolerances.

For cosine-modulated filt er banks, the impulse responses for
the analysis transfer functions Hk(z) in Figure 1 can be gener-
ated with the aid of a li near-phase FIR1 prototype transfer func-
tion of the form
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as follows [1], [2]2:
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The impulse responses for the synthesis filt ers are obtained by
replacing N − n by n in the above equation. Another alternative
is to use the modulation scheme described in [3].

In the PR case, N, the order of the prototype filt er, is re-
stricted to be an odd integer equal to 2KM−1, where M is the
number of channels and K is an integer. In nearly PR cases,
there is not such a limit. This contribution concentrates on the
case where N is odd (the length N + 1 is even). In this case, the
frequency response of the prototype filt er is expressible as
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denotes the adjustable parameter vector of the prototype filt er.
The following two sections show how to optimize the stop-

band response of the prototype in the least-mean-square and
minimax senses subject to the given allowable amplitude and
aliasing errors.

3. LEAST-SQUARED-ERROR DESIGN

This section considers the design of the prototype filt er in the
least-mean-square sense.

3.1 Statement of the problem

The following optimization problem is considered: Given ρ, M,
and N, find the coefficients of Hp(z) to minimize

                                                       
1 As shown in [6], non-linear-phase FIR filters can also be used as prototype
filters. This contributions concentrates on the use of linear-phase filters.
2 In [1], instead of the constant of value 2, the constant of value M/2

has been used. The reason for this is that the prototype filter is implemented
using special butterflies. The amplitude response of the resulting prototype

filter approximates the value of 2M , instead of unity, at the zero fre-
quency. For an approximately peak-scaled overall implementation, the

scaling constants of values )2/(1 M  and 2/1  are desired to be used in

the final implementation for the hk(n)’s and fk(n)’s, respectively.
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3.2 Proposed design method

In the above problem, Eq. (5a) can be expressed as
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The ),( ωj
l eT h ’ s for l  = 0, 1, …, M−1, in turn, can be written as

shown in Appendix A in [9].
To solve this problem, we discretize the region [0, π/M] into

the discrete points ω j ∈  [0, π/M] for j = 1, 2, …, J0. In many
cases, J0 = N is a good selection to arrive at a very accurate so-
lution. The resulting discrete problem is to find h to minimize
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where E2(h) is given by Eq. (6), subject to
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for l  = 1, 2, …,  2/M  and for j = 1, 2, …, J0.

In the above, the region [0, π/M], instead of [0, π], has been

used since the |),(| ωj
l eT h ’ s are periodic with periodicity equal

to 2π/M. Furthermore, only the first  2/)2( +M  |),(| ωj
l eT h ’ s

have been used since |),(||),(| ωω j
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j
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The above nonlinear optimization problem can be solved
conveniently by using a two-step design procedure described in
                                                       
3  x  stands for the integer part of x.



[9]. In the first step of this approach, a suboptimum start-up so-
lution for the second step is generated in a manner to be briefly
described in Section 5. For the second step, the optimization
problem has been formulated above such that at least a good lo-
cal optimum can be found by using the second algorithm of
Dutta and Vidyasagar [13]. The detail s on how to apply this al-
gorithm can be found in [9]. Due to the high nonlinearity of the
problems under consideration, both steps are of great impor-
tance. This is because the convergence to a good overall solution
implies both a good start-up solution and the use of a computa-
tionall y eff icient algorithm for further optimization.

A special case of the above problem is the case where

1|),(| 0 ≡ωjeT h , that is, the amplitude distortion is zero. This

implies that 01 ≡δ in Eq. (7d). In practice, a good enough solu-

tion is obtained by using 16
1 10−=δ in Eq. (7d).

4. MINIMAX DESIGN

This section considers the design of the prototype filt er in the
minimax sense.

4.1 Statement of the problem

The following optimization problem is considered: Given ρ, M,
and N, find the coeff icients of Hp(z) to minimize

[ ]
)(max

,

ω

πωω

j
p eHE

s∈
∞ = , (8)

where ω s is given by Eq. (5b), subject to the conditions of Eqs.
(5c) and (5d).

4.2 Proposed design method

The main difference compared to the above least-squared-error
design is that now, in addition to the discretization performed in
Subsection 3.2, the stopband region [ω s, π] has to be discretized
into points ω i  ∈  [ω s, π] for i  = 1, 2, …, I. In many cases, I  = 20N
is a good selection. The resulting discrete minimax problem is
to find h to minimize
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and J and the gj(h)’ s are given by Eqs. (7c), (7d), and (7e).
A two-step procedure similar to that used for least-squared-

error design can be applied. The start-up solution is determined
as will be described in Section 5. In the second step, the Dutta-
Vidyasagar algorithm is again applied. The special case

1|),(| 0 ≡ωjeT h  can also be solved li ke for the least-squared-
error problem.

5. INITIAL STARTING-POINT SOLUTIONS

Good start-up solutions can be generated for both of the above
problems by using systematic multi -step procedures described in
[4], [9], [12] for generating PR filter banks in such a way that
the stopband behavior of the prototype filt er is optimized in the

least-mean-square or the minimax sense. These procedures have
been constructed in such a way that they are unconstrained op-
timization procedures. To achieve this, the basic unknowns have
been selected such that the PR property is satisfied independent
of the values of the unknowns. Compared to other existing de-
sign methods, these synthesis procedures are faster and allow us
to synthesize filt er banks of significantly higher filt er orders
than the other existing design schemes.

For the PR case, the order of the prototype filt er is restricted
to be N = K⋅2M−1, where M is the number of filt ers in the analy-
sis and synthesis banks and K is an integer. If the desired order
does not satisfy this condition, then a good initi al solution is
found by first designing the PR filter with the order of the pro-
totype filt er being selected such that K is the smallest integer
making the overall order larger than the desired one. Then, the
first and the last impulse-response values are dropped out until
achieving the desired order.

6. EXAMPLES

For comparison purposes, several filt er banks have been opti-
mized for M = 32 channels and ρ = 1, that is, the stopband edge
of the prototype filt er is located at ω s = π/32. The results are
summarized in Table I. In all cases under consideration, the or-
der of the prototype filt er is K⋅2M−1, where K is an integer and
the stopband response has been optimized in either the minimax
or least-mean-square (LSQ) sense. δ 1 shows the maximum de-
viation of the amplitude response of the reconstruction error
T0(z) from unity, whereas δ 2 is the maximum amplitude value of
the worst-case aliasing transfer function Tl (z). The boldface
numbers indicate those parameters that have been fixed in the
optimization. E∞ and E2 give the maximum stopband amplitude
value of the prototype filt er and the stopband energy, respec-
tively.

Table I
Comparison between filt er banks with M = 32 and ρ = 1.
Boldface numbers indicate those parameters that have
been fixed in the optimization.

Criterion K N δ1 δ2 E∞ E2

LSQ 8 511 0
0

−−−−∞∞∞∞ dB
1.2⋅10−3

−58 dB
7.4⋅10−9

Minimax 8 511 0
0

−−−−∞∞∞∞ dB
2.3⋅10−4

−73 dB
7.5⋅10−8

LSQ 8 511 10−−−−4 2.3⋅10−6

−113 dB
1.0⋅10−5

−100 dB
5.6⋅10−13

Minimax 8 511 10−−−−4 1.1⋅10−5

−99 dB
5.1⋅10−6

−106 dB
3.8⋅10−11

LSQ 8 511 0
9.1⋅10−5

−81 dB
4.5⋅10−4

−67 dB
5.4⋅10−10

LSQ 8 511 10−−−−2 5.3⋅10−7

−126 dB
2.4⋅10−6

−112 dB
4.5⋅10−14

LSQ 6 383 10−−−−3 10−−−−5

−−−−100 dB
1.7⋅10−4

−75 dB
8.8⋅10−10

LSQ 5 319 10−−−−2 10−−−−4

−−−−80 dB
8.4⋅10−4

−62 dB
2.7⋅10−9

The first two banks in Table I are PR filter banks where the
stopband performance has been optimized in the least-mean-
square sense and in the minimax sense, respectively. The third
and fourth designs are the corresponding nearly PR banks de-
signed in such a way that the reconstruction error is restricted to
be less than or equal to 10−4. For these designs as well as for the



fifth and sixth solutions in Table I, no constraints on the levels
of the aliasing errors have been imposed. Some characteristics
of the first and third designs are depicted in Figs. 2 and 3, re-
spectively. From these figures as well as from Table I, it is seen
that the nearly PR filter banks provide significantly improved
filter bank performances at the expense of a small reconstruc-
tion error and very small aliasing errors. When comparing the
second and fourth solutions in Table I, it is seen that the same is
true for the corresponding minimax designs.

When comparing the first and fifth solutions in Table I, it is
observed that even an optimized nearly PR filter bank without
amplitude error provides a considerably better performance than
the PR filter bank. Furthermore, it is seen that the performance
of the nearly PR filter bank significantly improves when a higher
reconstruction error is allowed (the sixth design in Table I).

For the last two solutions in Table I, the orders of the proto-
type filt ers have been decreased and they have been optimized
subject to the given reconstruction and aliasing errors. Some of
the characteristics of last design are depicted Figs. 4. When
comparing this solution with the first PR design of Table I (see
also Fig. 2), it is observed that the same or even a better filt er
bank performance can be achieved with a significantly lower
filter order (319 compared with 511) when small amplitude and
aliasing errors are allowed.
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Figure 2. PR filter bank of M = 32 filters of length N + 1 = 512 for
ρ = 1. The least-mean-square error design has been used.
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Figure 3. Filter bank of M = 32 filters of length N + 1 = 512 for ρ = 1
and δ1 = 0.0001. The least-mean-square error design has been used.
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Figure 4. Filter bank of M = 32 filters of length N + 1 = 320 for ρ = 1,
δ1 = 0.01, and δ2 = 0.0001. The least-mean-square error design has
been used.


