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ABSTRACT

Efficient two-step algarithms are described for optimizing the
stopband response of the prototype filter for cosine-modulated
and modified DFT filter banks either in the minimax or in the
least-mean-square sense subject to the maximum allowable
aliasing and amplitude erors. The first step involves finding a
godd start-up solution using a simple technique. This lution is
improved in the second step by using nonlinea optimization.
Several examples are included ill ustrating the flexibility of the
proposed approach for making compromises between the re-
quired filter lengths and the diasing and amplitude erors.
These examples show that by all owing very small amplitude and
aliasing errors, the stopband performance of the resulting filter
bank is sgnificantly improved compared to the corresponding
perfect-reconstruction filter bank. Alternatively, the filter orders
and, consequently, the overall delay can be significantly reduced
to achieve practicall y the same performance.

1. INTRODUCTION

Among different classes of M-channel critically sampled filter
banks, cosine-modulated [1]-[9] and modified DFT [10]-[1]]
filter banks have become very popular in many appli cations due
to the following reasons. First, these banks can be generated
using a single prototype filter by exploiting a proper transfor-
mation, making the overall implementation effective. Second,
the overal synthesis can concentrate on optimizing anly the
prototype filter. This paper concentrates on designing cosine-
modul ated filter banks, but as has been pointed out in [11], the
same prototype filter with a proper scaling can be used for both
filter types mentioned above.

For designing the prototype filter different strategies can be
applied. The design can be performed using constrained mini-
mization [5], iterative methods [6], | attice factorizations [2], [3],
[4] as well as by applying some other synthesis shemes [7], [8].
Some of these methods result in perfect-reconstruction (PR) fil-
ter banks whereas some in nealy PR filter banks.

For practical applications with lossy channel coding and
quantization, the PR property is desirable but not necessary. In
this case, the distortion caused by aliasing and amplitude erors
to the signal is allowed provided that they are small er than that
caused by coding. Therefore, it is worth trying to release the PR
condition with the ultimate goal being to achieve better filter
bank properties.
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This paper describes an efficient two-step approach for syn-
thesizing prototype filters for nealy PR filter banks. In the first
step, a proper prototype filter for a PR filter bank is generated
using a systematic multi-step procedure described in [12]. In the
second step, this filter is used as a start-up solution for solving
the given constrained optimization problem. The optimization is
carried out by using the second algorithm of Dutta and Vidyasa-
gar [9], [13]. Several examples are included ill ustrating that by
allowing small amplitude and diasing errors, the filter bank
performance can be significantly improved. Alternatively, the
filter orders and the overall delay caused by the filter bank to
the signal can be considerably reduced. Thisis very important in
communication appli cations.
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Figure 1. M-channel maximally decimated filter bank.

2. COSINE-MODULATED FILTER BANKS

A general M-channel critically sampled filter bank is gown in
Figure 1 [1]. For this s/stem the inpu-output relation in the z-
domain is expressble &
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where '
1 M-1
To(2) =+ kZOFk(Z)H k(2) (1b)
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for 1=1,2,...,M-1. Here, To(2) is caled the distortion transfer
function and determines the distortion caused by the overal
system for the unali ased component X(2) of the input signal. The
remaining transfer functions Ti(2) for 1=1,2, ..., M-1 are caled
the dias transfer functions and cetermine how well the diased
components X(ze1?"'™) of the input signal are dtenuated.

For PR, it is required that To(2) =z ™ with N being an integer
and Ti(2)=0 for 1=1,2,...,M-1. If these conditions are satis-



fied, then the output signal is a delayed version of the inpu sig-
nal, that is, y(n) =x(n-N). It should be noted that PR is exactly
achieved only in the case of losdesscoding. For a lossy coding,
PR is not achieved. Therefore, amplitude and aiasing errors
being less than those caused by coding are dlowed. In these
nealy PR cases, the ove-mentioned conditions sould be sat-
isfied within given tolerances.

For cosine-modul ated filter banks, the impulse responses for
the analysis transfer functions Hi(2) in Figure 1 can be gener-
ated with the dd of a linea-phase FIR" prototype transfer func-
tion of the form

N
Hp(@)= 3 hp(mz™", hy(N=n)=hy(n) @
n=0

asfollows[1], [2]%

hk(n)=2hp(n)co%<+%§%§!\l—n+wl+1%. 3)
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The impulse responses for the synthesis filters are obtained by
replacing N—n by nin the &ove ejuation. Another aternative
is to use the modulation scheme described in [3].

In the PR case, N, the order of the prototype filter, is re-
stricted to be an odd integer equal to 2KM-1, where M is the
number of channels and K is an integer. In nealy PR cases,
there is not such a limit. This contribution concentrates on the
case where N is odd (the length N+ 1 is even). In this case, the
frequency response of the prototype filter is expresshble &

Hp(hel?) =e N92HO (h @), (49)
where
(N+1)/2
HOhw)=2 Y hol(N+1)/2-nlcod(n-1/2)w]  (4b)
n=1
and

h=lh,© he@  holN-1/2] (40)

denotes the ajustable parameter vector of the prototype filter.

The following two sections sow how to gptimize the stop-
band response of the prototype in the least-mean-square and
minimax senses aubject to the given alowable amplitude and
aliasing errors.

3. LEAST-SQUARED-ERROR DESIGN

This sction considers the design of the prototype filter in the
least-mean-square sense.

3.1 Statement of the problem

The following gptimization problem is considered: Given p, M,
and N, find the coefficients of Hp(2) to minimize

* As shownin [6], nortlinear-phase FIR filters can also be used as prototype
filters. This contributions concentrates on the use of linear-phasefilters.

2In[1], instead of the mnstant of value 2, the mnstant of value v2/M

has been used. The reason for thisisthat the prototype filter isimplemented
using spedal butterflies. The amplitude resporse of the resulting prototype

filter approximates the value of M \/5 , ingtead o unity, at the zeo fre-
quency. For an approximately peak-scaled owerall implementation, the
scaling congtants of values 1/(M \/E) and 1/\/5 are desired to be used in
the final implementation for the hy(n)’sand fu(n)’s, respectively.

E, =J':|H p(ei‘*’)|zo|w, (53)
where
ws =1+ p)m/(2M) (5h)
subject to
1—61S|T0(ej“’)|51+61 for w007 (50)

andforl=1,2, ,M-1
|TI (el®) | <5, for wi[on]. (5d)

3.2 Proposed design method
In the gove problem, Eq. (5a) can be expressd as

(N+1)/2 (N+1)/2 N +1 N +1
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The |T|(h,ej“’)| 'sfor1=0,1, ..,M-1, in turn, can be written as

shown in Appendix A in [9].

To solve this problem, we discretize the region [0, 7M] into
the discrete points «w, 0[0, WM] for j=1,2,...,J0. In many
cases, Jo=N is a godd selection to arrive & a very acaurate so-
Iution. The resulting discrete problem isto find h to minimize

p(h)=Ey(h), (78)
where Ex(h) is given by Eq. (6), subject to
g;(h)<0 for i=12,...,3, (7b)
where®
J=[M +2)/2J,, (70)
gj(h)=|'ro(h,eij )H—al for =12 ..., (7d)
and
9, +j ()= o(h,ej“’J )|—52 (7e)

forl=1,2,..., M /2 andforj=1,2, ..., Jo.

In the &ove, the region [0, 7M], instead of [0, 7], has been
used since the | T, (h,ej“’)|’sare periodic with periodicity equal
to 277M. Furthermore, only the first [(M +2)/2[ |T, (h,ej“’)|’s
have been uwsed since |[T;(h,e!®)|=|Ty (h,e!®)| for
[=1,2,..., [(M -1 /2[.

The &ove nonlinea optimization problem can be solved
conveniently by using a two-step design procedure described in

3 X[ standsfor theinteger part of x.



[9]. In the first step of this approach, a suboptimum start-up so-
Iution for the second step is generated in a manner to be briefly
described in Section 5. For the second step, the optimization
problem has been formulated above such that at least a goad lo-
cal optimum can be found ky using the second algorithm of
Dutta and Vidyasagar [13]. The detail s on how to apply this al-
garithm can be foundin [9]. Due to the high nonlineaity of the
problems under consideration, both steps are of grea impor-
tance. Thisis because the convergence to a goad overall solution
implies both a goad start-up solution and the use of a computa-
tionally efficient algorithm for further optimization.

A special case of the &ove problem is the case where

|T0(h,ej“’) |=1, that is, the amplitude distortion is zero. This
impliesthat 6, = 0in Eq. (7d). In practice, a goad enough solu-
tion is obtained by using &; =107%%in Eq. (7d).

4. MINIMAX DESIGN

This sction considers the design of the prototype filter in the
minimax sense.

4.1 Statement of the problem

The following gptimization problem is considered: Given p, M,
and N, find the coefficients of Hp(2) to minimize

E, = max |Hp(ej“’)|,
wD[ws,rr]

(8)

where ws is given by Eq. (5b), subject to the conditions of Egs.
(5¢) and (5d).

4.2 Proposed design method

The main dfference compared to the &ove least-squared-error
design is that now, in addition to the discretization performed in
Subsection 3.2, the stopband region [ws, 7 has to be discretized
into points wi O[ws, 1 for i=1,2,....1. In many cases, | =20N
is a god selection. The resulting discrete minimax problem is
to find h to minimize

p(h) = B (n) = max{f; (0} (%)
subject to
gj(h)<0 for j=12...,J, (9b)
where
fi()=[Hphel™)| for i=12.. (99

and J and the g;(h)’ s are given by Egs. (7¢), (7d), and (7e).

A two-step procedure similar to that used for least-squared-
error design can be gplied. The start-up solution is determined
as will be described in Section 5. In the second step, the Dutta-
Vidyasagar algarithm is again applied. The specia case
|T0(h,ej“’) |=1 can aso be solved like for the least-squared-
error problem.

5. INITIAL STARTING-POINT SOLUTIONS

Goad start-up solutions can be generated for both of the eove
problems by using systematic multi-step procedures described in
[4], [9], [12] for generating PR filter banks in such a way that
the stopband behavior of the prototype filter is optimized in the

least-mean-sgquare or the minimax sense. These procedures have
been constructed in such a way that they are unconstrained op-
timization procedures. To achieve this, the basic unknowns have
been selected such that the PR property is stisfied independent
of the values of the unkrnowns. Compared to ather existing de-
sign methods, these synthesis procedures are faster and allow us
to synthesize filter banks of significantly higher filter orders
than the other existing design schemes.

For the PR case, the order of the prototype filter is restricted
to be N=K2M-1, where M is the number of filtersin the analy-
sis and synthesis banks and K is an integer. If the desired order
does not satisfy this condition, then a godd initial solution is
found ty first designing the PR filter with the order of the pro-
totype filter being selected such that K is the smallest integer
making the overall order larger than the desired one. Then, the
first and the last impulse-response values are dropped out until
achieving the desired order.

6. EXAMPLES

For comparison puposes, several filter banks have been opti-
mized for M =32 channels and p=1, that is, the stopband edge
of the prototype filter is located at ws=7732. The results are
summarized in Table I. In al cases under consideration, the or-
der of the prototype filter is KRM—1, where K is an integer and
the stopband response has been optimized in either the minimax
or least-mean-sguare (LSQ) sense. d1 shows the maximum de-
viation of the amplitude response of the reconstruction error
To(2) from unity, whereas - is the maximum amplitude val ue of
the worst-case diasing transfer function Ti(2). The boldface
numbers indicate those parameters that have been fixed in the
optimization. E.. and E; give the maximum stopband amplitude
value of the prototype filter and the stopband energy, respec-
tively.
Tablel

Comparison between filter banks with M =32 and p=1.

Boldface numbers indicate those parameters that have

been fixed in the optimization.

Criterion K N [ > E.. E,

LSQ 8 511 0 _mo 4B %ggf; 7.410°
Minimex | 8 511 0 _mo 4B %?Ef; 7.500°®
s | 8 |51 | 10° _2'131%%7; _1'1%%%7; 561072
Minimax | 8 | 511 | 107 ﬁ;gf; f‘llo'jég; 3810

5 =

LSQ 8 511 0 %;?SB ‘fg’%’B 5.400%°
LtsQ | 8 | 511 | 102 f‘ls'z'jég; _2'141':'21?; 45107
L1sQ | 6 | 383 | 107 -1%)%25 ﬁ;gf; 8810
s | 5 | 319 | 10° -;8—;5 Efgglg; 27107

The first two banks in Table | are PR filter banks where the
stopband performance has been optimized in the least-mean-
square sense and in the minimax sense, respectively. The third
and fourth designs are the corresponding nealy PR banks de-
signed in such away that the reconstruction error is restricted to
be lessthan or equal to 10™*. For these designs as well as for the




fifth and sixth solutions in Table I, no constraints on the levels
of the diasing errors have been imposed. Some characteristics
of the first and third designs are depicted in Figs. 2 and 3 re-
spectively. From these figures as well asfrom Tablel, it is e
that the nealy PR filter banks provide significantly improved
filter bank performances at the expense of a small reconstruc-
tion error and very small aliasing errors. When comparing the
second and fourth solutionsin Table |, it is e that the same is
true for the corresponding minimax designs.

When comparing the first and fifth solutions in Table I, it is
observed that even an optimized nealy PR filter bank without
amplitude eror provides a considerably better performance than
the PR filter bank. Furthermore, it is e that the performance
of the nealy PR filter bank significantly improves when a higher
reconstruction error is allowed (the sixth designin Table ).

For the last two solutions in Table I, the orders of the proto-
type filters have been decreased and they have been optimized
subject to the given reconstruction and aliasing errors. Some of
the characteristics of last design are depicted Figs. 4. When
comparing this lution with the first PR design of Table | (see
also Fig. 2), it is observed that the same or even a better filter
bank performance can be ahieved with a significantly lower
filter order (319 compared with 511 when small amplitude and
aliasing errors are dlowed.
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Figure 2. PR filter bank of M =32 filters of length N+1=512 for
p=1. Theleast-mean-square aror design has been used.
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Figure 4. Filter bank of M=32 filters of length N+1=320for p=1,

5,=0.01, and 4,=0.0001 The least-mean-square eror design has
been used.



